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Abstract We shall prove a Poincaré–Bendixson theorem describing the asymptotic behavior
of geodesics for a meromorphic connection on a compact Riemann surface. We shall also
briefly discuss the case of non-compact Riemann surfaces, and study in detail the geodesics
for a holomorphic connection on a complex torus.
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1 Introduction

The main goal of this paper is to prove a Poincaré–Bendixson theorem describing the asymp-
totic behavior of geodesics for a meromorphic connection on a compact Riemann surface.

Roughly speaking (see Sect. 2 for more details), ameromorphic connection on a Riemann
surface S is a C-linear operator ∇ : T (S) → M 1(S) ⊗ T (S), where T (S) is the space
of holomorphic vector fields on S and M 1(S) is the space of meromorphic 1-forms on S,
satisfying a Leibniz rule∇(φs) = φ∇s+dφ⊗s for every s ∈ T (S) and every meromorphic
function φ ∈ M (S). Meromorphic connections are a classical subject, related for instance
to linear differential systems (see, e.g., [20]); but in this paper we shall study them following
a less classical point of view, introduced in [7].
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A meromorphic connection ∇ on a Riemann surface S (again, see Sect. 2 for details)
can be represented in local coordinates by a meromorphic 1-form; it turns out that the poles
(and the associated residues) of this form do not depend on the coordinates but only on the
connection. If p ∈ S is not a pole, as for ordinary connections in differential geometry, it
is possible to use ∇ for differentiating along a direction v ∈ TpS any vector field s defined
along a curve in S tangent to v, obtaining a tangent vector ∇vs ∈ TpS. In particular, if
σ : (a, b) → S is a smooth curve with image contained in the complement of the poles, it
makes sense to consider the vector field ∇σ ′σ ′ along σ ; and we shall say that σ is a geodesic
for ∇ if ∇σ ′σ ′ ≡ O .

As far as we know, geodesics for meromorphic connections in this sense were first intro-
duced in [7]. As shown there, locally they behave as Riemannian geodesics of a flat metric;
but their global behavior can be very different from the global behavior of Riemannian geo-
desics. Thus they are an interesting object of study per se; but they also have dynamical
applications, in particular in the theory of local discrete holomorphic dynamical systems of
several variables—explainingwhywe are particularly interested in their asymptotic behavior.

One of the main open problems in local dynamics of several complex variables is the
understanding of the dynamics, in a full neighbourhood of the origin, of holomorphic germs
tangent to the identity, that is of germs of holomorphic endomorphisms ofC

n fixing the origin
and with differential there equal to the identity. In dimension one, the Leau–Fatou flower
theorem (see, e.g., [2] or [22]) provides exactly such an understanding; and building on this
theoremCamacho ([12]; see also [26]) in 1978 has been able to prove that every holomorphic
germ tangent to the identity in dimension one is locally topologically conjugated to the time-
1 map of a homogeneous vector field. In other words, time-1 maps of homogeneous vector
fields provide a complete list ofmodels for the local topological dynamics of one-dimensional
holomorphic germs tangent to the identity.

In recent years, many authors have begun to study the local dynamics of germs tangent
to the identity in several complex variables; see, e.g., Écalle [14–16], Hakim [17,18], Abate,
Bracci, Tovena [1,4–7], Rong [24], Molino [23], Vivas [28], Arizzi, Raissy [8], and others.
A few generalizations to several variables of the Leau–Fatou flower theorem have been
proved, but none of them was strong enough to be able to describe the dynamics in a full
neighbourhood of the origin; furthermore, examples of unexpected phenomena not appearing
in the one-dimensional case have been found. Thus it is only natural to try and study the
dynamics of meaningful classes of examples, with the aim of extracting ideas applicable to
a general setting; and Camacho’s theorem suggests that a particularly interesting class of
examples is provided by time-1 maps of homogeneous vector fields. (Actually, the evidence
collected so far strongly suggests that a several variable version of Camacho’s theorem
might hold: generic germs tangent to the identity should be locally topologically conjugated
to time-1 maps of homogeneous vector fields. But we shall not pursue this topic here. See
also [3,9–11, Sections 5, 6] and [21] for applications of time-1 maps in related contexts.)

This is the approach initiated in [7], where we discovered that there is a strong relationship
between the dynamics of the time-1 map of homogeneous vector fields and the dynamics of
geodesics for meromorphic connections on Riemann surfaces. To describe this relationship,
we need to introduce a few notations and definitions.

Let Q be a homogeneous vector field on C
n of degree ν + 1 ≥ 2. First of all, notice that

the orbits of its time-1 map are contained in the real integral curves of Q; so we are interested
in studying the dynamics of the real integral curves of the complex homogeneous vector
field Q (actually, it turns out that complex integral curves of a homogeneous vector field are
related to—classically studied—sections which are horizontal with respect to a meromorphic
connection; see [7] for details).

123

Author's personal copy



Poincaré–Bendixson theorem for meromorphic connections on…

A characteristic direction for Q is a direction v ∈ P
n−1(C) such that the complex line

(the characteristic leaf ) issuing from the origin in the direction v is Q-invariant. An integral
curve issuing from a point of a characteristic leaf stays in that leaf forever; so the dynamics
in a characteristic leaf is one-dimensional, and thus completely known. In particular, if the
vector field Q is a multiple of the radial field (we shall say that Q is dicritical) every direction
is characteristic, the dynamics is one-dimensional and completely understood. So, we are
mainly interested in understanding the dynamics of integral curves outside the characteristic
leaves of non-dicritical vector fields. Then in [7] we proved the following result:

Theorem 1.1 (Abate–Tovena [7]) Let Q be a non-dicritical homogeneous vector field of
degree ν + 1 ≥ 2 in C

n and let MQ be the complement in C
n of the characteristic leaves of

Q. Let [·] : C
n\{O} → P

n−1(C) denote the canonical projection. Then there exists a singu-
lar holomorphic foliation F of P

n−1(C) in Riemann surfaces, and a partial meromorphic
connection ∇ inducing a meromorphic connection on each leaf of F , whose poles coincide
with the characteristic directions of Q, such that the following hold:

(i) if γ : I → MQ is an integral curve of Q then the image of [γ ] is contained in a leaf S
of F and it is a geodesic for ∇ in S;

(ii) conversely, if σ : I → P
n−1(C) is a geodesic for ∇ in a leaf S of F then there are

exactly ν integral curves γ1, . . . , γν : I → MQ such that [γ j ] = σ for j = 1, . . . , ν.

Thanks to this result, we see that the study of integral curves for a homogeneous vector
field in C

n is reduced to the study of geodesics for meromorphic connections on a Riemann
surface S (obtained as a leaf of the foliation F ).

In [7] the latter study has been carried out in the case S = P
1(C), which is the only

case arising when n = 2 (and indeed it has led to a fairly extensive understanding of the
dynamics of homogeneous vector fields in C

2, including the description of the dynamics in
a full neighbourhood of the origin for a substantial class of examples); the main goal of this
paper is to extend this study from P

1(C) to a generic compact Riemann surface, with the
hope of applying in the future our results to the study of the dynamics of homogeneous vector
fields in C

n with n ≥ 3.
More precisely, we shall prove a Poincaré–Bendixson theorem describing the ω-limit set

of the geodesics for a meromorphic connection on a generic compact Riemann surface. We
recall that, in general, a “Poincaré–Bendixson theorem” is a result describing recurrence
properties of a class of dynamical systems (see [13] for a survey on the subject). We shall
prove (see Theorems 4.3 and 5.1) that the ω-limit of a not self-intersecting geodesic whose
interior is empty may only be a pole for the connection, a closed geodesic, or a boundary
graph of saddle connections, i.e., a topological graph on the surface whose vertices are poles
and whose arcs are disjoint geodesics connecting two poles and such that it is the boundary
of an open subset of the whole surface (see Definition 4.4).

An important ingredient in our proof will be a Poincaré–Bendixson theorem due toHounie
[19], describing the minimal sets for smooth singular line fields on compact orientable sur-
faces (which in turn follows from a similar statement for smooth vector fields, see [25]).
Indeed, in Theorem 4.1 we shall show that it is possible to consider a not self-intersecting
geodesic for a meromorphic connection as part of an integral curve for a suitable line field
on the surface, which, in a neighbourhood of the support of the geodesic, is singular exactly
on the poles of the connection, allowing us to apply Hounie’s theorem.

The paper is organized as follows. In Sect. 2 we collect all the preliminary results that
we shall need. In Sect. 3 we generalize results obtained in [7] concerning geodesics for
meromorphic connections on the Riemann sphere to geodesics for meromorphic connections
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on a generic compact Riemann surface. In Sects. 4 and 5 we prove our main theorems, using
the result ofHouniementioned above to give a topological description of the possibleminimal
sets, and then concluding the proof by applying the theory developed in the previous sections.
In Sect. 6we shall briefly discusswhat happens on non-compact Riemann surfaces. Finally, in
Sect. 7 we present a detailed study of the geodesics for holomorphic connections on complex
tori (the only compact Riemann surfaces admittingmeromorphic connections without poles).

2 Preliminary notions

Throughout this paper we shall denote by S a Riemann surface and by p : T S → S the
tangent bundle on S. Furthermore,OS will be the structure sheaf of S, i.e., the sheaf of germs
of holomorphic functions on S, andMS the sheaf of germs of meromorphic functions. T S
will denote the sheaf of germs of holomorphic sections of T S and MT S the sheaf of germs
of its meromorphic sections. Finally, Ω1

S will denote the sheaf of germs of holomorphic
1-forms, and M 1

S the sheaf of germs of meromorphic 1-forms.
We start recalling the definitions and the first properties of holomorphic and meromorphic

connections on p : T S → S. We refer to [7] and [20] for details.

Definition 2.1 A holomorphic connection on the tangent bundle p : T S → S over a Rie-
mann surface is a C-linear map ∇ : T S → Ω1

S ⊗ T S satisfying the Leibniz rule

∇( f s) = d f ⊗ s + f ∇s

for all s ∈ T S and f ∈ OS . We shall often write ∇us for ∇s(u).
A geodesic for a holomorphic connection ∇ is a real curve σ : I → S, with I ⊆ R an

interval, such that ∇σ ′σ ′ ≡ 0.

Let us see what this definition means in local coordinates. Given a holomorphic atlas
{(Uα, zα)} on S, we denote by ∂α := ∂/∂zα the induced local generator of T S over Uα .
We shall always suppose that the Uα’s are simply connected. On each Uα we can find a
holomorphic 1-form ηα such that

∇∂α = ηα ⊗ ∂α,

and we shall say that the form ηα represents the connection ∇ onUα . In fact we see that, for
a general section s of T S, we can locally compute ∇s by representing s|Uα as sα∂α for some
holomorphic function sα on Uα and writing

∇(sα∂α) = dsα ⊗ ∂α + sα∇(∂α) = dsα ⊗ ∂α + sαηα ⊗ ∂α = (dsα + ηα) ⊗ ∂α.

Definition 2.2 Let g be an Hermitian metric on p : T S → S. We say that a connection ∇
on T S is adapted to, or compatible with, the metric g if

d〈R, T 〉 = 〈∇R, T 〉 + 〈R,∇T 〉
for every pair of smooth vector fields R, T , that is if

X〈R, T 〉 = 〈∇X R, T 〉 + 〈R,∇X̄ T 〉
for every triple of smooth vector fields X , R and T on S.

It is known that it is possible to associate to any Hermitian metric a (not necessarily
holomorphic) connection on the tangent bundle adapted to it, the Chern connection. Locally,
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it is also possible to solve the converse problem, i.e., to construct local metrics adapted to a
given holomorphic connection on T S. To do this, it is convenient to consider the local real
function nα : Uα → R

+ given by

nα(p) = gp(∂α, ∂α).

It is straightforward to see that nα is a smooth function and, conversely, we see that the
function nα uniquely determines the metric on Uα .

With these notations in place it is not difficult to see that the compatibility of a metric g
with a holomorphic connection ∇ on the domain Uα of a local chart is equivalent to

∂nα = nαηα. (2.1)

Equation (2.1) can actually be solved:

Proposition 2.1 ([7], Proposition 1.1) Let ∇ : T S → Ω1
S ⊗ T S be a holomorphic con-

nection on a Riemann surface S. Let (Uα, zα) be a local chart for S and let ηα ∈ Ω1
S(Uα)

be the 1-form representing ∇ on Uα . Given a holomorphic primitive Kα of ηα on Uα , then

nα = exp(2Re Kα) = exp(Kα + K̄α)

is a positive solution of (2.1).
Conversely, if nα is a positive solution of (2.1) then for any z0 ∈ Uα and any simply

connected neighbourhood U ⊆ Uα of z0 there exists a holomorphic primitive Kα ∈ O(U )

of ηα over U such that nα = exp(2Re Kα) in U. Furthermore, Kα is unique up to a purely
imaginary additive constant.

Finally, two (local) solutions of (2.1) differ (locally) by a positive multiplicative constant.

Remark 2.1 It is important to notice that Proposition 2.1 gives only local metrics adapted
to ∇; a global metric adapted to ∇ might not exist (see [7, Proposition 1.2]).

Sowe can associate to a holomorphic connection∇ a conformal family of compatible local
metrics. It turns out (see [7]) that these local metrics are locally isometric to the Euclidean
metric onC. In fact, given any holomorphic primitive Kα of ηα , let the function Jα : Uα → C

be a holomorphic primitive of exp(Kα). We immediately remark that Jα actually exists,
because Uα is simply connected, and that it is locally invertible, because J ′

α = exp(Kα). In
the following Proposition we summarize the main properties of Jα .

Proposition 2.2 [7] Let ∇ : T S → Ω1
S ⊗ T S be a holomorphic connection on a Rie-

mann surface S. Let (Uα, zα) be a local chart for S with Uα simply connected, ηα the 1-form
representing ∇ on Uα , and Kα a holomorphic primitive of ηα on Uα . Then every primitive
Jα : Uα → C of exp(Kα) is a local isometry between Uα , endowed with the metric rep-
resented by nα = exp(2Re Kα), and C, endowed with the Euclidean metric. In particular,
every local metric adapted to ∇ is flat, that is its Gaussian curvature vanishes identically.

Moreover, a smooth curve σ : I → Uα is a geodesic for ∇ if and only if there are two
constants c0 and w0 ∈ C such that Jα(σ (t)) = c0t + w0. In particular, the geodesic with
σ(0) = z0 and σ ′(0) = v0 ∈ C

∗ is given by

σ(t) = J−1
α (c0t + Jα(z0)) , (2.2)

where c0 = exp (Kα(z0)) v0 and J−1
α is the analytic continuation of the local inverse of Jα

near Jα(z0) such that J−1
α (Jα(z0)) = z0.
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Finally, a curve σ : [0, ε) → Uα is a geodesic for ∇ if and only if

σ ′(t) = exp (−Kα(σ (t))) exp (Kα(σ (0))) σ ′(0), (2.3)

if and only if
Jα(σ (t)) = exp (Kα(σ (0))) σ ′(0)t + Jα(σ (0)). (2.4)

Remark 2.2 Another consequence of the existence of a conformal family of local metrics
adapted to ∇ is that we can introduce on each tangent space TpS a well-defined notion of
angle between tangent vectors, clearly independent of the particular local metric used to
compute it.

We shall now give the official definition of meromorphic connection.

Definition 2.3 Ameromorphic connection on the tangent bundle p : T S → S of a Riemann
surface S is a C-linear map ∇ : MT S → M 1

S ⊗M (S) MT S satisfying the Leibniz rule

∇( f̃ s̃) = d f̃ ⊗ s̃ + f̃ ∇ s̃

for all s̃ ∈ MT S and f̃ ∈ MS .

It is easy to see that on a local chart (Uα, zα) a meromorphic connection is represented
by a meromorphic 1-form, that we continue to call ηα , such that

∇(∂α) = ηα ⊗ ∂α

and so

∇(s̃) = ∇(s̃α∂α) = (ds̃α + ηα) ⊗ ∂α

for every local meromorphic section s̃|Uα = s̃α∂α on Uα , exactly as it happens for holomor-
phic connections.

In particular, all the forms ηα’s are holomorphic if and only if∇ is a holomorphic connec-
tion. More precisely, if we say that p ∈ S is a pole for a meromorphic connection ∇ if p is a
pole of ηα for some (and hence any) local chartUα at p, then ∇ is a holomorphic connection
on the complement S0 of the poles of ∇ in S.

This allows to define geodesics for a meromorphic connections as we did for holomorphic
connections.

Definition 2.4 A geodesic for a meromorphic connection ∇ on p : T S → S is a real curve
σ : I → S0, with I ⊆ R an interval, such that ∇σ ′σ ′ ≡ 0.

The following definition will be of primary importance in the sequel.

Definition 2.5 The residue Resp∇ of a meromorphic connection ∇ at a point p ∈ S is the
residue of any 1-form ηα representing ∇ on a local chart (Uα, zα) at p. Clearly, Resp∇ 
= 0
only if p is a pole of ∇.

It is easy to see that the residue of a meromorphic connection at a point p ∈ S is well
defined, i.e., it does not depend on the particular chartUα . Moreover, by the Riemann–Roch
formula, the sum of the residues of a meromorphic connection ∇ is independent from the
particular connection, as stated in the following classical Theorem (see [20] for a proof).
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Theorem 2.1 Let S be a compact Riemann surface and ∇ a meromorphic connection on
p : T S → S. Then ∑

p∈S
Resp∇ = −χS, (2.5)

where χS is the Euler characteristic of S.

Our main result is a classification of the possible ω-limit sets for the geodesics of mero-
morphic connections on the tangent bundle of a compact Riemann surface. We recall that
the ω-limit set ω(σ) of a curve σ : [0, ε) → S0 is given by the points p of S for which there
exists a sequence {tn}, with tn → ε, such that σ(tn) → p. It is easy to see that

ω(σ) =
⋂

ε′<ε

{σ(t) : t > ε′}.

The main part of the proof will consist in extending the tangent field of the geodesic to a
smooth line field (a rank-1 real foliation) on S, singular only on the poles of the connection.
Then we shall be able to use the following theorem by Hounie [19] to study the minimal sets
of this line field, where a minimal set for a line field Λ is a closed, non-empty, Λ-invariant
subset of S without proper subsets having the same properties:

Theorem 2.2 (Hounie [19])Let S bea compact connected smooth realmanifold of dimension
two (e.g., a Riemann surface) and let Λ be a smooth line field with singularities on S. Then
a Λ-minimal set Ω must be one of the following:

1. a singularity of Λ;
2. a closed integral curve of Λ, homeomorphic to S1;
3. all of S, and in this case Λ is equivalent to an irrational line field on the torus (i.e., there

exists a homeomorphism φ : S → T between S and a torus T transforming the given
foliation into one induced by an irrational line field).

3 Meromorphic connections on the tangent bundle

In this section, we study inmore detail geodesics formeromorphic connections on the tangent
bundle of a compact Riemann surface. In particular, we extend results contained in Section
4 of [7] from P

1(C) to the case of a generic compact Riemann surface S.
To do so, we start introducing the following definitions/notations.

Definition 3.1 Let S be a compact Riemann surface. Let ∇ be a meromorphic connection
on T S and let S0 ⊆ S be the complement of the poles.

– A geodesic (n-)cycle is the union of n geodesic segments σ j : [0, 1] → S0, disjoint except
for the conditions σ j (0) = σ j−1(1) for j = 2, . . . , n and σ1(0) = σn(1). The points σ j (0)
will be called vertices of the geodesic cycle.

– A (m-)multicurve is a union of m disjoint geodesic cycles. A multicurve will be said to
be disconnecting if it disconnects S, non-disconnecting otherwise.

– A part P is the closure of a connected open subset of S whose boundary is a multicurve γ .
A component σ of γ is surrounded if the interior of P contains both sides of a tubular
neighbourhood of σ in S; it is free otherwise. The filling P̂ of a part P is the compact
surface obtained by glueing a disk along each of the free components of γ , and not
removing any of the surrounded components of γ .
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We remark that a partmay be all of S, when the associatedmulticurve is non-disconnecting
(which is equivalent to saying that the multicurve has no free components). Moreover, we
see that every disconnecting multicurve contains the boundary of a part P � S.

As recalled in the previous section, we can associate to a meromorphic connection ∇
conformal families of local metrics on the regular part S0 ⊆ S of the Riemann surface, and
we have a well-defined notion of angle between tangent vectors. In particular, it makes sense
to speak of the external angle ε at a vertex σ j (0) of a geodesic cycle as the angle between
the tangent vectors σ ′

j−1(1) and σ ′
j (0); by definition, ε ∈ (−π, π).

Again using the conformal families of local metric it is possible to define the geodesic
curvature kg of a curve contained in S0. In particular, if p ∈ S is a pole of ∇ and τ is a small
(clockwise) circle around p, not containing other poles, we have

∫

τ

kg = −2π(1 + ReResp(∇)); (3.1)

see [7, Theorem 4.1].
With all these ingredients at our disposal, it becomes natural to try and apply a Gauss–

Bonnet Theorem to study the relation between the residues of the connection ∇ in a part P
of S, the external angles at the vertices of the multicurve bounding P and the topology of S
(cp. [7, Theorem 4.1]).

Theorem 3.1 Let ∇ be a meromorphic connection on a compact Riemann surface S, with
poles {p1, . . . , pr } and set S0 := S\{p1, . . . , pr }. Let P be a part of S whose boundary
multicurve γ ⊂ S0 has m f ≥ 1 free components, positively oriented with respect to P. Let
z1, . . . , zs denote the vertices of the free components of γ , and ε j ∈ (−π, π) the external
angle at z j . Suppose that P contains the poles {p1, . . . , pg} and denote by gP̂ the genus of

the filling P̂ of P. Then

s∑

j=1

ε j = 2π

⎛

⎝2 − m f − 2gP̂ +
g∑

j=1

ReResp j (∇)

⎞

⎠ . (3.2)

Proof For j = 1, . . . , g let τ j be a small clockwise circle bounding a disk in P centered

at p j , and let k
j
g be the geodesic curvature of τ j .

Applying the Gauss–Bonnet Theorem as in [7, Theorem 4.1] to the complement P0 in P
of the small disks bounded by τ1, . . . , τg we find that

g∑

j=1

∫

τ j

k j
g +

s∑

j=1

ε j = 2πχP0 = 2π(2 − m f − g − 2gP̂ ). (3.3)

But from (3.1) we get

g∑

j=1

∫

τ j

k j
g = −2πg − 2π

g∑

j=1

ReResp j (∇). (3.4)

Comparing (3.3) and (3.4) we get the assertion. ��
Remark 3.1 When the multicurve γ does not disconnect S then Theorem 3.1 reduces to
Theorem 2.1. Indeed, in this case γ has no free components, and thus (3.2) becomes

0 = 2π

⎛

⎝2 − 2gS +
g∑

j=1

ReResp j (∇)

⎞

⎠ ,
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which is equivalent to (2.5).

In the next two Corollaries we highlight what happens when the disconnecting multicurve
is made up by a single geodesic or by a single geodesic cycle composed by two geodesics
(cp. [7, Corollaries 4.2 and 4.3]).

Corollary 3.1 Let ∇ be a meromorphic connection on a compact Riemann surface S, with
poles {p1, . . . , pr } and set S0 := S\{p1, . . . , pr }. Let σ be a disconnecting closed geodesic.
Let P be one of the two parts in which S is disconnected by σ . Then

∑

p j∈P

ReResp j (∇) = −1 + 2gP̂ .

Corollary 3.2 Let ∇ be a meromorphic connection on a compact Riemann surface S, with
poles {p1, . . . , pr } and set S0 := S\{p1, . . . , pr }. Let γ be a disconnecting geodesic 2-cycle.
Let P be one of the two parts in which S is disconnected by γ , and ε0, ε1 ∈ (−π, π) the two
external angles of γ . Then

ε0 + ε1 = 2π

⎛

⎝1 − 2gP̂ +
∑

p j∈P

ReResp j (∇)

⎞

⎠ ,

and hence
∑

p j∈P

ReResp j (∇) ∈ (−2 + 2gP̂ , 2gP̂ ).

Remark 3.2 In particular, a part of S bounded by a disconnecting 1-cycle or by a disconnect-
ing 2-cycle must necessarily contain a pole, because 0 /∈ (−2 + 2gP̂ , 2gP̂ ).

In the followingwe shall need to consider closed andperiodic geodesics for ameromorphic
connection.

Definition 3.2 A geodesic σ : [0, l] → S is closed if σ(l) = σ(0) and σ ′(l) is a positive
multiple of σ ′(0); it is periodic if σ(l) = σ(0) and σ ′(l) = σ ′(0).

By Corollary 3.1 we immediately see that a disconnecting geodesic 1-cycle σ is a closed
geodesic if and only if for every part P of S bounded by σ we have

∑

p j∈P

ReResp j (∇) = −1 + 2gP̂ . (3.5)

Contrarily to the Riemannian case, closed geodesics are not necessarily periodic; for
examples (and more) in the Riemann sphere see [7], and for examples on a complex torus
see Sect. 7.

4 ω-Limits sets of geodesics

In this section we prove our main Theorem, the classification of the possible ω-limit sets of
geodesics for a meromorphic connection on a compact Riemann surface. The main idea will
be to see a not self-intersecting geodesic σ as part of an integral curve of a suitable line field
Λ on S, and then to apply Theorem 2.2 to get some information about the minimal sets for
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Λ contained in the ω-limit set of σ . Then we shall use these information to discuss the shape
of the ω-limit set itself.

Let us start by studying the local structure of the ω-limit set of a not self-intersecting
geodesic σ .

Proposition 4.1 Let S be a Riemann surface,∇ a meromorphic connection on S, and S0 the
complement of the poles for ∇. Let σ : I → S0 be a maximal not self-intersecting geodesic
for ∇ and denote by W its ω-limit set. Let z ∈ W ∩ S0. Then:

(i) there exists a unique direction v at z such that for every sequence {zn} ⊂ σ(I ) with
zn → z the directions σ ′(zn) converge to v; moreover, the image of the maximal
geodesic σz issuing from z in the direction v is contained in W;

(ii) if W contains a curve τ passing through z transversal to σz then z ∈ W̊ ;
(iii) if z ∈ ∂W then σz is the unique geodesic segment through z contained in W.

Proof (i) The existence of v follows from the flatness of the metric and the fact that σ does
not self-intersect. Using a local isometry J defined in a neighbourhood of z transforming
geodesic segments in Euclidean segments we immediately see that the image of the geodesic
segment issuing from z in the direction v must be contained inW , and themaximality follows
from the maximality of σ .

(ii) Up to using a local isometry J we can assume that all geodesic segments in a neigh-
bourhood of z are Euclidean segments.

Consider a point z′ 
= z belonging to τ . Since z′ ∈ W ⊂ S0, (i) gives us a geodesic
segment σz′ through z′ contained inW . Notice that σz′ 
= τ as soon as z′ is close enough to z.
In fact, since we have segments of σ accumulating σz , the segments of σ accumulating σz′
cannot converge to τ without forcing σ to self-intersect, impossible. The mapping z′ �→ σz′
is continuous, again because σ cannot self-intersect; thus the geodesic segments σz′ fill an
open neighbourhood of z contained in W , and z ∈ W̊ as claimed.

(iii) It immediately follows from (ii). ��
Definition 4.1 Let S be a Riemann surface, ∇ a meromorphic connection on S, and S0

the complement of the poles of ∇. Let σ : I → S0 be a maximal not self-intersecting
geodesic for ∇, with ω-limit W ⊆ S. Given z ∈ W ∩ S0, the maximal geodesic σz given by
Proposition 4.1.(i) issuing from z and contained in W is the distinguished geodesic issuing
from z.

The following two lemmas contain basic properties of distinguished geodesics.

Lemma 4.1 Let S be a Riemann surface, ∇ a meromorphic connection on S, and S0 the
complement of the poles of ∇. Let σ : I → S0 be a maximal not self-intersecting geodesic
for ∇, with ω-limit W ⊆ S. Let σz be the distinguished geodesic issuing from z ∈ W ∩ S0.
Then either σz = σ or σ does not intersect σz .

Proof If σ intersects σz , either σ = σz or the intersection is transversal; butσ accumulates σz ,
and thus in the latter case σ must self-intersect, contradiction. ��
Lemma 4.2 Let S be a Riemann surface, ∇ a meromorphic connection on S, and S0 the
complement of the poles of ∇. Let σ : I → S0 be a maximal not self-intersecting geodesic
for ∇, with ω-limit W ⊆ S. Assume there exists a closed distinguished geodesic α ⊆ W.
Then W = α.
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Proof If α = σ then the assertion is trivial; so by the previous lemma we can assume that σ
does not intersect α.

For each w ∈ α we can find a neighbourhood Aw ⊂ S0 of w, contained in a tubular
neighbourhood of α, and an isometry Jw : Aw → Bw such that:

(a) Bw is a quadrilateral containing the origin, with two opposite sides parallel to the imag-
inary axis;

(b) Jw(w) = O and Jw(α ∩ Aw) is the intersection of Bw with the real axis;
(c) the Jw-images of the connected components of the intersection of σ with Aw contained

in the lower half-plane intersect both vertical sides of Bw and accumulate the real axis
[this can be achieved using Proposition 4.1.(i)].

By compactness, we can cover α with finitely many Aw0 , . . . , Awr of such neighbourhoods;
furthermore, we can also assume that each Aw j intersects only Aw j−1 and Aw j+1 , with the
usual convention w−1 = wr and wr+1 = w0; let A = A0 ∪ · · · ∪ Ar . Furthermore, since
A is contained in a tubular neighbourhood of α and S is orientable, A\α has exactly two
connected components; and we can assume that the segments of σ mapped by the Jw j in
the lower half-plane (and thus accumulating α) are all contained in the same connected
component of A\α.

Let τ be the segment of geodesic issuing from w0 such that Jw0(τ ) is the intersection
of Bw0 with the negative imaginary axis. Denote by {z j } the infinitely many intersections
of σ with τ , accumulating w0. Again by compactness, we can assume that if we follow σ

starting from a z1 close enough to w0 we stay in A until we get to the next intersection z2.
Furthermore, by property (c) the segment σ1 of σ from z1 to z2 must intersects all Awk ’s
either in clockwise or in counter-clockwise order. Let D ⊂ A denote the domain bounded
by α, the geodesic segment σ1 and the geodesic segment of τ from z1 to z2.

Assume first that z2 is closer to w0 than z1. In this case, if we follow σ starting from z2
property (c) forces σ to remain inside D because it cannot intersect itself nor α. Furthermore,
property (c) again implies that the next intersection z3 should be closer tow0 than z2. We can
then repeat the argument, and we find that successive intersections of σ with τ monotonically
converge tow0. This implies that σ accumulatesα and nothing else, that isW = α as claimed.

If instead z2 is farther away from w0 than z1, if we follow σ starting from z2 we may
possibly leave A; but since σ accumulates w0 we must sooner or later get back to D, and the
only way is intersecting τ in a point z3 between z1 and z2. But now following σ starting from
z3 we are forced to stay into D until we intersect τ in a point z4 necessarily closer to w0 than
z1—and a fortiori closer than z3. We can then repeat the previous argument using z3 and z4
instead of z1 and z2 to get again the assertion. ��

The main tool for the study of the global behavior of not self-intersecting geodesics is the
following Theorem, providing a smooth line field Λ such that σ is (part of) an integral curve
of Λ.

Theorem 4.1 Let S be a Riemann surface and∇ a meromorphic connection on S, with poles
p1, . . . , pr ∈ S. Let S0 = S\{p1, . . . , pr }. Let σ : I → S0 be a geodesic for ∇ without
self-intersections, maximal in both forward and backward time. Then there exists a smooth
line field Λ with singularities on S which has σ as integral curve and, in a neighbourhood
of σ , is singular exactly on the poles of ∇. Furthermore, the ω-limit W of σ is Λ-invariant,
and Λ|W is uniquely determined.

Proof If A ⊂ S0 is open, simply connected and small enough, we can find a metric g on
A compatible with ∇ and an isometry J between A endowed with g and an open set in C
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endowed with the euclideanmetric; g is unique up to a positive multiple (see Propositions 2.1
and 2.2).

We consider an open cover A = {Ai } of S0 with the following properties:

(a) each Ai is endowed with a metric gi compatible with∇, and with an isometry Ji : Ai →
Bi ⊆ C, with Bi convex;

(b) if σ intersects Ai then the angle between any pair of lines in C ⊃ Bi containing a
component (which necessarily is a line segment) of the Ji -image of σ is less than π

8 ;
(c) A is locally finite.

In order to do this, we construct for every point p ∈ S0 a neighbourhood satisfying the
properties (a), (b) and thenwe recover (c) by extracting a locally finite cover. The construction
of the neighbourhood can be achieved in the following way. We start with an A endowed
with the local metric and isometric to a convex B ⊂ C, as in (a). Then we can shrink it
(holding the convexity property on B) in order to recover (b) because the smooth dependence
of the solution of the geodesic equation from the initial conditions, the fact that the isometry
is smooth, and the property of σ of being non self-intersecting force the images by J of the
intersections of σ and A to be quasi-parallels near the image a given point in A ∩ σ .

We now start building a line field on every open set Ai of A . Then we shall show how to
use them to find a global line field Λ on S0 having σ as integral curve, and finally we shall
extend Λ to all of S.

Let us then choose an open set A ∈ A , together with its image B. We shall now construct
a smooth flow of curves in B that will correspond to a smooth flow of curves, and so to a line
field, in A.

If σ does not cross A, we put on B any smooth vector field which is never zero and
consider its associated (regular) foliation.

If σ crosses A, we consider the segments σn ⊂ B which are the images of the connected
components of the intersection of σ with A (recall that J sends geodesics segments in A to
Euclidean segments in B). By our assumption on A, the angle between σi and σ j is bounded
by π

8 for every pair (i, j).
By the convexity of B and the maximality of σ , the σn’s subdivide B in connected com-

ponents. We describe now how to costruct the flow in all these components.

1. If a connected component C is open and its boundary (in B) consists of a unique σ0,
then we define our flow on C by means of lines parallel to σ0 and take the associated line
field.

2. If a connected component C is open and it is bounded by two segments σ0 and σ1 we
define the vector field in the followingway, exploiting the convexity property of the cover.
Denote by σ̃i the line containing σi . If σ̃0 and σ̃1 are parallel we define the line field by
means of parallel lines to them, too. If σ̃0 and σ̃1 are not parallel, their intersection point
p0 is outside B, because B is convex and σ0 and σ1 are disjoint. We take two points
y0 ∈ σ̃0 and y1 ∈ σ̃1, both close enough to p0, such that the segment joining them is
completely outside B and contained in the bounded part of plane bounded by σ̃0, σ̃1 and
the boundary of B. This can be done again thanks to the convexity of B and the fact
that σ does not self-intersect. We parametrize this segment [y0, y1] by an affine map
τ : [0, 1] → C with τ(0) = y0 and τ(1) = y1. For every t ∈ [0, 1], we consider the line
l̃t passing through τ(t) forming an angle φ(t)θ1 with σ̃0, where φ : [0, 1] → [0, 1] is a
suitable smooth not decreasing function which is 0 in a neighbourhood of 0 and 1 in a
neighbourhood of 1, and θ1 is the angle between σ̃0 and σ̃1. We see that the intersections
between two distinct such lines must be contained in the half-plane bounded by the line
extending [y0, y1] and containing p0, and so it is outside B. It follows that the intersections
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lt = l̃t ∩ B form a smooth flow on C , and this flow is clearly smooth also at the boundary
of C (i.e. near σ0 and σ1).

3. Since the σn’s are disjoint, maximal and with angles bounded by π/8, the only missing
case is a component C whose boundary is a segment τ accumulated by a subsequence
of σn outside C ; we then add this segment to the line field and proceed as in the previous
cases.

In this way, thanks to the smooth dependence of geodesics on initial conditions, we have
defined a smooth and never vanishing line field on B and hence, via J , on A. Notice that the
image in B of a component of the intersection of the ω-limit setW with Amust be a segment
as in case 3; thus W ∩ A is invariant with respect to this local line field, which is uniquely
defined there.

The next step consists in glueing the local line fields we have built on the Ai to a global
field on S0. This means that we must specify, for every point p ∈ S0, a direction λ(p) in
TpS0 such that the correspondence p �→ λ(p) is smooth. To do so, we consider a partition
of unity {ρi } subordinated to the cover A . If p belongs to a unique Ai , we use as λ(p) the
one given by the local costruction above. Otherwise, if p belongs to a finite number of Ai ’s
(recall that the cover is locally finite) we do the following. Suppose that p ∈ A1 ∩ · · · ∩ An .
We have n lines in TpS0, given by the local constructions on the Bi ’s. We use the partition
of unity to do a convex combination of (the angles with respect to any fixed line of) these
lines, thus obtaining a line in TpS0. We remark that, by Remark 2.2, the angles are the same
on all A1, . . . , An , and the bounds on the angles ensure that the convex combination yields
a well-defined line.

We have thus obtained a smooth line field on S0 having σ as integral curve. Since it is
non-singular along σ , by smoothness it is non-singular in a neighbourhood of σ in S0.

Finally, we extend this line field to all of S, adding the poles as singular points. The
resulting field satisfies the requests of the Theorem, and we are done. ��
Remark 4.1 The reason we have to use a line field instead of a vector field is step 3 in the
previous proof: a priori, the geodesic σ might accumulate the segment C from both sides
along opposite directions, preventing the identification of a non-singular vector field alongC .

Definition 4.2 Let S be a Riemann surface, ∇ a meromorphic connection on S, and S0 ⊂ S
the complement of the poles. Let σ : I → S0 be a maximal geodesic for ∇ without self-
intersections, maximal in both forward and backward time. A smooth line field Λ with
singularities on S as in the statement of Theorem 4.1 is called associated to σ .

The uniqueness of an associated line field on the ω-limit set suggests the following def-
inition. We recall that a minimal set for a line field Λ is a minimal element (with respect to
inclusion) in the family of closed Λ-invariant subsets.

Definition 4.3 Let S be a Riemann surface, ∇ a meromorphic connection on S, and S0 the
complement of the poles of ∇. Let σ : I → S0 be a maximal not self-intersecting geodesic
for ∇, with ω-limit set W ⊆ S. Then a minimal set for σ is a minimal set contained in W of
any line field associated to σ .

The following result characterizes the possible minimal sets for a maximal not self-
intersecting geodesic in a compact Riemann surface.

Theorem 4.2 Let S be a compact Riemann surface and ∇ a meromorphic connection on
S. Let S0 be the complement of the poles of ∇. Let σ : [0, ε0) → S0 be a maximal not
self-intersecting geodesic for ∇. Then the possible minimal sets for σ are the following:
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1. a pole of ∇;
2. a closed curve, homeomorphic to S1, which is a closed geodesic for ∇, and in this case

the ω-limit set of σ coincides with this closed geodesic;
3. all of S, and in this case S is a torus and ∇ is holomorphic everywhere.

Proof Call p0 = σ(0) the starting point of σ , and W the ω-limit set of σ .
We apply the construction in Theorem 4.1, considering p0 as a virtual pole. In this way,

σ becomes maximal in both forward and backward time and the construction can be carried
out as before. We thus build a line field Λ with singularities on S, which in a neighbourhood
of σ is singular exactly on the poles of ∇ and on p0, and having σ as integral curve.

Applying Theorem 2.2 to Λ we see that the minimal sets for σ can be: all of S (and in this
case S is a torus and ∇ has no poles), a closed curve homeomorphic to S1 (which is a closed
geodesic thanks to Proposition 4.1), a pole of ∇ or p0. This last possibility is excluded by
considering a new starting point p′

0 for σ close enough to p0 and noticing that now p0 is not
a pole for the new line field.

Finally, the closed geodesic in case 2 being Λ-invariant is necessarily distinguished; we
can then end the proof by quoting Lemma 4.2. ��

To describe the possible ω-limit sets of a ∇-geodesic, we need a definition.

Definition 4.4 A saddle connection for a meromorphic connection on a Riemann surface S
is a maximal geodesic σ : (−ε−, ε+) → S0 such that σ(t) tends to a pole for both t → −ε−
and t → ε+.

A graph of saddle connections is a connected planar graph in S whose vertices are poles
and whose arcs are disjoint saddle connections. A spike is a saddle connection of a graph
which does not belong to any cycle of the graph.

A boundary graph of saddle connections (or boundary graph) is a graph of saddle con-
nections which is also the boundary of a connected open subset of S. A boundary graph is
disconnecting if its complement in S is not connected.

We can now state and prove our main result.

Theorem 4.3 Let S be a compact Riemann surface and ∇ a meromorphic connection on S,
with poles p1, . . . , pr ∈ S. Let S0 = S\{p1, . . . , pr }. Let σ : [0, ε0) → S0 be a maximal
geodesic for ∇. Then either

1. σ(t) tends to a pole of ∇ as t → ε0; or
2. σ is closed; or
3. the ω-limit set of σ is the support of a closed geodesic; or
4. the ω-limit set of σ in S is a boundary graph of saddle connections; or
5. the ω-limit set of σ is all of S; or
6. theω-limit set of σ has non-empty interior and non-empty boundary, and each component

of its boundary is a graph of saddle connections with no spikes and at least one pole (i.e.,
it cannot be a closed geodesic); or

7. σ intersects itself infinitely many times.

Furthermore, in cases 2 or 3 the support of σ is contained in only one of the components of
the complement of the ω-limit set, which is a part P of S having the ω-limit set as boundary.

Proof Suppose σ is not closed, nor with infinitely many self-intersections. Then up to chang-
ing the starting point of σ we can assume that σ does not self-intersect. LetW be the ω-limit
set of σ .
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By Zorn’s lemma, W must contain a minimal set, that by Proposition 4.2 must be either
a pole, a closed geodesic or all of S (and in this case W = S, which gives 5).

If W reduces to a pole or to a closed geodesic, we are in cases 1 or 3. So we can assume
that W properly contains a minimal set and is properly contained in S; we have to prove that
we are in case 4 or 6.

The interior of W may be empty or not empty; we consider the two cases separatedly.
Let us start with W̊ = ∅. First, remark that σ cannot intersect W , because otherwise (recall
Proposition 4.1) σ would intersect itself. As a consequence, σ is contained in only one
connected component P of S\W , and W = ∂P . Then, since W does not reduce to a single
pole and is connected (because S is compact), we must have W ∩ S0 
= ∅. Assume by
contradiction thatW contains a closed geodesic α. Since W̊ = ∅, Proposition 4.1.(iii) implies
that α is distinguished; but then Lemma 4.2 implies W = α, impossible. So all the minimal
sets contained in W are poles.

By Proposition 4.1, every point in W ∩ S0 must be contained in a unique maximal dis-
tinguished geodesic contained in W ; moreover the ω-limit sets of these geodesic segments
must be contained in W , because W is closed; we are going to prove that the ω-limit sets of
these geodesics must be poles, completing the proof that W is a boundary graph of saddle
connections.

Let then ρ be a distinguished geodesic and assume by contradiction that a point w ∈ S0

belongs to theω-limit setω(ρ) of ρ. By the local form of the geodesics, and sinceω(ρ), being
contained in W , has empty interior, by Proposition 4.1 we find a unique geodesic segment α
through w contained in ω(ρ). Take another geodesic segment transversal to α in w. Since ρ

must accumulate α, and ρ is accumulated by σ , it follows that σ must intersect the transversal
arbitrarily near w with both the directions of intersection. This means that we have infinitely
many disconnecting geodesic 2-cycles, with disjoint interiors and arbitrarily close to ω(ρ).
But by Remark 3.2 all these cycles must contain a pole, which is impossible.

Now let us consider the case W̊ 
= ∅. We know that W is a closed union of leaves (and
singular points) for Λ, and the same is true for its boundary ∂W , with ∂W 
= ∅ because
we are assuming W 
= S. The minimal sets contained in ∂W must be poles or closed
geodesics, and ∂W cannot consist of poles only because otherwise we would have W = S.
So, ∂W ∩ S0 
= ∅ and, by Proposition 4.1, every z ∈ ∂W ∩ S0 is contained in a unique
geodesic segment contained in ∂W . In particular, if by contradiction ∂W contained a closed
geodesic we would have W = α (Lemma 4.2), impossible; so arguing as above we see
that each connected component of ∂W is a graph of saddle connections, that clearly cannot
contain spikes (because σ cannot cross ∂W ), and we are done. ��
Remark 4.2 Wehave examples for all the cases of Theorem 4.3 (see Section 7 and [7]) except
for cases 4 and 6. Notice that in these cases if p0 is a pole belonging to the boundary of the
ω-limit set of the geodesic σ then there must exist a neighbourhood U of p0 containing
infinitely many distinct segments of σ (because σ is accumulating p0 but it is not converging
to it). The study of the local behavior of geodesics nearby a pole performed in [7] implies that
p0 must then be an irregular singularity or a Fuchsian singularity having ReResp0(∇) ≥ −1
(see [7] for the definitions, recalling that the connectionwe denote by∇ here is denoted by∇0

in [7]). Conversely, if all poles of∇ are either apparent singularities or Fuchsian singularities
with real part of the residues less than −1 then cases 4 and 6 cannot happen.

Remark 4.3 There are examples of smooth line fields (and even vector fields) on Riemann
surfaces having integral curves accumulating graphs of saddle connections, or having an
ω-limit set with not empty interior (but not covering everything); see, for example, [27].
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Remark 4.4 When S is the Riemann sphere, case 6 cannot happen. Indeed, assume by con-
tradiction that a not self-intersecting geodesic σ ⊂ S has an ω-limit set W with not-empty
interior. Since σ cannot cross ∂W , we can assume that σ is contained in W̊ . Let w0 ∈ ∂W
be a smooth point of the boundary, and τ ⊂ W a geodesic segment issuing from w0. The
intersections between σ and τ must be dense in τ ; then using suitable segments of σ and τ

we can construct infinitely many disjoint geodesic 2-cycles. But in the Riemann sphere every
2-cycle is disconnecting; thus by Remark 3.2 each of them must contain at least one pole.
Using the finiteness of the number of poles one readily gets a contradiction.

5 ω-Limit sets and residues

Corollary 3.1 immediately gives a necessary condition for the existence of geodesics having
as ω-limit set a disconnecting closed geodesic:

Corollary 5.1 Let S be a compact Riemann surface and ∇ a meromorphic connection on
S, with poles p1, . . . , pr ∈ S, and set S0 = S\{p1, . . . , pr }. Let σ : [0, ε0) → S0 be a
maximal geodesic for ∇, either closed or having as ω-limit set a closed geodesic. Assume
that either σ or its ω-limit set disconnects S, and let P be the part of S containing σ . Then

∑

pi∈P

ReRespi (∇) = −1 + 2gP̂ , (5.1)

where P̂ is the filling of P.

Furthermore, using Theorem 3.1 as in [7, Theorem 4.6] one can easily get conditions
on the residues that must be satisfied for the existence of self-intersecting geodesics. Our
next aim is to find a similar necessary condition for the existence of ω-limit sets which are
boundary graphs of saddle connections.

To do this, we shall need a slightly more refined notion of disconnecting graph, to avoid
trivialities. To have an idea of the kind of situations we would like to avoid, consider a bound-
ary graph consisting in a non-disconnecting cycle and a small (necessarily disconnecting)
loop attached to a vertex. This boundary graph is disconnecting only because of the trivial
small loop, and if we shrink the loop to the vertex we recover a non-disconnecting boundary
graph. To define a class of graphs where this cannot happen we first introduce a procedure
that we shall call desingularization of a graph G (obtained as ω-limit set of a geodesic) to a
curve γ .

Let σ be a ∇-geodesic without self-intersections and suppose that its ω-limit set G is a a
boundary graph. If G is tree (that is, it does not contain cycles) then it does not disconnect
S; so let us assume that G is not a tree (and thus it contains at least one cycle; but this does
not imply that G disconnects S). In particular, if U is a small enough open neighbourhood
of G then U\G is not connected.

Remark 5.1 If a boundarygraph contains a spike, it canbe theboundaryof only one connected
open set.

The following Lemma describes the asymptotic behavior of σ near G.

Lemma 5.1 Let S be a compact Riemann surface and ∇ a meromorphic connection on S,
with poles p1, . . . , pr ∈ S. Let S0 = S\{p1, . . . , pr }. Let σ : [0, ε0) → S0 be a maximal
geodesic for∇. Assume thatσ has no self-intersections and that itsω-limit set G is a boundary
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graph containing at least one cycle. Let U be a small connected open neighbourhood of G,
with U\G disconnected and contained in S0. Then the support of σ is definitively contained
in only one connected component Uσ of U\G.

Proof If, by contradiction, σ definitely intersects two different connected components
of U\G, then it must intersects ∂U infinitely many times; being ∂U compact, σ then would
have a limit point in ∂U which is disjoint from G, impossible. ��

We shall denote byUσ the connected component ofU\G given by Lemma 5.1. In partic-
ular, notice that we must have G ⊂ ∂Uσ , and that Uσ must be contained in the part P of S
containing the support of σ whose boundary is G.

Let us now describe the desingularization of G. For every vertex p j of G, let Bj be a
small open ball centered at p j . Moreover, for each spike si ⊆ G let Ci be a small connected
open neighbourhood of si with smooth boundary. We can assume that all the Bj and Ci are
contained in an open neighbourhood U satisfying the hypotheses of Lemma 5.1. Then the
union of the following three sets is a Jordan curve γ in S0, that we call a desingularization
of G:

– G\
(⋃

j B j ∪ ⋃
i Ci

)
;

–
(⋃

j ∂Bj ∩Uσ

)
\⋃

i Ci ;

–
(⋃

i ∂Ci ∩Uσ

) \⋃
j B j .

The rationale behind this definition is the following: we take the graph and the boundary
of the neighbourhoods of the spikes outside the small balls at the vertices and we connect
the pieces with small arcs (which are contained in the boundaries of the small balls). We see
that, in particular, we can (uniformly) approximate the graph G with desingularizing curves,
with respect to any global metric on the compact Riemann surface S.

We are now ready to give the following definitions.

Definition 5.1 A boundary graph G of saddle connections, which is the ω-limit set of a not
self-intersecting ∇-geodesic, is essentially disconnecting if every sufficiently close desingu-
larization of G disconnects S.

It is clear that, for sufficiently close desingularizations, if one of them is disconnecting
then all of them are. Because of this we may give the previous definition without specifying
which particular desingularization we are using.

Furthermore, if G is essentially disconnecting, then every sufficiently close desingular-
ization γ is the boundary of a well-defined part Pγ of S, the (closure of the) connected
component of S\γ intersecting the part P whose boundary is G and containing the support
of σ . We can then consider the filling P̂γ obtained by glueing a disk along γ . It is clear that,
by continuity, the genus of P̂γ is the same for all close enough desingularizations of G.

Definition 5.2 With a slight abuse of language we shall call genus of the filling of P this
common value, and we shall denote it by gP̂ .

Before further investigating (essentially) disconnecting cycles, we give some examples
and counterexamples of possible boundary graphs, together with their desingularizations.

Example 5.1 Consider a single cycle γ1 of saddle connections. Then, by Lemma 5.1, γ1
locally disconnects S, and a geodesic σ having γ1 as ω-limit set accumulates γ1 locally on
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one side (say, staying inside an open set U1). The definition of the desigularization of γ1
gives a curve ω1 in the same homology class of γ1, contained in (the closure of) U1. In
particular, γ1 disconnects S if and only if ω1 does. So, for this cycle the properties of being
disconnecting and of being essentially disconnecting are equivalent (see Lemma 5.2 below
for a more general result).

Example 5.2 Let now γ2 be the union of a non-disconnecting cycle γ a
2 and a small, homo-

topically trivial, disconnecting cycle γ b
2 , intersecting only at a common pole. We see that

γ2 disconnects S in two parts (the two given by γ b
2 ). By Lemma 5.1, a geodesic σ2 having

γ2 as ω-limit set must be contained in only one of these components. Because of the fact
that it must accumulate both γ a

2 and γ b
2 , it cannot be contained in the small region bounded

only by γ b
2 , and so it must be in the other one. So, we see that a desingularization of γ2 is a

curve ω2 contained in the closure of this last region, and in particular that γ2 is not essentially
disconnecting.

Example 5.3 Let now γ3 be the union of two non-disconnecting cycles γ a
3 and γ b

3 in the
same homology class with exactly one vertex in common. We see that γ3 is disconnecting,
and in particular that the fundamental group of one of the two components (that we call U 1

3 )
has rank zero, while the fundamental group of the other component has at least rank 1 (since
on the sphere we cannot find non-disconnecting cycles). A small neighbourhood of γ3 is
disconnected by it in three connected components, one contained in the component U 1

3 and
two in the other component. The only one adherent to both γ a

3 and γ b
3 is the one contained

in U 1
3 , and so a geodesic σ3 having γ3 as ω-limit set must live in U 1

3 . So, we see that the
construction of the desingularization of γ3 gives a curveω3 contained in the closure ofU 1

3 . In
particular, ω3 disconnects S, and so γ3 is essentially disconnecting (which is coherent with
the idea that small perturbations of γ3 still disconnect S).

Example 5.4 Finally, consider the cycle γ3 of the previous example, and attach to it at the
intersection point, as in Example 5.2, a small homotopically trivial disconnecting cycle γ b

4
not contained in U 1

3 . Lemma 5.1 then implies that the graph γ4 so obtained cannot be the
ω-limit set of any geodesic σ4 on S. In fact, by the argument of the previous example, σ4
should be contained in U 1

3 , and thus it could not accumulate γ b
4 , contradiction.

The next lemma describes an important class of essentially disconnecting boundary
graphs:

Lemma 5.2 Let G be a boundary graph of saddle connections in S, obtained as ω-limit set
of a not self-intersecting geodesic, and such that every cycle of G disconnects S. Then G is
essentially disconnecting.

Proof Let Uσ be as in Lemma 5.1. Since, by assumption, every cycle in G disconnects S,
the complement S\C of any cycle C in G has exactly two connected components, only one
disjoint from Uσ ; let us color this component in black.

Furthermore, the fact that G is a boundary graph implies that every edge of G is contained
in at most one cycle; as a consequence, S\G is formed by the part P of S containingUσ with
G as a boundary, and by the black connected components determined by the cycles in G.

Now we desingularize G to a curve γ in the following way, clearly equivalent to the
construction above: near a pole connecting two (or more) cycles, we paint in black a little
ball; and we replace each spike by a little black strip following its path. In this way we get a
connected black region (see Fig. 1).
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Fig. 1 Desingularization of a graph

Let γ be the boundary of the black region we have constructed in this way. Clearly γ is
(homotopic to) a desingularization of G and, because it separates a black region from a white
one, by definition γ disconnects S. It follows that G is essentially disconnecting. ��

So,we know that if every cycle is disconnecting then the graph is essentially disconnecting,
while (generalizing Example 5.2 above) we can construct examples with an arbitrarily high
number of disconnecting cycles (and at least one non disconnecting cycle) which are not
essentially disconnecting.

We can now state the analogous of Eq. (5.1) for case 4 of Theorem 4.3.

Theorem 5.1 Let S be a compact Riemann surface and ∇ a meromorphic connection on S,
with poles p1, . . . , pr ∈ S. Let S0 = S\{p1, . . . , pr }. Let σ : [0, ε0) → S0 be a maximal
geodesic for ∇ having as ω-limit set an essentially disconnecting boundary graph of saddle
connections G. Let P the part of S having G as boundary and containing the support of σ .
Then ∑

pi∈P

ReRespi (∇) = −1 + 2gP̂ , (5.2)

where gP̂ is the genus of the filling of P (see Definition 5.2).

Proof Let U be a connected open neighbourhood of the support of σ as in Lemma 5.1;
without loss of generality we can assume that the support of σ is completely contained
in Uσ .

Consider a generic point z0 ∈ G ∩ S0. Using the local isometry J near z0 we see that we
can find a geodesic τ : [0, ε) → Uσ issuing from z0 intersecting σ transversally infinitely
many times and making an angle α close to π/2 with the geodesic segment in G passing
through z0.

Let p0 ∈ Uσ be a point of intersection between σ and τ , and let p1 ∈ Uσ be the next
(following σ ) point of intersection between σ and τ ; necessarily p1 
= p0 because σ has no
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self-intersections. The union of the segments of σ and τ between p0 and p1 is a geodesic
2-cycle γ contained in Uσ . The first observation is that the two external angles of γ must
have opposite signs. Indeed, if they had the same sign (roughly speaking, if σ leaves and
comes back to τ on the same side of τ ) then γ would be the boundary of a part of S contained
in Uσ , and thus containing no poles, against Remark 3.2. The second observation is that p1
must be closer (along τ ) to G than p0. Indeed, γ disconnects S, because G is essentially
disconnecting; if p1 were farther away from G than p0 then the support of σ after p1 would
be contained in the connected component of S\γ disjoint from G, impossible (notice that
after p1 the geodesic σ cannot intersect γ anymore, because σ has no self-intersections and
any further intersection with the segment of τ contained between p0 and p1 would be on the
same side of τ and thus can be ruled out as before).

Repeating this argument starting from p1 we get a sequence {pn = σ(tn) = τ(sn)} of
points of intersections between σ and τ , with tn increasing, sn decreasing, and pn → z0.
Furthermore, if we denote by γn the geodesic 2-cycle bounded by the segments of σ and τ

between pn and pn+1, we also know that the external angles of γn have opposite signs.
Since G is essentially disconnecting, for n large enough γn disconnects S; let Pn be

the connected component of S\γn not containing G. Notice that the poles contained in Pn
are exactly the same contained in P , because γn ⊂ Uσ \G. Furthermore, since the γn are
eventually homotopic to desingularizations of G, for n large enough the genus of the filling
of Pn becomes equal to gP̂ , the genus of the filling of P .

Up to a subsequence, we can assume that the directions of σ ′(tn) and σ ′(tn+1) converge to
a direction in z0, necessarily the direction of the geodesic passing through z0 contained in G.
Since the external angles of γn have opposite signs, it follows that their sum must converge
to 0. But, by Corollary 3.2 and the arguments above, this sum must be eventually constant;
so it must be 0, and (5.2) follows recalling again Corollary 3.2. ��

In particular, [7, Theorem 4.6] is now a consequence of Theorems 4.3 and 5.1 (and
Remark 4.4).

The formula (5.2) gives a necessary condition for the existence of geodesics on S having as
ω-limit set an essentially disconnecting boundary graph of saddle connections. In particular,
if no sum of real parts of residues is an odd integer number of the form −1+2g then no such
geodesic can exist on S.

The next statement contains a similar necessary condition for the existence of isolated
vertices in a boundary graph of saddle connections:

Proposition 5.1 Let S be a compact Riemann surface and ∇ a meromorphic connection on
S. Let p be a pole belonging to a boundary graph of saddle connections G which is anω-limit
set for a not self-intersecting geodesic σ . Suppose that p is the vertex of only one arc ρ of
the graph. Then

ReResp(∇) = −1

2
.

Proof Let τ be a geodesic crossing transversally ρ at a point q near p. The geodesic σ

must intersect both sides (with respect to ρ) of τ infinitely many times. Indeed, if it would
intersect eventually only one side, arguing as in the previous proof we would see that the
external angles at consecutive intersections would have opposite signs; and this would force
the existence of points in G close to p but not belonging to ρ, impossible.

So we can construct a sequence {σn} of segments of σ connecting a point pn on one side
of τ to a point qn on the other side of τ , with both points of intersection converging to q .
Let γn be the geodesic 2-cycle consisting in σn and the segment of τ between pn and qn ;
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eventually, γn must be contained in a simply connected neighbourhood of p, and thus it is
the boundary of a part Pn of S containing p and no other poles. Notice that the genus of the
filling of Pn is zero.

An argument similar to the one used above shows that the external angles of γn must have
the same sign. Up to a subsequence, we can also assume that the direction of σ both at pn
and at qn converge to the same direction (which is the direction of ρ at q); thus the sum of
the external angles of γn must tend to π . Applying Corollary 3.2 to Pn we get (that this sum
must be constant and) that

π = 2π
(
1 + ReResp(∇)

)
,

which gives the assertion. ��
So, in particular, if all the poles have the real part of the residue different from −1/2, the

graph cannot have vertices belonging to one arc only—and thus in particular it cannot have
spikes.

Remark 5.2 With the same argument as in Proposition 5.1 we see that if p is a vertex
belonging only to two arcs that are spikes, then the real part of its residue must be zero.

6 Non-compact Riemann surfaces

In this section we shall generalize some of the results of Sect. 4 to non-compact Riemann
surfaces. We shall limit ourselves to consider Riemann surfaces S that can be realized as an
open subset of a compact Riemann surface Ŝ. In this setting, all the results depending only
on the local structure of geodesics still hold; for instance, Proposition 4.1, Lemmas 4.1 and
4.2, and Theorem 4.1 go through without any changes.

It is also easy to adapt Theorem 4.2. Indeed, the definition of singular line field on a
compact Riemann surface Ŝ used in [19] is that of regular line field defined on an open
subset S0 of Ŝ, and the singular set is by definition Ŝ\S0. In particular, if we consider the
ω-limit setW of a geodesic σ : I → S0 in Ŝ (and not only in S) thenW ∩∂S is automatically
invariant with respect to any line field associated to σ . Therefore arguing as in the proof of
Theorem 4.2 we get the following result.

Theorem 6.1 Let S be an open connected subset of a compact Riemann surface Ŝ. Let ∇ be
a meromorphic connection on S, and denote by S0 ⊆ S the complement in S of the poles of
∇. Let σ : [0, ε0) → S0 be a maximal not self-intersecting geodesic for∇. Then the possible
minimal sets for σ are the following:

1. a pole of ∇;
2. a closed simple curve contained in S0, which is a closed geodesic for ∇, and in this case

the ω-limit set of σ coincides with this closed geodesic;
3. a point in ∂S ⊂ Ŝ;
4. all of Ŝ, and in this case Ŝ is a torus.

Finally, in order to generalize Theorem 4.3 we need to consider saddle connections escap-
ing to infinity, i.e., leaving any compact subset of S.

Definition 6.1 A diverging saddle connection for a meromorphic connection on a Riemann
surface S is a maximal geodesic σ : (−ε−, ε+) → S0 satisfying one of the allowing condi-
tions:
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(a) σ(t) leaves every compact subset of S for both t → −ε− and t → ε+; or
(b) σ(t) leaves every compact subset of S for t → −ε− and tends to a pole for t → ε+; or
(c) σ(t) tends to a pole for t → −ε− and leaves every compact for t → ε+.

A diverging graph of saddle connections is a connected planar graph in S whose vertices are
poles and whose arcs are disjoint saddle connections, with at least one of them diverging. A
spike is a saddle connection of a graph which does not belong to any cycle of the graph.

A diverging boundary graph of saddle connections (or diverging boundary graph) is a
diverging graph of saddle connections which is also the boundary of a connected open subset
of S. A diverging boundary graph is disconnecting if its complement in S is not connected.

Using these definitions, the following theorem generalizes Theorem 4.3 describing the
possible ω-limit sets of geodesics for a meromorphic connection on a non-compact Riemann
surface of this kind.

Theorem 6.2 Let S be an open connected subset of a compact Riemann surface Ŝ. Let ∇ be
a meromorphic connection on S, and denote by S0 ⊆ S the complement in S of the poles of
∇. Let σ : [0, ε0) → S0 be a maximal geodesic for∇. Then one of the following possibilities
occurs:

1. σ(t) definitely leaves every compact subset of S (i.e., it tends to the boundary of S in Ŝ);
or

2. σ(t) tends to a pole in S; or
3. σ is closed; or
4. the ω-limit set of σ is the support of a closed geodesic; or
5. the ω-limit set of σ is a (possibly diverging) boundary graph of saddle connections; or
6. the ω-limit set of σ is all of S̄ = S ∪ ∂S; or
7. the ω-limit set of σ has non-empty interior and non-empty boundary in S, and each

component of its boundary is a (possibly diverging) graph of saddle connections with no
spikes and at least one pole; or

8. σ intersects itself infinitely many times.

Furthermore, in cases 3 or 4 the support of σ is contained in only one of the components of
the complement of the ω-limit set, which is a part P of S having the ω-limit set as boundary.

Proof Suppose that σ is not closed (case 3) and does not self-intersect infinitely many times
(case 8). Up to changing the starting point, we can suppose that σ : [0, ε0) → S0 does not
self-intersect at all.

If σ definitely leaves every compact set of S, we are in case 1 and we are done. Otherwise,
the ω-limit set W of σ must intersect S. We can then argue as in the proof of Theorem 4.3
using Theorems 4.1 and 6.1, and we are done. ��
Remark 6.1 When the ω-limit set is a non diverging graph it is possible to find conditions
on the residues of the poles involved analogous to those described in Sect. 5, assuming it is
disconnecting and the boundary of a relatively compact part.

7 Geodesics on the torus

In this section we study in detail the geodesics for holomorphic connections on the torus. We
remark that, by Theorem 2.1, we cannot have holomorphic connections on Riemann surfaces
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different from the torus. Moreover, Proposition 4.2 tells us that this is the only case in which
all the surface S can be a minimal set (and a minimal set for an associated line field, and thus
Theorem 2.2 implies that the connection must be holomorphic).

So, our goals are: to characterize holomorphic connections on a torus, and to study their
geodesics.

We recall that a complex torus can be realized as a quotient of C under the action of a
rank-2 lattice, generated over R by two elements λ1, λ2 ∈ C. Without loss of generality we
can assume that one of the two generators is 1 and the other is a λ ∈ C with Im λ > 0. We
shall denote by Tλ the torus associated to λ.

The next elementary result characterizes holomorphic connections on a torus.

Lemma 7.1 Every holomorphic connection on a torus is the projection of a holomorphic
connection on the cover C represented by a constant global form a dz, for a suitable a ∈ C.

Proof Let∇ be a holomorphic connection on a torus Tλ. Since the tangent bundle of a torus is
trivial, we can find a global holomorphic (1, 0)-form η representing∇ by setting∇e = η⊗e,
where e is a global nowhere vanishing section of the tangent bundle.

Let π : C → Tλ be the universal covering map, and let η̃ = π∗η; it is a holomorphic
(1, 0)-form on C. Thus we can write η̃ = f dz, for a suitable entire function f ; we have to
prove that f is constant.

Let τt : C → C be given by τt (z) = z + t . Since π ◦ τ1 = π ◦ τλ = π , it follows that
τ ∗
1 η̃ = τ ∗

λ η̃ = η̃. But this is equivalent to f (z + 1) = f (z + λ) = f (z) for all z ∈ C, and
thus f must be a bounded entire function, that is a constant. ��

The next step consists in studying the geodesics for a holomorphic connection ∇ on a
torus. To do this, we shall study geodesics for the associated connection ∇̃ on C represented
by a constant form a dz and then project them to the torus (all geodesics on the torus are
obtained in this way: see [7, Proposition 3.1]).

Let σ̃ be a geodesic for ∇̃ issuing from a point z0 ∈ C with tangent vector v0. We first
consider the trivial case a = 0. In this case, the local isometry J is given by J (z) = cz, with
c ∈ C

∗. So, applying Eq. (2.4) in Proposition 2.2 we obtain

cσ̃ (t) = cv0t + cz0,

which means that σ̃ (t) = v0t + z0 and the geodesics are the euclidean ones. Thus in this
trivial case the geodesics on Tλ are exactly projections of straight lines.

If a 
= 0, the local isometry J is given by J (z) = 1
a exp(az). We apply again Eq. (2.4) in

Proposition 2.2 to get

1

a
exp(aσ̃ (t)) = exp(az0)v0t + 1

a
exp(az0),

which we can solve to obtain

σ̃ (t) = z0 + 1

a
log(1 + av0t), (7.1)

where log is the branch of the logarithm with log 1 = 0 defined along the half-line t �→
1 + av0t .

So in general the geodesics for ∇̃ are not straight lines, unless av0 ∈ R. However, every
(projection of a) straight line in a torus is the support of a geodesic for a suitable (non-trivial)
holomorphic connection:
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Proposition 7.1 Let Tλ be a complex torus, and π : C → Tλ the usual covering map. Let �
be a straight line in C issuing from z0 ∈ C and tangent to v0 ∈ C

∗. Then:
– π(�) is the support of a geodesic σ for the holomorphic connection ∇ represented by the

global form η = a dz with a ∈ C
∗ if and only if v0 ∈ Rā;

– π(�) is the support of a closed geodesic σ for the holomorphic connection ∇ represented
by the global form η = a dz if and only if v0 ∈ Rā and ā ∈ R

∗(Z ⊕ Zλ).

Proof For any a ∈ C
∗, the unique geodesic σ in Tλ issuing from π(z0) and tangent to

dπz0(v0) is σ = π ◦ σ̃ , where σ̃ is given by (7.1). Then the support of σ coincides with π(�)

if and only if σ̃ is a parametrization of �, and this happens if and only if av0 ∈ R, which is
equivalent to v0 ∈ Rā.

Assume now v0 ∈ Rā. Then σ is closed if and only if σ̃ (t0) = z0 + m + nλ for suitable
t0 ∈ R

∗ and m, n ∈ Z, that is if and only if

a(m + nλ) = log(1 + av0t0).

Recalling that av0 ∈ R, this can happen if and only if ā = r(m + nλ) for a suitable r ∈ R
∗,

and we are done. ��
Some of the geodesics given by Proposition 7.1 are closed, but none of them can be

periodic. We prove this in the next proposition, where we characterize closed geodesics.

Proposition 7.2 Let∇ be a holomorphic connection on the torus Tλ represented by a global
form η = a dz. Let σ : [0,∞) → Tλ be a (non-constant) closed geodesic for ∇. Then:

– if a 
= 0 then the support of σ is the projection of a straight line parallel to ā in the
covering space C, and σ cannot be periodic;

– if a = 0 then σ is periodic.

Proof If a = 0, the geodesics are the euclidean ones and so, once σ is closed, it must also
be periodic.

So let us study the problem when a 
= 0. In order for σ to be closed and non-trivial, (7.1)
implies that we must have

1

a
log(1 + av0 t̄) = n + mλ

for suitable t̄ ∈ R
∗ and n, m ∈ Z, not both zero, where v0 = σ̃ ′(0) 
= 0 and σ̃ is the lifting

of σ given by (7.1). Furthermore, since σ is closed then σ̃ ′(t̄) must be parallel to σ̃ ′(0). The
derivative σ̃ ′ is given by

σ̃ ′(t) = v0

1 + av0t
; (7.2)

so 1+ av0 t̄ = ea(n+mλ) must be real. Since t̄ is real too, it follows that av0 must be real, and
hence σ̃ is a parametrization of a straight line parallel to ā, as claimed.

Finally, σ is periodic if and only if v0 = σ̃ ′(0) = σ̃ ′(t̄); but by (7.2) this can happen only
if a = 0, contradiction. ��
Remark 7.1 If the support of a geodesic σ of a holomorphic connection on a torus is the
projection of a straight line, then σ is either closed or everywhere dense. In particular,
Proposition 7.1 provides examples of cases 2 and 5 in Theorem 4.3.

In the last theorem of this section we study the geodesics which are not the projection of
a straight line, and give a complete description of the possible ω-limit sets of geodesics for
holomorphic connections on a torus.
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Theorem 7.1 Let ∇ be a holomorphic connection on the complex torus Tλ, represented by
the global 1-form η = a dz. Let σ : [0, T ) → Tλ be a maximal (non constant) geodesic for
∇.

– If a 
= 0 then the ω-limit set of σ is (the closure of) the projection on Tλ of a straight line
l : R → C of the form l(t) = āt + b for a suitable b ∈ C. In particular:

1. if ā ∈ R
∗(Z ⊕ λZ)\{0} then either

– σ is closed, non periodic, and its support is the projection of the line l; or
– σ is not closed, but its ω-limit set is a closed geodesic whose support is the

projection of the line l;
2. if ā /∈ R

∗(Z ⊕ λZ)\{0} then the ω-limit set of σ is all of Tλ.

– If a = 0 then σ is the projection of a line of the form l(t) = v0t + b, where v0 = σ ′(0).
In particular:

– if v0 ∈ R
+(Z ⊕ λZ) then σ is closed and periodic;

– if v0 /∈ R
+(Z ⊕ λZ) then σ is not closed and its ω-limit set is all of Tλ.

Proof If a = 0, we know that the geodesics are the projection of euclidean straight lines,
and the statement follows. So let us assume a 
= 0.

Let σ̃ : [0, T ) → C be the lifting of σ to the covering space C. By (7.1) the lifting σ̃ is
given by

σ̃ (t) = z0 + 1

a
log(1 + av0t) = z0 + ā log(1 + av0t)

|a|2 ,

where v0 = σ̃ ′(0). When t → T it is easy to see that Im log(1 + av0t) = Arg(1 + av0t)
converges to a finite limit, while Re log(1+av0t) = log |1+av0t | tends to+∞ if av0 /∈ R

−,
to −∞ otherwise. It follows that σ̃ is asymptotic to a line of the form l(t) = āt + b for a
suitable b ∈ C, and thus the ω-limit of σ is the closure of the projection of this line in Tλ.
The rest of the assertion follows from Propositions 7.1 and 7.2. ��
Acknowledgments Both authors were partially supported by the FIRB 2012 project Differential geometry
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