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Abstract

We present a global characterization of the Chern and Bernwald con-
nections induced by a Finsler metric, illustrating their similarities and
differences with respect to the Cartan connection. Furthermore, using
the symplectic structure canonically associated to a Finsler metric we
describe a minimal compatibility condition between a vertical connec-
tion and a Finsler metric.

0. Introduction

In the study of the geometry of Finsler manifolds, one of the main tools is a connection
generalizing to this case the classical Levi-Civita connection induced by a Riemannian
metric. The first such generalization has been proposed by E. Cartan [C]; shortly later,
S.S. Chern [Ch] suggested a different generalization. Both these connections can be used
(see, e.g., [BC] and [AP]) to prove in the context of Finsler manifolds most of the standard
results of Riemannian geometry.

The Cartan connection and the Chern connection were defined in quite different ways.
The Cartan connection was an explicit generalization of the Levi-Civita connection, and
it was defined using the language of vector fields and covariant differentiation. On the
other hand, the Chern connection appeared as a solution of the local equivalence problem
of Finsler metrics, and it was defined using the language of differential forms. A third
connection useful in Finsler geometry is the Bernwald connection (see, e.g., [B, p. 44]),
again defined in terms of covariant differentiation using local coordinates.

The aim of this note is to present parallel characterizations of these connections show-
ing explicitly similarities and dissimilarities. The starting point is the theory of good
vertical connections developed in the first chapter of [AP], theory that we shall briefly sum-
marize in the first section of this paper. Let M be a smooth manifold, and π:TM → M
the standard projection. Roughly speaking, a good vertical connection is a connection
on the vertical bundle (the subbundle of T (TM) given by the kernel of dπ) that can be
canonically extended to a connection on the whole of T (TM). In particular, a good vertical
connection has a well-defined torsion, which is a T (TV )-valued 2-form on TM . Further-
more, a Finsler metric on M yields a canonically defined Riemannian metric on the vertical
bundle; therefore we can talk about metric compatibility of a vertical connection.

1 Partially supported by a grant from GNSAGA, Consiglio Nazionale delle Ricerche, Italy.
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Both the Cartan, the Chern and the Bernwald connections are (or can be thought
of as) good vertical connections. We shall show that they are characterized by differ-
ent degrees of metric compatibility and vanishing of the torsion. To be more specific,
in [AP, Theorem 1.4.2] we characterized the Cartan connection as the unique good vertical
connection which is fully metric compatible and has a minimal vanishing of the torsion.
In this paper we shall show that the Chern connection can be characterized as the unique
good vertical connection with an intermediate amount of metric compatibility and of van-
ishing of the torsion; so it is in a sense simpler than the Cartan connection, but it still
retains enough metric compatibility to be used for the study of the geometry of the Finsler
metric. Finally, the Bernwald connection can be characterized as the unique good vertical
connection with a minimal amount of metric compatibility and the most vanishing of the
torsion — a situation exactly opposite to the one encountered for the Cartan connection.

All these connections give rise to the same geodesics in M , which are exactly the
geodesics in M of the given Finsler metric. We end this paper using the symplectic
structure on TM naturally associated to a Finsler metric to give minimal conditions on a
good vertical connection ensuring that its geodesics are exactly the geodesics of the Finsler
metric. An example of such a connection, which in general does not agree with either the
Cartan, Chern or Bernwald connections, is the one induced by a weakly Kähler complex
Finsler metric (see [AP, Section 2.3]).

After the completion of this work I became aware of the paper [A], where it is indepen-
dently proved a result [A, Proposition 3.1] which is essentially equivalent to Theorem 2.2
of this note, although expressed in different terms, and where it is also noticed the identity
between the Chern and the Rund connections (see the remark after the proof of Theo-
rem 2.2).

It is a pleasure to thank the Department of Mathematics of the University of Califor-
nia, Berkeley, for the warm hospitality I enjoyed during the preparation of this paper.

1. Preliminaries
Let M be a (connected) smooth manifold of dimension n, and denote by π:TM →M the
canonical projection of the tangent bundle TM onto M . By definition, the vertical bundle
V ⊂ T (TM) is the kernel of the differential of π; it is a rank n vector bundle over TM . If
{x1, . . . , xn} are local coordinates around a point p ∈ M , a tangent vector u ∈ TpM can
be written as

u = ui
∂

∂xi

∣∣∣∣
p

,

where we are using the Einstein convention. In particular, {x1, . . . , xn, u1, . . . , un} are
local coordinates on TM . Setting ∂i = ∂/∂xi and ∂̇a = ∂/∂ua, it is easy to check that
{∂̇1, . . . , ∂̇n} is a local frame for V.

Let π∗TM denote the pull-back bundle over TM ; the fiber of π∗TM over u ∈ TM is
just Tπ(u)M . Since several presentations of Finsler geometry are based on π∗TM whereas
our presentation is based on the bundle V, we record here the following easy fact:

Lemma 1.1: The bundles π∗TM and V are canonically isomorphic.

Proof : For any p ∈ M let jp:TpM → TM be the inclusion, and for any u ∈ TpM let
ku:TpM → Tu(TpM) denote the usual identification. Then for any u ∈ TM we can define
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the injective map ιu:Tπ(u)M → Tu(TM) by

ιu = (djπ(u))u ◦ ku.

Since π ◦ jπ(u) ≡ π(u), the image of ιu is contained in Vu; being dimVu = n = dimTπ(u)M
it follows that ιu is an isomorphism of Tπ(u)M with Vu. Since, as previously remarked, the
Tπ(u)M are exactly the fibers of π∗TM , we can patch together the isomorphisms ιu to get
a global bundle isomorphism I:π∗TM → V by setting I(v) = ιu(v) for any v ∈ (π∗TM)u
and any u ∈ TM .

As a consequence of this proof, the vertical bundle is equipped with a canonical section,
the radial vertical vector field ι:TM → V given by ι(u) = ιu(u). In local coordinates,

ι(u) = ι

(
ui

∂

∂xi

∣∣∣∣
π(u)

)
= ui∂̇i|u.

A horizontal bundle is a rank n subbundle H of T (TM) such that T (TM) = H⊕ V.
We recall (see [AP, Proposition 1.1.2]) that every horizontal bundle comes provided with
a canonically defined bundle isomorphism Θ:V → H such that (dπ ◦ Θ)u = ι−1

u for any
u ∈ TM . In particular, setting δj = Θ(∂̇j) for j = 1, . . . , n, the set {δ1, . . . , δn} is a local
frame for H. Since, by construction, dπ(δi) = ∂/∂xi = dπ(∂i), every δi must be of the
form

δi = ∂i − Γa;i∂̇a

for suitable coefficients Γa;i, called the Christoffel symbols of the horizontal bundle H.
We now describe a standard procedure for the construction of horizontal bundles. A

vertical connection is just a linear connection ∇ on the vertical bundle. If ∇ is a vertical
connection, we can define a bundle map Λ:T (TM)→ V by

Λ(X) = ∇Xι,

where ι is the radial vertical vector field previously introduced. We say that a verti-
cal connection ∇ is good if Λ|V :V → V is a bundle isomorphism. It turns out (see
[AP, Lemma 1.2.1]) that ∇ is good iff Ker Λ is a horizontal bundle.

In local coordinates, we can write ∇∂̇i = ωji ⊗∂̇j , where (ωji ) is a locally defined matrix
of 1-forms:

ωji = Γ̃ji;h dx
h + Γ̃jia du

a

for suitable coefficients Γ̃ji;h and Γ̃jia. Then Λ(∂̇i) = [δji+Γ̃jhiu
h]∂̇j , where δji is the Kronecker

delta, and so ∇ is good iff the matrix

Lji = δji + Γ̃jhiu
h (1.1)

is invertible.
If we write X = Xi∂i + Ẋa∂̇a ∈ T (TM), then

∇Xι = [Ẋa + uh(Γ̃ah;iX
i + Γ̃ahbẊ

b)]∂̇a;
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it follows that over the zero section of TM the kernel of Λ is always generated by ∂1, . . . , ∂n.
So this theory is interesting only over the complement of the zero section in TM ; as we
shall see in the next section, this fits nicely with the theory of Finsler metrics.

Now let ∇ be a good vertical connection and set H = Ker Λ. Using the associated
bundle isomorphism Θ:V → H we can extend ∇ to a connection on T (TM) just by setting

∇H = Θ ◦ ∇
(
Θ−1(H)

)
for any horizontal vector field H, and then extending by linearity. If {δ1, . . . , δn, ∂̇1, . . . , ∂̇n}
is the local frame of T (TM) associated to the decomposition T (TM) = H ⊕ V, let
{dx1, . . . , dxn, ψ1, . . . , ψn} be the dual coframe, where

ψa = dua + Γa;j dx
j . (1.2)

With respect to this coframe we can write the connection forms ωji as

ωji = Γji;h dx
h + Γjia ψ

a, (1.3)

where
Γji;h = Γ̃ji;h − Γ̃jibΓ

b
;h and Γjia = Γ̃jia. (1.4)

Note that, by construction, ∇δi = ωji ⊗ δj . We also recall that (see [AP, Lemma 1.2.2])

Γj;h = Γji;hu
i. (1.5)

The tangent bundle TM is naturally equipped with the T (TM)-valued global 1-form

η = dxi ⊗ ∂i + dua ⊗ ∂̇a.

It is easy to check that η can also be written as

η = dxi ⊗ δi + ψa ⊗ ∂̇a.

The torsion of the good vertical connection ∇ is the T (TM)-valued 2-form θ = Dη, where
D is the exterior differential on T (TM)-valued forms induced by the (extension to T (TM)
of the) connection ∇. In local coordinates (see [AP, (1.3.3) and (1.3.4)]) the torsion is
given by θ = θi ⊗ δi + θ̇a ⊗ ∂̇a, where

θi = 1
2 [Γik;h − Γih;k] dxh ∧ dxk + Γijcψ

c ∧ dxj ,
θ̇a = 1

2 [δj(Γa;i)− δi(Γa;j)] dxj ∧ dxi + [∂̇b(Γa;i)− Γab;i]ψ
b ∧ dxi + 1

2 [Γacb − Γabc]ψ
b ∧ ψc.

(1.6)
As shown in [AP, Proposition 1.3.1], the 2-form θ satisfies the usual definition of torsion:

∇XY −∇YX = [X,Y ] + θ(X,Y )

for any sections X, Y of T (TM).
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2. The connections
A Finsler metric on a smooth manifold M is a function F :TM → R+ satisfying the
following properties:
(a) G = F 2 is smooth on M̃ , the complement of the zero section in TM ;
(b) F (u) > 0 for all u ∈ M̃ ;
(c) F (λu) = |λ|F (u) for all u ∈ TM and λ ∈ R;
(d) the matrix

(
Gab(u)

)
is positive definite for all u ∈ M̃ , where Gab = ∂2G/∂ua∂ub.

The homogeneity property (b) of the Finsler metric implies the following identities,
to be used several times in the sequel:

Gau
a = 2G, Gabu

b = Ga, Gabcu
c = 0, (2.1)

where subscripts indicate derivatives as in property (d) above. We shall use a semicolon
to denote derivatives with respect to the xi variables; for instance,

G;i =
∂G

∂xi
, Gab;j =

∂3G

∂xj∂ua∂ub
,

and so on.
Using the property (d) we can define a Riemannian metric on V (or on π∗TM , thanks

to Lemma 1.1) over M̃ by setting

∀V,W ∈ Vu 〈V |W 〉u = 1
2Gab(u)V aW b,

where V = V a∂̇a and W = W b∂̇b. It is easy to check that 〈·|·〉 is a well-defined Riemannian
metric over V. The factor 1

2 is chosen so that the following equality holds:

〈ι|ι〉 ≡ G.

To study the geometry of Finsler metrics one would like to have a generalization of
the Levi-Civita connection. At present, two such generalizations are mostly used: the
Cartan connection [C] and the Chern connection [Ch, BC]. Another interesting connection
related to Finsler geometry is the Bernwald connection (see, e.g., [B, p. 43]). In [AP,
Theorem 1.4.2] we proved the following characterization of the Cartan connection:

Theorem 2.1: Let F :TM → R+ be a Finsler metric on a smooth manifold M , and let
〈·|·〉 be the Riemannian structure induced by F on the vertical bundle V. Then the Cartan
connection is the unique vertical connection ∇ such that:

(i) ∇ is good;
(ii) for all X ∈ TM̃ and vertical vector fields V , W one has

X〈V |W 〉 = 〈∇XV |W 〉+ 〈V |∇XW 〉;

(iii) θ(V,W ) = 0 for all V , W ∈ V, and θ(H,K) ∈ V for all H, K ∈ H, where θ is the
torsion of the linear connection on TM̃ induced by ∇, and H is the horizontal bundle
induced by ∇.

The aim of this section is to prove analogous characterizations for the Chern and Bern-
wald connections. Looking to (1.6) we see that condition (iii) in Theorem 2.1 amounts to
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the vanishing of two components of the torsion: the dxh ∧ dxk component in the horizon-
tal part, and the ψb ∧ ψc in the vertical part. As we shall see, asking for the vanishing
of other components of the torsion and, at the same time, not requiring the full metric
compatibility described in condition (ii) we shall recover both the Chern and the Bernwald
connections.

But let us start with the Chern connection.

Theorem 2.2: Let F :TM → R+ be a Finsler metric on a smooth manifold M , and let
〈·|·〉 be the Riemannian structure induced by F on the vertical bundle V. Then the Chern
connection is the unique vertical connection ∇ such that:

(i) ∇ is good;
(ii) for all H ∈ H and vertical vector fields V , W one has

H〈V |W 〉 = 〈∇HV |W 〉+ 〈V |∇HW 〉,

where H is the horizontal bundle induced by ∇;
(iii) θ(X,Y ) ∈ V for all X, Y ∈ TM̃ , where θ is the torsion of the linear connection on
TM̃ induced by ∇.

As a consequence, θ(V,W ) = 0 for all V , W ∈ V. Furthermore, both the Cartan connection
and the Chern connection induce the same horizontal bundle.

Remark: Usually, the Chern connection (see, e.g., [BC]) is defined over PTM , the pro-
jectivized tangent bundle; so, strictly speaking, the vertical connection ∇ of Theorem 2.2 is
the pull-back of the Chern connection under the canonical projection M̃ → PTM . Anyway,
the only difference is the consideration of u1, . . . , un as actual coordinates on M̃ instead
of homogeneous coordinates on PTM .

Proof of Theorem 2.2: We shall show that a vertical connection satisfying properties
(i)-(iii) must necessarily be the Chern connection. To do so, we shall recover the connection
forms ωji by determining the coefficients Γji;h and Γjic — see (1.3) and (1.4).

Recalling (1.6), we see that in local coordinates condition (iii) says that

Γjk;h = Γjh;k and Γjic ≡ 0; (2.2)

in particular, recalling (1.1) and (1.4), we see that (i) is satisfied, and that θ(V,W ) = 0
for all V , W ∈ V.

Now (ii) yields

δh(Gkr) = 2δh〈∂̇k|∂̇r〉 = 2〈∇δh ∂̇k|∂̇r〉+ 2〈∂̇k|∇δh ∂̇r〉 = GjrΓ
j
k;h +GkjΓ

j
r;h,

δr(Ghk) = GjkΓjh;r +GhjΓ
j
k;r, δk(Grh) = GjhΓjr;k +GrjΓ

j
h;k;

and so recalling (2.2) we get

Γjh;k =
1
2
Gjr[δk(Grh)− δr(Ghk) + δh(Gkr)]

=
1
2
Gjr[Grh;k −Ghk;r +Gkr;h]− 1

2
Gjr[GrhiΓi;k −GhkiΓi;r +GkriΓi;h],
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where (Gjr) is the inverse matrix of (Gjr). Hence to recover Γjh;k it suffices to determine
the Christoffel symbols Γj;k. To this aim, we contract first with uh and then with uk.
Recalling (1.5) we get

Γj;k = Γjh;ku
h =

1
2
Gjr[Gr;k −Gk;r +Gkr;hu

h]− 1
2
GjrGkriΓi;hu

h,

Γj;ku
k = Gjr[Gr;kuk −G;r],

where we used (2.1). Therefore

Γj;k =
1
2
Gjr[Gr;k −Gk;r +Gkr;hu

h]− 1
2
GjrGkriG

is[Gs;huh −G;s]; (2.3)

hence the Christoffel symbols — and, a fortiori, the vertical connection — are uniquely
determined by conditions (i)–(iii). We remark that (see [AP, (1.4.14)]) the Γj;k are the
Christoffel symbols of the Cartan connection, and thus the induced horizontal bundle is
the same as the one induced by the Cartan connection.

To end the proof we need to show that the connection we found is the Chern connec-
tion. To simplify our task, let us introduce the following symbols:

grs =
1
2
Grs, Γihk = gijΓ

j
h;k, Mihk = −1

2
GihjΓ

j
;k,

so that

Γihk =
1
2

(
∂gih
∂xk

− ∂ghk
∂xi

+
∂gki
∂xh

)
+

1
2
(
Mihk −Mhki +Mkih

)
, (2.4)

which is formally identical to [BC, (2.48b)]. Therefore to prove our claim it suffices to
show that our Mihk are given by the formula [BC, (2.48c)], because then our connection
forms ωji will coincide with the connection forms of the Chern connection, by [BC, (2.47a)].
Set

Gj =
1
2
Gjr(Gr;huh −G;r); (2.5)

an easy computation shows that this is the quantity defined in [BC, (2.25c)]. Then

∂Gj

∂uk
= −1

2
GjsGsikG

ir(Gr;huh −G;r) +
1
2
Gjr(Gkr;huh +Gr;k −Gk;r) = Γj;k, (2.6)

and so

Mihk = −∂gih
∂uj

∂Gj

∂uk
,

as in [BC, (2.48c)], and we are done.

Remark: The formulas (2.2), (2.6) and (2.4) show that the Chern connection coincides
with the Rund connection introduced in [B, p. 43].

As shown in [AP, Chapter 1], to study the geometry of a Finsler metric the relevant
information are contained in the horizontal bundle and the horizontal part of the con-
nection; for this reason, the metric compatibility expressed in condition (ii) is enough to
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recover the variation formulas of the length functional and their usual consequences, as
done in [BC].

We remark in passing that the Chern connection has some more metric compatibility
besides the one displayed in condition (ii) of Theorem 2.2. Indeed (2.2) yields

U〈V |W 〉 = 〈∇UV |W 〉+ 〈V |∇UW 〉+
1
2
GabcU

aV bW c

for any U ∈ V and vertical vector fields V , W . So (2.1) implies

ι〈V |W 〉 = 〈∇ιV |W 〉+ 〈V |∇ιW 〉,

and

∀X ∈ TM̃ X〈V |ι〉 = 〈∇XV |ι〉+ 〈V |∇Xι〉. (2.7)

Condition (iii) in Theorem 2.2 amounts to the vanishing of three components of the
torsion: both components of the horizontal part, and the component ψb∧ψc of the vertical
part. If we require the vanishing of a fourth component (the ψb ∧ dxi component of the
vertical part) and a minimal metric compatibility we recover the Bernwald connection:

Theorem 2.3: Let F :TM → R+ be a Finsler metric on a smooth manifold M , and
let 〈·|·〉 be the Riemannian structure induced by F on the vertical bundle V. Then the
Bernwald connection is the unique vertical connection ∇ such that:

(i) ∇ is good;
(ii) for all H ∈ H one has

H(G) = 0,

where H is the horizontal bundle induced by ∇;
(iii) θ(X,Y ) ∈ V for all X, Y ∈ TM̃ , and θ(V,H) = 0 for all V ∈ V and H ∈ H, where θ
is the torsion of the linear connection on TM̃ induced by ∇.

Furthermore, both the Cartan connection and the Bernwald connection induce the same
horizontal bundle.

Proof : Exactly as in the proof of Theorem 2.2, we assume that such a connection exists
and we prove that it must be the Bernwald connection.

Condition (iii) now states that

Γjk;h = Γjh;k, Γjhc ≡ 0 and Γjh;k = ∂̇h(Γi;k); (2.8)

therefore (i) is satisfied, and it suffices to determine the Christoffel symbols Γj;k. First of
all, (2.8) and (1.5) imply

Γj;k = Γjh;ku
h = Γjk;hu

h = ∂̇k(Γj;h)uh = ∂̇k(Γj;hu
h)− Γj;k;

therefore
Γj;k =

1
2
∂̇k(Γj;hu

h), (2.9)
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and we are left to determine Γj;hu
h.

Condition (ii) applied with H = δh yields δh(G) = 0, that is

GjΓ
j
;h = G;h. (2.10)

Applying ∂̇k to (2.10) and recalling (2.8) we obtain

Gk;h −GjkΓj;h = GjΓ
j
k;h. (2.11)

Rewriting this with h and k interchanged and subtracting the result we get

GjhΓj;k = GjkΓj;h +Gh;k −Gk;h, (2.12)

again by (2.8). Then
GjhΓj;ku

k = GjΓ
j
;h +Gh;ku

k − 2G;h,

and (2.10) yields
Γj;ku

k = Gjh(Gh;ku
h −G;h).

Thus, by (2.9), (2.5) and (2.6) we have recovered the usual Christoffel symbols of the
Cartan connection. Finally, recalling (2.8) and [B, pp. 39 and 44] we see that we have
found the Bernwald connection, as claimed. Indeed, the Fikj , Ci

k
j and Nk

i of [B] by
definition correspond respectively to our Γki;j , Γkij and Γk;i.

Again, the Bernwald connection has slightly more metric compatibility than the one
showed by condition (ii). Indeed, (2.11) says that

δh〈∂̇k|ι〉 = 〈∇δh ∂̇k|ι〉

for all h, k = 1, . . . , n; therefore, recalling that ∇Hι = 0 for any H ∈ H by definition, we
find that (2.7) holds for the Bernwald connection too.

We end this section with a final remark on the remaining component of the torsion,
the dxi ∧ dxj component of the vertical part. As shown in (1.6), it depends only on the
horizontal bundle, and therefore it is the same for both the Cartan, the Chern and the
Bernwald connections. In particular, [AP, Proposition 1.4.4.(i)] shows that

∀H,K ∈ H 〈θ(H,K)|ι〉 = 0

for each of these connections.

3. Geodesics
In this section we shall describe a minimal compatibility condition between a good vertical
connection and a Finsler metric.

Let ∇ be a good vertical connection on a manifold M . We shall say that a curve
σ: [a, b] → M is a geodesic for ∇ if the tangent curve σ̇ (which is a curve in TM) is a
geodesic for the connection induced by ∇ over TM .

To describe the geodesics of a good vertical connection we need the radial horizontal
vector field χ = Θ ◦ ι:
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Lemma 3.1: Let ∇ be a good vertical connection over a smooth manifold M of dimen-
sion n. Then a curve σ: [a, b]→M is a geodesic for ∇ iff σ̈ is horizontal iff σ̇ is an integral
curve of χ iff

σ̈a + Γa;j(σ̇)σ̇j = 0 (3.1)
for a = 1, . . . , n.

Proof : In local coordinates, σ̇ = σ̇j ∂
∂xj |σ; therefore

σ̈ = σ̇j∂j + σ̈a∂̇a = σ̇jδj + (σ̈a + Γa;j(σ̇)σ̇j)∂̇a, (3.2)

and σ̈ is horizontal iff (3.1) is satisfied. Since χ(σ̇) = σ̇jδj , the tangent curve σ̇ is an
integral curve of χ iff (3.1) is satisfied.

Now set σ̈H = σ̇jδj and σ̈V = (σ̈a + Γa;j(σ̇)σ̇j)∂̇a. The curve σ̇ in TM is a geodesic
for ∇ iff ∇σ̈σ̈ = 0, that is iff ∇σ̈σ̈H = 0 and ∇σ̈σ̈V = 0. Now

∇σ̈σ̈H = [σ̈h + σ̇jΓ̃hc;j σ̇
c + σ̈aΓ̃hcaσ̇

c]δh

= [σ̈h + Γh;j σ̇
j + ΓhcbΓ

b
;j σ̇

cσ̇j + Γhcaσ̈
aσ̇c]δh

= [δhb + Γhcbσ̇
c][σ̈b + Γb;j σ̇

j ]δh,

by (1.5), where all Γ’s are evaluated at σ̇. Being ∇ a good connection, by (1.1) the matrix
(δhb +Γhcbσ̇

c) is invertible; it follows that ∇σ̈σ̈H = 0 iff (3.1) is satisfied — and hence σ̈V ≡ 0.
Therefore σ is a geodesic for ∇ iff (3.1) is satisfied, and we are done.

On the other hand, a curve σ: [a, b] → M is a geodesic for a Finsler metric F on a
manifold M if it is an extremal for the length functional. A standard computation in local
coordinates shows that σ is a geodesic for F iff

σ̈a +Gba[Gb;j σ̇j −G;b] = 0 (3.3)
for all a = 1, . . . , n, where Gba, Gb;j and G;b are evaluated at σ̇. Comparing (3.1) and (3.3)
we see that the geodesics for a good vertical connection ∇ are exactly the geodesics for a
Finsler metric F iff

Γa;ju
j = Gba[Gb;juj −G;b]. (3.4)

There is a more intrinsic way to express this result (which is the minimal compatibility
one can ask for a good vertical connection and a Finsler metric). Using the Finsler metric
F we can define a canonical 1-form α on M̃ by setting in local coordinates

α = Gi dx
i

(the form α/2F was called Hilbert form in [BC]), and then introduce a canonical 2-form
ω = dα = Gi;j dx

j ∧ dxi +Gia du
a ∧ dxi; (3.5)

since ωn = ±(detGia)2 dx1 ∧ · · · ∧ dxn ∧ du1 ∧ · · · ∧ dun, the 2-form ω is a symplectic form
on M̃ . Let XG denote the hamiltonian vector field of G with respect to ω, that is the
unique vector field on M̃ such that dG = ω(·, XG). Writing XG = Xi∂i + Ẋa∂̇a, we see
that XG must satisfy

[(Gi;j −Gj;i)Xi −GajẊa] dxj +GiaX
i dua = G;j dx

j +Ga du
a;

therefore
XG = ui∂i −Gaj(Gj;iui −G;j)∂̇a.

Comparing with (3.4) we have obtained
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Proposition 3.2: Let F :TM → R+ be a Finsler metric on a smooth manifold M , and
let ∇ be a good vertical connection over M . Then the geodesics for ∇ are exactly the
geodesics for F iff the radial horizontal vector field χ is the hamiltonian vector field for G
with respect to the symplectic form ω given by (3.5).

In particular, Proposition 3.2 holds for the Cartan, Chern and Bernwald connections
— and thus they all have the same geodesics.

We end this paper with yet another example of a good vertical connection inducing
again the same geodesics as the Finsler metric F . We need the following

Proposition 3.3: Let F :TM → R+ be a Finsler metric on a smooth manifold M , and
let 〈·|·〉 be the Riemannian structure induced by F on the vertical bundle V. Let ∇ be a
good vertical connection over M such that

(i) for all H ∈ H and vertical vector fields V one has

H〈V |ι〉 = 〈∇HV |ι〉,

where H is the horizontal bundle induced by ∇ (and we recall that ∇Hι = 0 by definition);

(ii) 〈θ(H,χ)|χ〉 = 0 for all H ∈ H, where θ is the torsion of the linear connection on TM̃
induced by ∇.

Then the geodesics for ∇ are exactly the geodesics for F .

Proof : Condition (i) applied with H = δh and V = ∂̇k yields

Gk;h −GikΓi;h = GiΓik;h; (3.6)

in particular, contracting by uk and recalling (1.5) we get

G;h = GiΓi;h. (3.7)

Rewriting (3.6) with h and k exchanged and subtracting we obtain

Gk;h −Gh;k −GikΓi;h +GihΓi;k = Gi(Γik;h − Γih;k).

Contracting again by uk and recalling (3.7) we get

G;h −Gh;ku
k +GihΓi;ku

k = Gi(Γik;h − Γih;k)uk.

Now (ii) in local coordinates means exactly Gi(Γik;h − Γih;k)uk = 0; therefore we obtain

Γi;ku
k = Gih(Gh;ku

k −G;h),

that is (3.4), and we are done.
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Let M be a complex manifold, and T 1,0M its holomorphic tangent bundle. A complex
Finsler metric on M is a function F :T 1,0M → R+ such that
(a) G = F 2 is smooth on the complement of the zero section in T 1,0M ;
(b) F (λv) = |λ|F (v) for all v ∈ T 1,0M and λ ∈ C;
(c) the matrix (∂2G/∂vα∂vβ) is positive definite on the complement of the zero section

in T 1,0M .
If moreover the Hessian (with respect to the real coordinates) of G is positive definite, we
say that the complex Finsler metric is strongly convex.

Using the canonical isomorphism of T 1,0M with the real tangent bundle TRM , a
strongly convex complex Finsler metric induces a Finsler metric on the underlying smooth
real manifold. As described in [AP, Section 2.3], to any complex Finsler metric is canoni-
cally associated a good vertical connection ∇̃ (the Chern-Finsler connection); again, using
the canonical isomorphisms we get a good vertical connection ∇ over TRM . A tedious
but completely straightforward computation (very similar to the ones carried out in [AP,
Section 2.6]) shows that ∇ satisfies condition (i) of Proposition 3.3 always, and condi-
tion (ii) iff ∇̃ is weakly Kähler (which is exactly condition (ii) expressed in complex terms;
see [AP, Section 2.3]). On the other hand, except in very special cases, the horizontal bun-
dle associated to ∇ is different from the one associated to the Cartan (Chern, Bernwald)
connection; see [AP, Theorem 2.6.4]. Therefore the real good vertical connection induced
by a strictly convex complex weakly Kähler Finsler metric is an example of another good
vertical connection still having the same geodesics as the given Finsler metric.
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