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Abstract Let X be a Kobayashi hyperbolic complex manifold, and assume that X does not

contain compact complex submanifolds of positive dimension (e.g., X Stein). We shall prove the

following generalization of Ritt’s theorem: every holomorphic self-map f : X → X such that f(X)

is relatively compact in X has a unique fixed point τ(f) ∈ X, which is attracting. Furthermore,

we shall prove that τ(f) depends holomorphically on f in a suitable sense, generalizing results by

Heins, Joseph-Kwack and the second author.
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0 Introduction

The classical Wolff-Denjoy theorem (see, e.g., ref. [1], Theorem 1.3.9) says
that the sequence of iterates of a holomorphic self-map f of the unit disk Δ ⊂ C,
except when f is an elliptic automorphism of Δ or the identity, converges uni-
formly on compact subsets to a point τ(f) ∈ Δ̄, the Wolff point of f . Fur-
thermore, if τ(f) ∈ Δ then it is the unique fixed point of f ; and if τ(f) ∈ ∂Δ
then it is still morally fixed, in the sense that f(ζ) tends to τ(f) when ζ tends
to τ(f) non-tangentially.

In 1941, Heins[2] proved that the map τ : Hol(Δ, Δ) \ {id} → Δ̄, associating
to every elliptic automorphism its fixed point and to any other map its Wolff
point, is continuous. More than half a century later, using the first author’s
version (see ref. [3]) of the Wolff-Denjoy theorem for strongly convex domains
in C

n, Joseph and Kwack[4] extended Heins’ result to strongly convex domains.

In 2002, the second author started investigating further regularity proper-
ties of the Heins map. If D is a bounded domain in C

n, then Hol(D, D) is a
subset of the complex Banach space H∞(D)n of n-uples of bounded holomor-
phic functions defined on D; so one may ask whether the Heins map, when
defined, is holomorphic on some suitable open subset of Hol(D, D). And in-
deed, in ref. [5] the second author proved that, when D is strongly convex, the
Heins map is well-defined and holomorphic on Holc(D, D), the open subset of
holomorphic self-maps of D whose image is relatively compact in D.
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The aim of this paper is to prove a similar result for the space Holc(X, X)
of the holomorphic self-maps of a Kobayashi hyperbolic Stein manifold whose
image is relatively compact in X. First of all, we shall generalize the classical
Ritt’s theorem, proving (Theorem 1.1) that every f ∈ Holc(X, X) admits a
unique fixed point τ(f) ∈ X; therefore the Heins map f �→ τ(f) is well-defined
and continuous (Lemma 2.1).

To study further regularity properties of the Heins map, one apparently
needs a complex structure on Holc(X, X). Unfortunately, we do not know
whether such a structure exists in general; so we shall instead prove (Theo-
rem 2.3) that the Heins map is holomorphic when restricted to any holomor-
phic family inside Holc(X, X), a fact equivalent to τ being holomorphic with
respect to any sensible complex structure on Holc(X, X). For instance, we ob-
tain (Corollary 2.4) that the Heins map is holomorphic on Holc(D, D) for any
bounded domain D in C

n.

1 Ritt’s theorem

Let X be a complex manifold. We shall denote by Holc(X, X) the space of
holomorphic self-maps f : X → X of X such that f(X) is relatively compact in
X.

In 1920, Ritt[6] proved that if X is a non-compact Riemann surface then
every f ∈ Holc(X, X) has a unique fixed point z0 ∈ X. Furthermore, this fixed
point is attractive in the sense that the sequence {fk} of iterates of f converges,
uniformly on compact subsets, to the constant map z0. This theorem has been
generalized to bounded domains in C

n by Wavre[7]; see also ref. [8], p. 83.
Arguing as in ref. [1], Corollary 2.1.32, we shall now prove a far-reaching
generalization of Ritt’s theorem:

Theorem 1.1. Let X be a hyperbolic manifold with no compact complex
submanifolds of positive dimension. Then every f ∈ Holc(X, X) has a unique
fixed point z0 ∈ X. Furthermore, the sequence of iterates of f converges,
uniformly on compact subsets, to the constant map z0.

Proof. Since X is hyperbolic, by ref. [9] the space Hol(X, X) of holomor-
phic self-maps of X is relatively compact in the space C0(X, X∗) of continuous
maps of X into the one-point compactification X∗ = X ∪ {∞}, endowed with
the compact-open topology. If f ∈ Holc(X, X), this implies that the sequence
of iterates of f is relatively compact in Hol(X, X), because f(X) ⊂⊂ X.

Let then {fkν} be a subsequence of {fk} converging to h0 ∈ Hol(X, X).
We can also assume that pν = kν+1 − kν and qν = pν − kν tend to +∞ as
ν → +∞, and that there are ρ0, g0 ∈ Hol(X, X) such that fpν → ρ0 and
f qν → g0 in Hol(X, X). Then it is easy to see that

h0 ◦ ρ0 = h0 = ρ0 ◦ h0 and g0 ◦ h0 = ρ0 = h0 ◦ g0,

and so
ρ2

0 = ρ0 ◦ ρ0 = g0 ◦ h0 ◦ ρ0 = g0 ◦ h0 = ρ0.

Thus ρ0 is a holomorphic retraction, whose image is contained in the closure
of f(X), which is compact. This means (see refs. [10,11]) that ρ0(X) is a
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compact connected complex submanifold of X, i.e., a point z0 ∈ X. Therefore
ρ0 ≡ z0 and z0 is a fixed point of f , since f clearly commutes with ρ0.

We are left to proving that fk → z0, which implies in particular that z0

is the only fixed point of f . Since {fk} is relatively compact in Hol(X, X), it
suffices to show that z0 is the unique limit point of any converging subsequence
of {fk}. So let {fkμ} be a subsequence converging toward a map h ∈ Hol(X, X).
Arguing as before we find a holomorphic retraction ρ ∈ Hol(X, X) such that
h = ρ ◦ h. Furthermore, ρ must again be constant; but since it is obtained as
a limit of a subsequence of iterates of f , it must commute with ρ0, and this is
possible if and only if ρ ≡ z0. But then h = ρ ◦ h ≡ z0 too, and we are done.

In particular this theorem holds for hyperbolic Stein manifolds, because a
Stein manifold has no compact complex submanifolds of positive dimension.

Remark 1.1. If fk → z0, then the spectral radius of dfz0 is strictly less
than one. Indeed, if dfz0 had an eigenvalue λ ∈ C with |λ| � 1, then d(fk)z0

would have λk as eigenvalue, and λk 
→ 0 whereas d(fk)z0 → O.

2 The Heins map

Let X be a hyperbolic manifold with no compact complex submanifolds
of positive dimension. The Heins map of X is the map τ : Holc(X, X) → X
that associates to any f ∈ Holc(X, X) its unique fixed point τ(f) ∈ X, whose
existence is proved in Theorem 1.1.

The first observation is that the Heins map is continuous:

Lemma 2.1. Let X be a hyperbolic manifold with no compact complex
submanifolds of positive dimension. Then the Heins map τ : Holc(X, X) → X
is continuous.

Proof. Let {fk} ⊂ Holc(X, X) be a sequence converging toward a map f ∈
Holc(X, X); we must show that τ(fk) → τ(f) ∈ X.

First of all, we claim that the set {τ(fk)} is relatively compact in X. Assume
that this is not true; then, up to passing to a subsequence, we can assume that
the sequence {τ(fk)} eventually leaves any compact subset of X. Now, the set
f(X) is relatively compact in X; we can then find an open set D in X such
that

f(X) ⊂⊂ D ⊂⊂ X.

We have τ(fk) /∈ D̄ eventually; therefore for k large enough we can find Rk > 0
such that

B(τ(fk), Rk) ∩ D = ∅ and B(τ(fk), Rk) ∩ ∂D 
= ∅,

where B(z, R) is the ball of center z ∈ X and radius R > 0 with respect
to the Kobayashi distance of X. Choose zk ∈ B(τ(fk), Rk) ∩ ∂D for every k
large enough; since ∂D is compact, up to a subsequence we can assume that
zk → z0 ∈ ∂D. In particular, then, fk(zk) → f(z0) ∈ f(X) ⊂ D. But,
on the other hand, we have fk(zk) ∈ B(τ(fk), Rk) ⊂ X \ D for all k large
enough, because τ(fk) is fixed by fk and the Kobayashi distance is contracted
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by holomorphic maps; therefore f(z0) ∈ X \ D, contradiction.

So {τ(fk)} is relatively compact in X; to prove that τ(fk) → τ(f) it suffices
to show that τ(f) is the unique limit point of the sequence {τ(fk)}. But indeed
if τ(fkν

) → x ∈ X we have
f(x) = lim

ν→+∞
fkν

(τ(fkν
)) = lim

ν→+∞
τ(fkν

) = x;

but τ(f) is the only fixed point of f , and we are done.

As stated in the introduction, our aim is to prove that the Heins map is
holomorphic in a suitable sense. Since we do not know how to define a holo-
morphic structure on Holc(X, X) for general manifolds, we shall prove another
result which is equivalent to the holomorphy of τ in any reasonable setting (see
for instance Corollary 2.4 below). We shall need the following lemma:

Lemma 2.2. Let P ⊂ C
n be a polydisk centered in p0 ∈ C

n, and h: P →
C

n a holomorphic map. Then there is a holomorphic map A: P → M(n, C),
where M(n, C) is the space of n × n complex matrices, satisfying the following
properties:

(i) h(z) − h(p0) = A(z) · (z − p0) for all z ∈ P ;

(ii) A(p0) = dhp0 ;

(iii) for every polydisk P1 ⊂⊂ P centered at p0 there is a constant C(P1) > 0
such that ‖A‖P1 � C(P1)‖h‖P .

Proof. We can write

h(z) − h(p0) =
∫ 1

0

∂

∂t
h(z0 + t(z − p0)) dt

=
n∑

j=1

(zj − pj
0)

∫ 1

0

∂h

∂zj
(z0 + t(z − p0)) dt.

Therefore taking

Ai
j(z) =

∫ 1

0

∂hi

∂zj
(z0 + t(z − p0)) dt,

the matrix A = (Ai
j) clearly satisfies (i) and (ii), and (iii) follows from the

Cauchy estimates.

Theorem 2.3. Let X be a hyperbolic manifold with no compact complex
submanifolds of positive dimension, Y another complex manifold, and F : Y ×
X → X a holomorphic map so that fy = F (y, ·) ∈ Holc(X, X) for every y ∈ Y .
Then the map τF : Y → X given by τF (y) = τ(fy) is holomorphic. Furthermore,
for every y0 ∈ Y the differential of τF at y0 is given by

d(τF )y0 = (id−d(fy0)τ(fy0 ))
−1 ◦ dF(y0,τ(fy0 ))(·, O).

Notice that, by Remark 1.1, id−d(fy0)τ(fy0 ) is invertible.

Proof. Without loss of generality, we can assume that Y is a ball Bm ⊂
C

m centered at y0. Set p0 = τ(fy0), and let P0 ⊂ X be the domain of a polydisk
chart centered at p0. Since fy0(p0) = p0, we can find a polydisk P1 ⊂⊂ P0
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centered at p0 such that fy0(P1) ⊂⊂ P0. Furthermore, by Lemma 2.1 there is
also a δ > 0 such that ‖y − y0‖ < δ implies τ(fy) ∈ P1 and fy(P1) ⊂⊂ P0.
This means that as soon as y is close enough to y0 we can work inside P0 and
assume, without loss of generality, that X is contained in some C

n.

Write py = τ(fy) ∈ P1, and define hy: P̄1 → C
n by hy = fy − fy0 . We have

py − p0 = fy0(py) − fy0(p0) + hy(py);
therefore Lemma 2.2 applied to fy0 yields a matrix A(y), depending continu-
ously on y by Lemma 2.1, such that py − p0 = A(y) · (py − p0) + hy(py). Since
A(y) → d(fy0)p0 as y → y0, for y close to y0 the matrix id−A(y) is invertible,
and so we can write

py − p0 = (id−A(y))−1 · hy(py). (2.1)

Now, we have
dF(y0,τ(fy0 ))(·, O) = Jacy(fy(p0))(y0),

where Jacy is the Jacobian matrix computed with respect to the y variables; in
particular,

hy(p0) − dF(y0,τ(fy0 ))(y − y0, O) = o(‖y − y0‖).
This means that to show that τF is holomorphic and dτF has the claimed
expression it suffices to show that

lim
y→y0

‖τF (y) − τF (y0) − (id−d(fy0)p0)
−1 · hy(p0)‖

‖y − y0‖ = 0,

which is equivalent to proving that

lim
y→y0

‖(id−d(fy0)p0) · (py − p0) − hy(p0)‖
‖y − y0‖ = 0. (2.2)

Now, (2.1) yields
‖(id−d(fy0)p0) · (py − p0) − hy(p0)‖

‖y − y0‖
=

‖(id−A(y)) · (py − p0) − hy(p0) + (A(y) − d(fy0)p0) · (py − p0)‖
‖y − y0‖

� ‖hy(py) − hy(p0)‖
‖y − y0‖ + ‖A(y) − d(fy0)p0‖

‖py − p0‖
‖y − y0‖ . (2.3)

Since hy(z) is holomorphic both in y and in z, we have
hy(z) − hy1(z1) = O(‖y − y1‖, ‖z − z1‖);

in particular,
hy(z) = hy(z) − hy0(z) = O(‖y − y0‖) (2.4)

uniformly on P1. So (2.1) implies that py − p0 = O(‖y − y0‖), and thus the
second summand in (2.3) tends to zero as y → y0.

Finally, if we apply Lemma 2.2 to hy we get a matrix B(y) and a constant
C > 0 such that

‖hy(py) − hy(p0)‖ � ‖B(y)‖ · ‖py − p0‖ � C‖hy‖P2 ‖py − p0‖
Copyright by Science in China Press 2005
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when y is close enough to y0, where P2 ⊂⊂ P1 is a fixed polydisk centered at p0.
But then (2.4) yields ‖hy(py)− hy(p0)‖ = O(‖y − y0‖2), and so (2.2) is proved.

If X is a bounded domain in C
n, then Holc(X, X) is an open subset of

H∞(X)n, the complex Banach space of n-uples of bounded holomorphic func-
tions defined on X. Therefore in this case Holc(X, X) has a natural complex
structure, and we obtain the following generalization of the main result in ref.
[5]:

Corollary 2.4. Let D ⊂⊂ C
n be a bounded domain. Then the Heins

map
τ : Holc(D, D) → D

is holomorphic.

Proof. It follows from Theorem 2.3 and ref. [12], Theorem II.3.10.

Note added in proof. After the completion of this paper we discovered that
a generalization of Ritt’s theorem to complex manifolds has already been given
by Tsuji in 1981[13].
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