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A JULIA-WOLFF-CARATHÉODORY THEOREM FOR
INFINITESIMAL GENERATORS IN THE UNIT BALL

MARCO ABATE AND JASMIN RAISSY

Abstract. We prove a Julia-Wolff-Carathédory theorem on angular deriva-

tives of infinitesimal generators of one-parameter semigroups of holomorphic
self-maps of the unit ball Bn ⊂ Cn

, starting from results recently obtained by

Bracci and Shoikhet.

0. Introduction

The classical Fatou theorem says that a bounded holomorphic function f defined
on the unit disk ∆ ⊂ C admits non-tangential limit at almost every point of ∂∆,
but it does not say anything about the behavior of f(ζ) as ζ approaches a specific
point σ of the boundary. Of course, to be able to say something in this case one
needs some hypotheses on f . For instance, one can assume that, in a very weak
sense, f(ζ) approaches the boundary of ∆ at least as fast as ζ. It turns out that
under this condition, not only f , but even its derivative admits non-tangential limit.
This is the content of the classical Julia-Wolff-Carathéodory theorem:

Theorem 0.1. (Julia-Wolff-Carathéodory) Let f : ∆→ ∆ be a bounded holomor-
phic function such that

(0.1) lim inf
ζ→σ

1− |f(ζ)|
1− |ζ|

= α < +∞

for some σ ∈ ∂∆. Then f has non-tangential limit τ ∈ ∂∆ at σ, for all ζ ∈ ∆ one
has

(0.2)
|τ − f(ζ)|2

1− |f(ζ)|2
≤ α |σ − ζ|

2

1− |ζ|2
,

and furthermore both the incremental ratio
(
τ − f(ζ)

)/
(σ − ζ) and the deriva-

tive f ′(ζ) have non-tangential limit ασ̄τ at σ.

This results from the work of several authors: Julia [Ju1, Ju2], Wolff [Wo],
Carathéodory [C], Landau and Valiron [L-V], R. Nevanlinna [N] and others (see,
e.g., [B] and [A1] for proofs, history and applications).
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As already noticed by Korányi and Stein ([Ko], [K-S], [St]) when they extended
Fatou’s theorem to several complex variables, for domains in Cn the notion of
non-tangential limit is not the right one to consider. Actually, it turns out that
for generalizing the Julia-Wolff-Carathéodory theorem from the unit disk to the
unit ball Bn ⊂ Cn one needs two different notions of limit at the boundary, both
stronger than non-tangential limit.

A function f :Bn → C has non-tangential limit L ∈ C at a boundary point
p ∈ ∂Bn if f(z) → L as z → p staying inside cones with vertex at p; a stronger
notion of limit can be obtained by using approach regions larger than cones.

In the unit disk, as approach regions for the non-tangential limit one can use
Stolz regions, since they are angle-shaped nearby the vertex. In the unit ball
Bn ⊂ Cn the natural generalization of a Stolz region is the Korányi region K(p,M)
of vertex p ∈ ∂Bn and amplitude M > 1 given by

K(p,M) =

{
z ∈ Bn

∣∣∣∣ |1− 〈z, p〉|1− ‖z‖
< M

}
,

where ‖ · ‖ denotes the euclidean norm and 〈· , ·〉 the canonical hermitian product.
We shall say that a function f :Bn → C has K-limit (or admissible limit) L ∈ C
at p ∈ ∂Bn, and we shall write K-lim

z→p
f(z) = L, if f(z)→ L as z → p staying inside

any Korányi region K(p,M). Since a Korányi region K(p,M) approaches the
boundary non-tangentially along the normal direction at p but tangentially along
the complex tangential directions at p, it turns out that having K-limit is stronger
than having non-tangential limit. However, the best generalization of Julia’s lemma
to Bn is the following result (proved by Hervé [H] in terms of non-tangential limits
and by Rudin [R] in general):

Theorem 0.2. Let f :Bn → Bm be a holomorphic map such that

lim inf
z→p

1− ‖f(z)‖
1− ‖z‖

= α < +∞ ,

for some p ∈ ∂Bn. Then f admits K-limit q ∈ ∂Bm at p, and furthermore for all
z ∈ Bn one has

|1− 〈f(z), q〉|2

1− ‖f(z)‖2
≤ α |1− 〈z, p〉|

2

1− ‖z‖2
.

To obtain a complete generalization of the Julia-Wolff-Carathéodory theorem
for Bn one needs a different notion of limit, still stronger than non-tangential limit,
but weaker than K-limit.

A crucial one-variable result relating limits along curves and non-tangential limits
is Lindelöf ’s theorem. Given σ ∈ ∂∆, a σ-curve is a continuous curve γ: [0, 1)→ ∆
such that γ(t) → σ as t → 1−. Then Lindelöf [Li] proved that if a bounded
holomorphic function f : ∆ → C admits limit L ∈ C along a given σ-curve then it
admits limit L along all non-tangential σ-curves — and thus it has non-tangential
limit L at σ.

Trying to generalize this theorem to several complex variables, Čirka [Č] realized
that for a bounded holomorphic function the existence of the limit along a (suitable)
p-curve (where p ∈ ∂Bn) implies not only the existence of the non-tangential limit,
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but also the existence of the limit along any curve belonging to a larger class of
curves, including some tangential ones — but it does not in general imply the
existence of the K-limit. To describe the version (due to Rudin [R]) of Čirka’s
result we shall need in this paper, let us introduce a bit of terminology.

Let p ∈ ∂Bn. As before, a p-curve is a continuous curve γ: [0, 1)→ Bn such that
γ(t)→ p as t→ 1−. A p-curve is special if

(0.3) lim
t→1−

‖γ(t)− 〈γ(t), p〉p‖2

1− |〈γ(t), p〉|2
= 0 ;

and, given M > 1, it is M -restricted if

|1− 〈γ(t), p〉|
1− |〈γ(t), p〉|

< M

for all t ∈ [0, 1). We also say that γ is restricted if it is M -restricted for some M > 1.
In other words, γ is restricted if and only if t 7→ 〈γ(t), p〉 goes to 1 non-tangentially
in ∆.

It is not difficult to see that non-tangential curves are special and restricted; on
the other hand, a special restricted curve approaches the boundary non-tangentially
along the normal direction, but it can approach the boundary tangentially along
complex tangential directions. Furthermore, a special M -restricted p-curve is even-
tually contained in any K(p,M ′) with M ′ > M , and conversely a special p-curve
eventually contained in K(p,M) is M -restricted. However, K(p,M) can contain
p-curves that are restricted but not special: for these curves the limit in (0.3) might
be a strictly positive number.

With these definitions in place, we shall say that a function f :Bn → C has
restricted K-limit (or hypoadmissible limit) L ∈ C at p ∈ ∂Bn, and we shall
write K ′-lim

z→p
f(z) = L, if f

(
γ(t)

)
tends to L as t → 1− for any special restricted

p-curve γ: [0, 1) → Bn. It is clear that the existence of the K-limit implies the
existence of the restricted K-limit, that in turns implies the existence of the non-
tangential limit; but none of these implications can be reversed (see, e.g., [R] for
examples in the ball).

Finally, we say that a function f :Bn → C is K-bounded at p ∈ ∂Bn if it is
bounded in any Korányi region K(p,M), where the bound can depend on M > 1.
Then the version of Čirka’s generalization of Lindelöf’s theorem we shall need is
the following, proved by Rudin:

Theorem 0.3. ([R]) Let f :Bn → C be a holomorphic function K-bounded at
p ∈ ∂Bn. Assume there is a special restricted p-curve γo: [0, 1) → Bn such that
f
(
γo(t)

)
→ L ∈ C as t→ 1−. Then f has restricted K-limit L at p.

We can now deal with the generalization of the Julia-Wolff-Carathéodory theo-
rem to several complex variables. With respect to the one-dimensional case there
is an obvious difference: instead of only one derivative we have to consider a whole
(Jacobian) matrix of them, and there is no reason they should all behave in the
same way. And indeed they do not, as shown in Rudin’s version of the Julia-Wolff-
Carathéodory theorem for the unit ball:
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Theorem 0.4. ([R]) Let f :Bn → Bm be a holomorphic map such that

lim inf
z→p

1− ‖f(z)‖
1− ‖z‖

= α < +∞ ,

for some p ∈ ∂Bn. Then f admits K-limit q ∈ ∂Bm at p. Furthermore, if we set
fq(z) =

〈
f(z), p

〉
q and denote by dfz the differential of f at z, we have:

(i) the function
(
1−

〈
f(z), q

〉)/
(1− 〈z, p〉) is K-bounded and has restricted K-

limit α at p;
(ii) the map (f(z) − fq(z))/(1 − 〈z, p〉)1/2 is K-bounded and has restricted K-

limit O at p;
(iii) the function

〈
dfz(p), q

〉
is K-bounded and has restricted K-limit α at p;

(iv) the map (1−〈z, p〉)1/2d(f−fq)z(p) is K-bounded and has restricted K-limit O
at p;

(v) if v is any vector orthogonal to p, the function
〈
dfz(v), q

〉/
(1 − 〈z, p〉)1/2 is

K-bounded and has restricted K-limit 0 at p;
(vi) if v is any vector orthogonal to p, the map d(f − fq)z(v) is K-bounded at p.

In the last twenty years this theorem (as well as Theorems 0.2 and 0.3) has been
extended to domains much more general than the unit ball: for instance, strongly
pseudoconvex domains, convex domains of finite type, and polydisks (see, e.g., [A1],
[A2], [A3], [A5], [AT], [A6], [AMY] and references therein). But in this paper we are
interested in a different kind of generalization, that we are now going to describe.

Let Hol(Bn, Bn) denote the space of holomorphic self-maps of Bn, endowed with
the usual compact-open topology. A one-parameter semigroup of holomorphic self-
maps of Bn is a continuous semigroup homomorphism Φ:R+ → Hol(Bn, Bn). In
other words, writing ϕt instead of Φ(t), we have ϕ0 = idBn , the map t 7→ ϕt is
continuous, and the semigroup property ϕt ◦ϕs = ϕt+s holds (see, e.g., [A1], [RS2]
or [S] for an introduction to the theory of one-parameter semigroups of holomorphic
maps).

One-parameter semigroups can be seen as the flow of a vector field (see, e.g.,
[A4]). Indeed, given a one-parameter semigroup Φ, it is possible to prove that
there exists a holomorphic map G:Bn → Cn, the infinitesimal generator of the
semigroup, such that

(0.4)
∂Φ

∂t
= G ◦ Φ .

The infinitesimal generator can be obtained by the following formula:

(0.5) G(z) = lim
t→0+

ϕt(z)− z
t

.

Remark 0.5. In some papers (e.g., in [ERS] and [RS1]), the infinitesimal generator
is defined as the solution of the equation

∂Φ

∂t
+G ◦ Φ = O ,

that is with a change of sign with respect to our definition. This should be kept in
mind when reading the literature on this subject.

Somewhat surprisingly, in 2008 Elin, Reich and Shoikhet [ERS] discovered a
Julia’s lemma for infinitesimal generators, just assuming that the radial limit of the
generator at a point p ∈ ∂Bn vanishes (roughly speaking, this means that p is a
boundary fixed point for the associated semigroup):
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Theorem 0.6. ([ERS, Theorem p. 403]) Let G:Bn → Cn be the infinitesimal
generator on Bn of a one-parameter semigroup Φ = {ϕt}, and let p ∈ ∂Bn be such
that

(0.6) lim
t→1−

G(tp) = O .

Then the following assertions are equivalent:
(I) we have

α = lim inf
t→1−

Re
〈G(tp), p〉
t− 1

< +∞ ;

(II) we have

β = 2 sup
z∈Bn

Re

[
〈G(z), z〉
1− ‖z‖2

− 〈G(z), p〉
1− 〈z, p〉

]
< +∞ ;

(III) there exists γ ∈ R such that for all z ∈ Bn we have

|1− 〈ϕt(z), p〉|2

1− ‖ϕt(z)‖2
≤ eγt |1− 〈z, p〉|

2

1− ‖z‖2
.

Furthermore, if any of these assertions holds then α = β = inf γ and we also have

(0.7) lim
t→1−

〈G(tp), p〉
t− 1

= β .

If (0.6) and any (and hence all) of the equivalent conditions (I)–(III) holds we
say that p ∈ ∂Bn is a boundary regular null point of G with dilation β ∈ R.

This result strongly suggests that one should try and prove a Julia-Wolff-Cara-
théodory theorem for infinitesimal generators along the line of Rudin’s Theorem 0.4.
This has been partially achieved by Bracci and Shoikhet [BS], who proved the
following

Theorem 0.7. ([BS]) Let G:Bn → Cn be the infinitesimal generator on Bn of a
one-parameter semigroup, and let p ∈ ∂Bn. Assume that

(0.8)
〈G(z), p〉
〈z, p〉 − 1

is K-bounded at p

and

(0.9)
G(z)− 〈G(z), p〉p

(〈z, p〉 − 1)1/2
is K-bounded at p.

Then p is a boundary regular null point for G. Furthermore, if β is the dilation
of G at p then

(i) the function 〈G(z), p〉
/

(〈z, p〉−1) (is K-bounded and) has restricted K-limit β
at p;

(ii) if v is a vector orthogonal to p, the function 〈G(z), v〉/(〈z, p〉 − 1)1/2 is K-
bounded at p;

(iii) the function 〈dGz(p), p〉 is K-bounded and has restricted K-limit β at p;
(iv) if v is a vector orthogonal to p, the function (〈z, p〉 − 1)1/2〈dGz(p), v〉 is K-

bounded at p;
(v) if v is a vector orthogonal to p, the function 〈dGz(v), p〉

/
(〈z, p〉 − 1)1/2 is

K-bounded at p.
(vi) if v1 and v2 are vectors orthogonal to p the function 〈dGz(v1), v2〉 is K-

bounded at p.
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Remark 0.8. In the context of holomorphic maps, conditions (0.8) and (0.9) are a
consequence of (the equivalent of) condition (I) in Theorem 0.6, and indeed they
appear as part of Theorem 0.4.(i) and (ii); however, the proof in that setting uses
in an essential way the fact that there we are dealing with holomorphic self-maps
of the ball. On the other hand, in our context, (0.9) is not a consequence of
Theorem 0.6.(I), as Example 1.2 shows, and (0.8) too seems to be stronger than
Theorem 0.6.(I); see also similar comments in [BS, Section 4.1]. Thus we have
to assume (0.8) and (0.9) as separate hypotheses. Furthermore, Example 1.2 also
shows that the exponent 1/2 might not necessarily be the right one to consider in
the setting of infinitesimal generators.

Remark 0.9. The assertions in Theorem 0.7.(i), (iii) and (v) follow just assuming
(0.8) and that G(tp)→ O as t→ 1− (see [BS, Proposition 4.1]).

Remark 0.10. The assertions in Theorem 0.7 (and in Theorem 0.12 below) have
been numbered so as to reflect the similarities with the assertions in Theorem 0.4.
To see this, first of all notice that a boundary regular null point of G is a boundary
fixed point of the associated semigroup {ϕt}. So in any comparison we must take
(m = n and) q = p in Theorem 0.4; in particular, the analogies between assertions
(iii) and (v) in the two statements are obvious. Furthermore we can write

1− 〈ϕt(z), p〉
1− 〈z, p〉

=

〈
ϕt(z)− p, p

〉
〈z, p〉 − 1

=

〈
ϕt(z)− z, p

〉
〈z, p〉 − 1

+ 1 ,

and thus recalling (0.5) it is clear that Theorem 0.7.(i) is the analogue of Theo-
rem 0.4.(i). Moreover, if {v2, . . . , vn} is an orthornormal basis of the vector space
orthogonal to p we can write

G(z)−
〈
G(z), p

〉
p =

n∑
j=2

〈
G(z), vj

〉
vj ;

therefore

d(G− 〈G, p〉p)z(·) =

n∑
j=2

〈
dGz(·), vj

〉
vj

and the analogies between Theorem 0.4.(ii), (iv) and (vi) and the corresponding
statements in Theorem 0.7 become evident.

What is missing in Theorem 0.7 to obtain a complete analogue of Theorem 0.4 is
statements about restricted K-limits in cases (ii), (iv) and (v); the aim of this paper
is exactly to provide those statements. It turns out that there is an obstruction,
parallel to the one telling apartK-limits and restrictedK-limits: as better described
in Section 1, the curves one would like to use for obtaining the exponent 1/2 in
the statements are restricted but not special, in the sense that the limit in (0.3) is
a strictly positive (though finite) number. We are thus led to consider exponents
γ < 1/2: this is not just a technical problem, but an inevitable feature of the theory,
and in this way we actually widen the applicability of our results, as Example 1.2
shows.

Our first main theorem then is:
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Theorem 0.11. Let G:Bn → Cn be an infinitesimal generator on Bn of a one-
parameter semigroup, and let p ∈ ∂Bn. Assume that

〈G(z), p〉
〈z, p〉 − 1

and
G(z)− 〈G(z), p〉p

(〈z, p〉 − 1)γ

are K-bounded at p for some 0 < γ < 1/2. Then p ∈ ∂Bn is a boundary regular
null point for G. Furthermore, if β is the dilation of G at p then:

(i) the function 〈G(z), p〉
/

(〈z, p〉−1) (is K-bounded and) has restricted K-limit β
at p;

(ii) if v is a vector orthogonal to p, the function 〈G(z), v〉/(〈z, p〉 − 1)γ is K-
bounded and has restricted K-limit 0 at p;

(iii) the function 〈dGz(p), p〉 is K-bounded and has restricted K-limit β at p;
(iv) if v is a vector orthogonal to p, the function (〈z, p〉 − 1)1−γ〈dGz(p), v〉 is

K-bounded and has restricted K-limit 0 at p;
(v) if v is a vector orthogonal to p, the function 〈dGz(v), p〉

/
(〈z, p〉 − 1)γ is

K-bounded and has restricted K-limit 0 at p.
(vi) if v1 and v2 are vectors orthogonal to p then (〈z, p〉 − 1)1/2−γ〈dGz(v1), v2〉 is

K-bounded at p.

An exact analogue of Theorem 0.4 would be with γ = 1/2; we can obtain such a
statement by assuming a slightly stronger hypothesis on the infinitesimal generator.
Under the assumptions of Theorem 0.7 we know that

(0.10)

〈
G
(
σ(t)

)
, p
〉

〈σ(t), p〉 − 1
= β + o(1)

as t → 1− for any special restricted p-curve σ: [0, 1) → Bn. Following ideas intro-
duced in [ESY], [EKRS] and [EJ] in the context of the unit disk, we shall say that
p is a Hölder boundary null point if there is α > 0 such that

(0.11)

〈
G
(
σ(t)

)
, p
〉

〈σ(t), p〉 − 1
= β + o

(
(1− t)α

)
for any special restricted p-curve σ: [0, 1) → Bn such that 〈σ(t), p〉 ≡ t. Then our
second main theorem is:

Theorem 0.12. Let G:Bn → Cn be an infinitesimal generator on Bn of a one-
parameter semigroup, and let p ∈ ∂Bn. Assume that

〈G(z), p〉
〈z, p〉 − 1

and
G(z)− 〈G(z), p〉p

(〈z, p〉 − 1)1/2

areK-bounded at p, and that p is a Hölder boundary null point. Then the statement
of Theorem 0.11 holds with γ = 1/2.

We end this paper giving examples of infinitesimal generators with a Hölder
boundary null point and satisfying the hypotheses of Theorem 0.12.

Acknowledgments. We gratefully thank Filippo Bracci for several useful discussions
about the construction of Example 1.2, and David Shoikhet for pointing out to us
references [ESY], [EKRS] and [EJ].
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1. Proofs

This section is devoted to the proofs of Theorem 0.11 and Theorem 0.12.

Proof of Theorem 0.11 . Our hypotheses ensure that limt→1− G(tp) = O and there-
fore, thanks to Theorem 0.6 we have that p is a boundary regular null point for G.
Let β ∈ R be the dilation of G at p.

(i) This follows immediately from our hypotheses, by Theorems 0.3 and 0.6.

(ii) If v is orthogonal to p, the K-boundedness of 〈G(z), v〉/(〈z, p〉 − 1)γ follows
immediately from that of

(
G(z) − 〈G(z), p〉p

)
/(〈z, p〉 − 1)γ . Analogously, to prove

that the restricted K-limit at p is zero, it suffices to prove

(1.1) K ′-lim
z→p

G(z)− 〈G(z), p〉p
(〈z, p〉 − 1)γ

= 0 .

Without loss of generality, we can assume p = e1, and we write z = (z1, z
′) with

z′ = (z2, . . . , zn) for points in Cn. In particular, we can replace G(z) − 〈G(z), p〉p
by G(z)′ = (G2(z), . . . , Gn(z)) in the statement we would like to prove, and by
Theorem 0.3 to get the assertion it suffices to show that

(1.2) lim
t→1−

Gj(te1)

(t− 1)γ
= 0

for all j = 2, . . . , n.
Since G is an infinitesimal generator with boundary regular null point e1 having

dilation β ∈ R, Theorem 0.6 implies that

(1.3) Re

[〈
G(z), z

〉
1− ‖z‖2

− G1(z)

1− z1

]
≤ β

2

for any z ∈ Bn.
Given j ∈ {2, . . . , n}, fix 0 < ε < 1 and θ ∈ R; for t ∈ (0, 1), set

zt = te1 + e−iθε(1− t)1−γej ∈ Bn .

In particular, t 7→ zt is a special restricted e1-curve, and we have

1− ‖zt‖2 = (1− t)(1 + t− ε2(1− t)1−2γ) .

Now, (1.3) evaluated in zt becomes

Re

[
tG1(zt) + eiθε(1− t)1−γGj(zt)

1− ‖zt‖2
− G1(zt)

1− 〈zt, e1〉

]
≤ β

2
.

Therefore

Re

[
eiθε(1− t)1−γGj(zt)

1− ‖zt‖2

]
≤ β

2
+ Re

[
G1(zt)

1− 〈zt, e1〉

]
− tRe

[
G1(zt)

1− ‖zt‖2

]
=
β

2
+ Re

[
G1(zt)

1− 〈zt, e1〉

](
1− t(1− 〈zt, e1〉)

1− ‖zt‖2

)
=
β

2
+ Re

[
G1(zt)

1− 〈zt, e1〉

](
1− t

1 + t− ε2(1− t)1−2γ

)
.
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Furthermore

Re

[
eiθε(1− t)1−γGj(zt)

1− ‖zt‖2

]
=
ε(1− t)1−γ(1− 〈zt, e1〉)γ

1− ‖zt‖2
Re[eiθGj(zt)]

(1− 〈zt, e1〉)γ

=
ε

1 + t− ε2(1− t)1−2γ

Re[eiθGj(zt)]

(1− 〈zt, e1〉)γ
.

Recalling Theorem 0.7, and in particular (0.10), we get

Re[eiθGj(zt)]

(1− 〈zt, e1〉)γ

≤
(
β

2
+ Re

[
G1(zt)

1− 〈zt, e1〉

](
1− t

1 + t− ε2(1− t)1−2γ

))
1 + t− ε2(1− t)1−2γ

ε

=
β

2
· 1 + t− ε2(1− t)1−2γ

ε
+ Re

[
G1(zt)

1− 〈zt, e1〉

](
1 + t− ε2(1− t)1−2γ

ε
− t

ε

)
=
β

2
· 1 + t− ε2(1− t)1−2γ

ε
+
(
−β + o(1)

)(1− ε2(1− t)1−2γ

ε

)
=
β

2

ε2(1− t)1−2γ + t− 1

ε
+ o(1) .

Letting t→ 1− we obtain

lim sup
t→1−

Re[eiθGj(zt)]

(1− 〈zt, e1〉)γ
≤ 0

for all ε > 0 and θ ∈ R. Now letting ε→ 0+ we find

lim sup
t→1−

Re[eiθGj(te1)]

(1− t)γ
≤ 0

for all θ ∈ R, and this is possible if and only if

lim
t→1−

Gj(te1)

(1− t)γ
= 0 ,

and (1.2) follows.

(iii) The proof is analogous to the one given in [BS]; we recall it here for the sake
of completeness.

Without loss of generality, we can assume p = e1. Let M ′ > M > 1 and
set δ := 1

3 ( 1
M −

1
M ′ ). Thanks to [R, Lemma 8.5.5], for any z ∈ K(e1,M) and

(λ, u′) ∈ C × Cn−1 with |λ| ≤ δ|z1 − 1| and ‖u′‖ ≤ δ|z1 − 1|1/2, it follows that
(z1 + λ, z′ + u′) ∈ K(e1,M

′).
Now, fix z ∈ K(e1,M) and let r = r(z) := δ|z1 − 1|. By Cauchy’s formula, we

have

〈dGz(e1), e1〉 =
1

2πi

∫
|ζ|=r

〈G(z1 + ζ, z′), e1〉
ζ2

dζ

=
1

2π

∫ π

−π

〈G(z1 + reiθ, z′), e1〉
z1 + reiθ − 1

z1 + reiθ − 1

reiθ
dθ .
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The first factor in the integral is bounded because (z1 + reiθ, z′) ∈ K(e1,M
′);

furthermore, we also have |(z1 + reiθ − 1)/reiθ| ≤ 1 + 1/δ, and thus we are done.
To prove that the restricted K-limit at p is β, by Theorem 0.3 it suffices to prove

that
lim
t→1−

〈dGte1(e1), e1〉 = β.

Thanks to [BCD, Theorem 0.4], we have that limt→1−
d
dt (G1(te1)) = β, and then

we are done, because d
dt (G1(te1)) = 〈dGte1(e1), e1〉.

(iv) Without loss of generality we can assume p = e1 and v = e2, so that the
quotient we would like to study is

(z1 − 1)1−γ ∂G2

∂z1
(z) .

The proof of the K-boundedness is again an application of the Cauchy formula. As
before, let M ′ > M > 1 and set δ := 1

3 ( 1
M −

1
M ′ ). Thanks to [R, Lemma 8.5.5], for

any z ∈ K(e1,M) and (λ, u′) ∈ C×Cn−1 with |λ| ≤ δ|z1−1| and ‖u′‖ ≤ δ|z1−1|1/2,
we have (z1 + λ, z′ + u′) ∈ K(e1,M

′).
Now, fix z ∈ K(e1,M) and let r = r(z) := δ|z1 − 1|. By Cauchy’s formula, we

have

|z1 − 1|1−γ ∂G2

∂z1
(z) =

|z1 − 1|1−γ

2πi

∫
|ζ|=r

G2(z1 + ζ, z′)

ζ2
dζ

=
1

2πδ

∫ π

−π

G2(z1 + reiθ, z′)

|z1 + reiθ − 1|γ

∣∣∣∣z1 + reiθ − 1

z1 − 1

∣∣∣∣γ |z1 − 1|
|z1 − 1|eiθ

dθ .

The choice of r ensures that (z1 + ζ, z′) ∈ K(e1,M
′); thus the first factor in the

integral is bounded, and, since an easy computation shows that |z1+reiθ−1|
|z1−1| ≤ 1 + δ,

we are done.
To prove that the restricted K-limit at p vanishes, thanks to Theorem 0.3, it

suffices to show that

(1.4) lim
t→1−

(t− 1)1−γ ∂G2

∂z1
(te1) = 0 .

Indeed, choose ε ∈ (0, 1), and for any t ∈ (0, 1), let σt: ε∆→ Bn be defined by

σt(ζ) = (t+ ζ(1− t))e1 .

Then σt(0) = te1 and σ′t(0) = (1− t)e1. Moreover, for any ζ ∈ ε∆ we have

|1− t− ζ(1− t)|
1− |t+ ζ(1− t)|

=
(1− t)|1− ζ|

1− |1− (1− t)(1− ζ)|
≤ 1 + ε

1− ε
.

Therefore σt(ε∆) ⊂ K(e1,M) for all M > 1+ε
1−ε . In particular, for all θ ∈ R, the

e1-curve t 7→ σt(εe
iθ) is special and M -restricted. Now,

(t− 1)1−γ ∂G2

∂z1
(te1)

=
1

2π

∫ π

−π

G2(t+ ε(1− t)eiθ, O′)
(t+ ε(1− t)eiθ − 1)γ

(t+ ε(1− t)eiθ − 1)γ

ε(1− t)eiθ
(t− 1)1−γdθ

=
−1

2π

∫ π

−π

G2(t+ ε(1− t)eiθ, O′)
(t+ ε(1− t)eiθ − 1)γ

(1− εeiθ)γ

εeiθ
dθ .
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The second factor of the integrand is bounded, and the first factor converges punc-
tually and boundedly to 0 as t→ 1, thanks to (ii); therefore (1.4) follows from the
dominated convergence theorem.

(v) Without loss of generality we can assume p = e1 and v = e2, so that the
quotient we would like to study is

1

(z1 − 1)γ
∂G1

∂z2
(z) .

The proof of the K-boundedness is yet another application of the Cauchy formula.
Let M ′ > M > 1; set δ := 1

3 ( 1
M −

1
M ′ ), and r = r(z) := δ|z1 − 1|1−γ ; [R, Lemma

8.5.5] ensures that if z ∈ K(e1,M) then z+ reiθe2 ∈ K(e1,M
′) for all θ ∈ R. Then

Cauchy’s formula yields

1

|z1 − 1|γ
∂G1

∂z2
(z) =

1

2πi|z1 − 1|γ

∫
|ζ|=r

G1(z + ζe2)

ζ2
dζ

=
1

2πδ

∫ π

−π

G1(z + reiθe2)

|z1 − 1|eiθ
dθ ,

and the K-boundness follows.
Now we prove that the restricted K-limit at p vanishes. Let Φ:B2 → Bn be

given by Φ(ζ, η) = ζe1 + ηe2, and put H = Ξ ◦ Φ, where

Ξ(z) =

〈
G(z), z

〉
1− ‖z‖2

− G1(z)

1− z1
.

Hence

H(ζ, η) =
G1(ζ, η, 0, . . . , 0)ζ̄ +G2(ζ, η, 0, . . . , 0)η̄

1− |ζ|2 − |η|2
− G1(ζ, η, 0, . . . , 0)

1− ζ
.

Now we expand H in power series with respect to η:

(1.5) H(ζ, η) = H(ζ, 0) +
∂H

∂η
(ζ, 0)η +

∂H

∂η̄
(ζ, 0)η̄ +O(|η|2) .

We have

H(ζ, 0) = G1(ζ,O′)

[
ζ̄

1− |ζ|2
− 1

1− ζ

]
= −G1(ζ,O′)

1

1− |ζ|2
1− ζ̄
1− ζ

;

∂H

∂η
(ζ, 0) =

∂G1

∂z2
(ζ,O′)

[
ζ̄

1− |ζ|2
− 1

1− ζ

]
= −∂G1

∂z2
(ζ,O′)

1

1− |ζ|2
1− ζ̄
1− ζ

;

and
∂H

∂η̄
(ζ, 0) =

G2(ζ,O′)

1− |ζ|2
.

Recalling (1.3) we get

β

2
≥ ReH(ζ, η) = Re

[
H(ζ, 0) +

∂H

∂η
(ζ, 0)η +

∂H

∂η̄
(ζ, 0)η̄ +O(|η|2)

]
=

1

1− |ζ|2
Re

[
−
(
G1(ζ,O′) + η

∂G1

∂z2
(ζ,O′)

)
|1− ζ|2

(1− ζ)2

+G2(ζ,O′)η̄ +O
(
(1− |ζ|2)|η|2

)]
,
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and thus

(1.6)

−β
2

1− |ζ|2

|1− ζ|2
≤ Re

[
G1(ζ,O′)

(1− ζ)2
+

η

(1− ζ)2

∂G1

∂z2
(ζ,O′)

− η̄G2(ζ,O′)

|1− ζ|2
+O

(
1− |ζ|2

|1− ζ|2
|η|2
)]

.

Fix c > 0 and for t ∈ [0, 1) put

ζt = t+ ic(1− t) .
In particular,

1− ζt = (1− t)(1− ic) , |1− ζt| = (1− t)(1+ c2)1/2 and
1

1− ζt
=

1

1− t
1 + ic

1 + c2
.

It is easy to check that ζt ∈ ∆ if 1− t < 2/(1 + c2), and in this case

1− |ζt|2 = 1− t2 − c2(1− t)2 = (1− t)
(
1 + t− (1− t)c2

)
< 2(1− t) .

Moreover, if 1− t < 1/(1+c2) we have 1−|ζt|2 > 1− t, and thus we can find ηt ∈ C
such that

2(1− t) > 1− |ζt|2 > |ηt|2 > 1− t ;

in particular, (ζt, ηt) ∈ B2, and we choose the argument of ηt so that

ηt
(1− ζt)2

∂G1

∂z2
(ζt, O

′) = −
∣∣∣∣ ηt
(1− ζt)2

∂G1

∂z2
(ζt, O

′)

∣∣∣∣ ∈ R− .

Now we compute (1.6) in (ζt, ηt). Multiplying by |1 − ζt|2−γ and dividing by |ηt|
we get ∣∣∣∣ 1

(1− ζt)γ
∂G1

∂z2
(ζt, O

′)

∣∣∣∣ ≤ Re

[
G1(ζt, O

′)

1− ζt
|1− ζt|2−γ

(1− ζt)|ηt|

]
+
|G2(ζt, O

′)|
|1− ζt|γ

+
β

2

1− |ζt|2

|1− ζt|γ |ηt|
+O

(
1− |ζt|2

|1− ζt|γ
|ηt|
)
.

Applying (0.10) we obtain∣∣∣∣ 1

(1− ζt)γ
∂G1

∂z2
(ζt, O

′)

∣∣∣∣
≤ |1− ζt|

2−γ

|ηt|
Re

[
−β + o(1)

1− t
1 + ic

1 + c2

]
+
|G2(ζt, O

′)|
|1− ζt|γ

+
β

2

1− |ζt|2

|1− ζt|γ |ηt|
+O

(
1− |ζt|2

|1− ζt|γ
|ηt|
)

≤ (1− t)2−γ(1 + c2)1−γ/2

(1− t)1/2

−β + o(1)

(1− t)(1 + c2)
+
|G2(ζt, O

′)|
|1− ζt|γ

+
β

2

1− |ζt|2

(1− t)γ(1 + c2)γ/2|ηt|
+O

(
1− |ζt|2

|1− ζt|γ
|ηt|
)

≤ (−β + o(1))(1− t)1/2−γ

(1 + c2)γ/2
+O

(
2(1− t)

(1− t)γ(1 + c2)γ/2

√
2(1− t)1/2

)
+
|G2(ζt, O

′)|
|1− ζt|γ

+
β

2

2(1− t)
(1− t)γ(1 + c2)γ/2(1− t)1/2

≤ o
(
(1− t)1/2−γ)+

|G2(ζt, O
′)|

|1− ζt|γ
+O

(
(1− t)3/2−γ) .
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Since t 7→ ζte1 is a special restricted curve we can apply (ii) obtaining

lim sup
t→1−

∣∣∣∣ 1

(1− ζt)γ
∂G1

∂z2
(ζt, O

′)

∣∣∣∣ ≤ 0 .

So we get

lim
t→1−

1

(ζt − 1)γ
∂G1

∂z2
(ζt, O

′) = 0

and the assertion follows from Theorem 0.3.

(vi) Without loss of generality we can assume p = e1, v1 = e2, and v2 = e3, so
that the function we would like to study is

(z1 − 1)
1
2−γ

∂G3

∂z2
(z) .

We argue as usual.
Let M ′ > M > 1 and set δ := 1

3 ( 1
M −

1
M ′ ). Thanks to [R, Lemma 8.5.5], for

any z ∈ K(e1,M) and u′ ∈ Cn−1 with ‖u′‖ ≤ δ|z1 − 1|1/2 we have (z1, z
′ + u′) ∈

K(e1,M
′).

Now, fix z ∈ K(e1,M) and let r = r(z) := δ|z1 − 1|1/2. By Cauchy’s formula,
we have

|z1 − 1| 12−γ ∂G3

∂z2
(z) =

|z1 − 1| 12−γ

2πi

∫
|ζ|=r

G3(z + ζe2)

ζ2
dζ

=
1

2πδ

∫ π

−π

G3(z + reiθe2)

|z1 − 1|γeiθ
dθ .

The choice of r ensures that z + reiθe2 ∈ K(e1,M
′), and the assertion follows

from (ii). �

An accurate examination of the proof of the previous theorem reveals that the
main point is the proof of part (ii). As soon as the statement of Theorem 0.11.(ii)
holds for some 0 < γ ≤ 1/2 (with γ = 1/2 included) then the rest of the Theorem
follows with the same γ (again, γ = 1/2 included). The proof of Theorem 0.11.(ii)
we presented however breaks down for γ = 1/2 because the curve

(0, 1) 3 t 7→ zt = te1 + e−iθε(1− t)1−γej ∈ Bn

is not special if γ = 1/2; the limit (0.3) is a strictly positive (though finite) number.

Remark 1.1. Even assuming that the hypotheses of Theorem 0.11 are satisfied with
γ̃ ≥ 1/2, as explained above with this proof we can only obtain the thesis for all
exponents γ < 1/2.

Furthermore the exponent 1/2, which is the natural one to consider in the setting
of self-maps, it is not necessarily the right one for infinitesimal generators, as next
example shows.

Example 1.2. Let G:B2 → C2 be defined as

G(z, w) = (−z(1− z),−w(1− z)−α) ,
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with 0 < α < 1/2. It is easy to check that G is an infinitesimal generator, since it
vanishes at the origin and Re〈G(z, w), (z, w)〉 ≤ 0 for every (z, w) ∈ B2. Moreover,
G satisfies the hypotheses of Theorem 0.11 with p = e1 and γ = 1/2 − α, but
G2(z, w)/(z − 1)β is not K-bounded for any β > 1/2− α. Indeed, given c ∈ (0, 1),

all points of the form (t, c
√

1− t2), with t ∈ [0, 1), belong to a Korányi region

of vertex e1, whereas G2(t, c
√

1− t2)/(t− 1)β is not bounded as t tends to 1, for
1/2−α−β < 0. Furthermore G2(z, w)/(z−1)β does not even have a restricted K-
limit at e1. In fact, choosing ρ > 1 such that β > ρ/2−α, the curve σρ: [0, 1)→ B2

defined by σρ(t) = (t, c(1 − t2)ρ/2), with c ∈ (0, 1), is a special restricted e1-curve
such that G2(σρ(t))/(t − 1)β diverges as t tends to 1. This example can be easily
generalized to any dimension.

On the other hand, we can get the statement with exponent γ = 1/2 by using
the notion of Hölder boundary null point, as follows:

Proof of Theorem 0.12 . As explained above, it suffices to prove that

(1.7) lim
t→1−

Gj(te1)

(t− 1)1/2
= 0

for all j = 2, . . . , n.

Let α > 0 be given by the definition of Hölder boundary null point; we can
clearly assume that α < 1. Given j ∈ {2, . . . , n}, fix 0 < ε < 1 and θ ∈ R; for
t ∈ (0, 1), set

zt = te1 + e−iθε(1− t)1/2+αej ∈ Bn .

In particular, t 7→ zt is a special restricted e1-curve such that 〈zt, e1〉 ≡ t, and we
have

1− ‖zt‖2 = (1− t)(1 + t− ε2(1− t)2α) .

Now, (1.3) evaluated in zt becomes

Re

[
tG1(zt) + eiθε(1− t)1/2+αGj(zt)

1− ‖zt‖2
− G1(zt)

1− 〈zt, e1〉

]
≤ β

2
.

Therefore

Re

[
eiθε(1− t)1/2+αGj(zt)

1− ‖zt‖2

]
≤ β

2
+ Re

[
G1(zt)

1− 〈zt, e1〉

](
1− t

1 + t− ε2(1− t)2α

)
.

Furthermore

Re

[
eiθε(1− t)1/2+αGj(zt)

1− ‖zt‖2

]
=
ε(1− t)1/2+α(1− 〈zt, e1〉)1/2

1− ‖zt‖2
Re[eiθGj(zt)]

(1− 〈zt, e1〉)1/2

=
ε(1− t)1+α

1− t2 − ε2(1− t)1+2α

Re[eiθGj(zt)]

(1− 〈zt, e1〉)1/2

=
ε(1− t)α

1 + t− ε2(1− t)2α

Re[eiθGj(zt)]

(1− 〈zt, e1〉)1/2
.
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Using (0.11) we then get

Re[eiθGj(zt)]

(1− 〈zt, e1〉)1/2

≤
(
β

2
+ Re

[
G1(zt)

1− 〈zt, e1〉

](
1− t

1 + t− ε2(1− t)2α

))
1 + t− ε2(1− t)2α

ε(1− t)α

=
β

2
· 1 + t− ε2(1− t)2α

ε(1− t)α
+ Re

[
G1(zt)

1− 〈zt, e1〉

](
1 + t− ε2(1− t)2α

ε(1− t)α
− t

ε(1− t)α

)
=
β

2
· 1 + t− ε2(1− t)2α

ε(1− t)α
+
(
−β + o

(
(1− t)α

))(1− ε2(1− t)2α

ε(1− t)α

)
=
β

2

ε2(1− t)α − (1− t)1−α

ε
+ o(1) .

Letting t→ 1− we obtain

lim sup
t→1−

Re[eiθGj(zt)]

(1− 〈zt, e1〉)1/2
≤ 0

for all ε > 0 and θ ∈ R. Now letting ε→ 0+ we find

lim sup
t→1−

Re[eiθGj(te1)]

(1− t)1/2
≤ 0

for all θ ∈ R, and this is possible if and only if

lim
t→1−

Gj(te1)

(1− t)1/2
= 0 ,

and we are done. �

We end this paper giving examples of infinitesimal generators having a Hölder
boundary null point.

Example 1.3. Let p = e1, and G:Bn → Cn be an infinitesimal generator with
K ′-lim
z→e1

G(z) = O. Setting G1 = 〈G, e1〉, condition (0.11) can be written as

G1

(
σ(t)

)
= β(t− 1) + o

(
(1− t)1+α

)
for any special e1-curve σ: [0, 1)→ Bn such that 〈σ(t), e1〉 ≡ t. In particular, if G1

is of class C1+α′ at e1 for some α′ > α then (0.11) is satisfied, and e1 is a Hölder
boundary null point for G.

To give an explicit example, let us recall that if F :Bn → Bn is a holomorphic
self-map of Bn then G = id−F is an infinitesimal generator (see, e.g., [RS2, The-
orem 6.16] and [S, Corollary 3.3.1]). Recalling Theorem 0.4, to get an example of
infinitesimal generator having e1 as Hölder boundary null point and satisfying the
hypotheses of Theorem 0.11 it thus suffices to find F having K-limit e1 at e1, with
lim inf
z→e1

(1− ‖F (z)‖)/(1− ‖z‖) < +∞ and such that

F1

(
σ(t)

)
= t+ β(1− t) + o

(
(1− t)1+α

)
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for any special e1-curve σ: [0, 1) → Bn such that 〈σ(t), e1〉 ≡ t. For example, we
can just take maps of the form F (z) = f(z1)e1 with f given by

(1.8) f(ζ) = ζ + β(1− ζ) + c(1− ζ)1+α′ = 1− a(1− ζ) + c(1− ζ)1+α′ ;

thus we just need to choose a = 1 − β > 0 and c > 0 so that f(∆) ⊆ ∆. Put

w = 1− ζ; then |f(ζ)| < 1 if and only if |1− aw + cw1+α′ | < 1 if and only if

(1.9) a2|w|2 + c2|w|2(1+α′) + 2cRe(w1+α′) < 2aRew + 2ac|w|2 Re(wα
′
) .

First of all, write w = |w|eiθ, with |θ| < π/2. Then

Re(wα
′
) = |w|α

′
cos(α′θ) ≥ εα′ |w|α

′
,

where εα′ = cos(α′π/2) > 0. Since |w| < 2, it follows that taking c < 21−α′εα′a we
get

(1.10) c2|w|2(1+α′) < 2α
′
c2|w|2+α′ < 2acεα′ |w|2+α′ ≤ 2ac|w|2 Re(wα

′
) .

Now, if |θ| ≥ π/2(1 + α′) then Re(w1+α′) ≤ 0. Recalling that |1 − w| < 1 implies
|w|2 < 2 Re(w), in this case we get

(1.11) a2|w|2 + 2cRe(w1+α′) < 2a2 Rew < 2aRew

as soon as a < 1.
If instead |θ| < π/2(1 + α′), we have | Imw| < Cα′ Rew, where we have put

Cα′ = tan
(
π/2(1 + α′)

)
, and thus |w| < Dα′ Rew, where Dα′ =

√
1 + C2

α′ . Hence

(1.12) a2|w|2 + 2cRe(w1+α′) <
[
2a2 + 2cD1+α′

α′ (Rew)α
′]

Rew < 2aRew

as soon as a2 + 2α
′
D1+α′

α′ c < a. Since we already requested that c < 21−α′εα′a, it

suffices to have a < (1 + 2εα′D
1+α′

α′ )−1.
Putting together (1.9), (1.10), (1.11) and (1.12) we finally obtain that, taking

a < (1 + 2εα′D
1+α′

α′ )−1 and c < 21−α′εα′a, the function f given by (1.8) maps ∆
into itself, as we wanted.

References

[A1] M. Abate, Iteration theory of holomorphic maps on taut manifolds, Mediterranean Press,
Rende, 1989.
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[Č] E.M. Čirka, The Lindelöf and Fatou theorems in Cn
, Math. USSR-Sb. 21 (1973), 619–

641.
[EKRS] M. Elin, D. Khavinson, S. Reich, D. Shoikhet, Linearization models for parabolic dynam-

ical systems via Abel’s functional equation, Ann. Acad. Sci. Fen. 35 (2010), 1–34.

[EJ] M. Elin, F. Jacobzon, Parabolic type semigroups: asymptotics and order of contact (2013),
Preprint, arXiv:1309.4002.

[ERS] M. Elin, S. Reich, D. Shoikhet, A Julia-Carathéodory theorem for hyperbolically monotone
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[K-S] A. Korányi, E.M. Stein, Fatou’s theorem for generalized half-planes, Ann. Scuola Norm.

Sup. Pisa 22 (1968), 107–112.
[L-V] E. Landau, G. Valiron, A deduction from Schwarz’s lemma, J. London Math. Soc. 4

(1929), 162–163.
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