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Abstract

We prove that a backward orbit with bounded Kobayashi step for a hyperbolic, parabolic or strongly
elliptic holomorphic self-map of a bounded strongly convex C? domain in C4 necessarily converges to a
repelling or parabolic boundary fixed point, generalizing previous results obtained by Poggi-Corradini in
the unit disk and by Ostapyuk in the unit ball of A,
© 2011 Elsevier Inc. All rights reserved.
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0. Introduction

The theory of non-invertible discrete dynamical systems (that is, the iteration theory of a non-
invertible self-map f : X — X of a set X) is usually devoted to the study of the behavior of
forward orbits of the system (that is, of sequences of the form { f"(x)},en, where x € X and
f" denotes the composition of f with itself n times). In this paper we shall instead study the
behavior of backward orbits, that is of sequences {x,},en such that f(x,+1) =x, foralln € N,
in the context of holomorphic self-maps of bounded strongly convex domains.

Backward orbits (also called backward iteration sequences) for holomorphic self-maps of the
unit disk A C C have been studied by Poggi-Corradini in [11]. He proved that (unless f is a
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non-Euclidean rotation of A) a backward orbit must converge to a point in the boundary of A,
which is (in the sense of non-tangential limits) a repelling or parabolic fixed point of the map f.
Ostapyuk [9] generalized Poggi-Corradini’s results to backward orbits in the unit ball B¢ ¢ C?.
The aim of this paper is to extend Poggi-Corradini’s results to backward orbits in general bounded
strongly convex C2 domains in C". To do so, we shall systematically use the geometric properties
of the Kobayashi distance of strongly convex domains; and it is interesting to notice that the better
geometric understanding given by this tool (and the impossibility of using the kind of explicit
computations done in [9] for the ball) yields proofs that are both simpler and clearer than the
previous ones, even for the ball and the unit disk.

To state precisely, and put in the right context, our results, let us first describe what is known
about holomorphic discrete dynamical systems in strongly convex domain. As proved several
years ago by one of us (see [1-3]), the fundamental dichotomy for holomorphic dynamics in
complex taut manifolds is between self-maps whose sequence of iterates is compactly divergent
and self-maps whose sequence of iterates is relatively compact in the space of all holomorphic
self-maps of the manifold (endowed with the compact-open topology, which is equivalent to the
topology of pointwise convergence). In a convex domain D, it turns out that the sequence of
iterates of a holomorphic self-map f € Hol(D, D) is compactly divergent if and only if f has
no fixed points inside D; so the dichotomy is between self-maps without fixed points and maps
with fixed points.

Following the usual one-variable terminology, we shall call elliptic a holomorphic self-map of
a bounded convex domain D C C" with a not empty fixed point set. If f € Hol(D, D) is elliptic,
then the dynamics of f is concentrated along a, possibly lower-dimensional, submanifold Dy,
the limit manifold of f, in the sense that all limits of subsequences of iterates of f are given by
the composition of a holomorphic retraction of D onto Dy with an automorphism of Dy. Clearly,
Dy contains the fixed point set of f, but in general can be strictly larger; furthermore, f|p, is
an automorphism of Dy, generating a group whose closure is the product of a torus with a finite
cyclic group (see [3]). In particular, backward orbits in Dy are just forward orbits for the inverse
of flp,, and so their behavior is known; for this reason here we shall instead study backward
orbits for maps, called strongly elliptic, whose limit manifold reduces to a point, necessarily
fixed. In particular, f is strongly elliptic if and only if the sequence of iterates of any x € D
converges to a point p € D, which is thus an attracting fixed point.

When f € Hol(D, D) has no fixed points, and D c C? is a bounded strongly convex C?
domain, the main dynamical fact is the generalization [1] of the classical Wolff-Denjoy theorem,
saying that the sequence of iterates converges to a point T € d D, the Wolff point of f. The Wolff
point is a boundary fixed point, in the sense that f has K-limit t at t (see Section 1 for the
precise definition of K -limit, also known as admissible limit; here it just suffices to say that
the existence of the K-limit implies the existence of the non-tangential limit, and thus our f
has non-tangential limit 7 at t). Furthermore, it is possible to define the boundary dilation B
at T, which, roughly speaking, is the derivative of the normal component of f along the normal
direction to d D at 7 (and is the natural generalization of the one-variable angular derivative); and
the fact that forward orbits converge to t implies that 0 < 8; < 1. Again following the classical
one-variable terminology, we shall say that f is hyperbolic and 7 is attracting if 0 < 8, < 1; and
that f and t are parabolic if B; = 1.

Before turning our attention to backward orbits, a final remark is needed. Forward orbits al-
ways have bounded Kobayashi step, that is the Kobayashi distance kp ("' (z), f"(z)) between
two consecutive elements of the orbit is bounded by a constant independent of n (but depending
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on the orbit): indeed, kp (f"T1(z), f*(z)) < kp(f(z), z), because the Kobayashi distance kp is
weakly contracted by holomorphic maps.

Summing up, if f € Hol(D, D) is strongly elliptic, hyperbolic or parabolic, then all forward
orbits (have bounded Kobayashi step and) converge to the Wolff point T € D (for the sake of
uniformity, we are calling Wolff point the unique fixed point of a strongly elliptic map too),
which is an attracting or parabolic (possibly boundary) fixed point. Our main result states that,
analogously, backward orbits with bounded Kobayashi step for a strongly elliptic, hyperbolic
or parabolic map always converge to a repelling or parabolic boundary fixed point, where a
boundary fixed point is a point o € d D such that f has K-limit o at o, and o is repelling if the
boundary dilation B, of f at o is larger than 1.

More precisely, in Section 2 we shall prove the following

Theorem 0.1. Let D € C¢ be a bounded strongly convex C* domain. Let f € Hol(D, D) be
either hyperbolic, parabolic, or strongly elliptic, with Wolff point t € D. Let {z,} C D be a
backward orbit for f with bounded Kobayashi step. Then:

(1) the sequence {z,} converges to a repelling or parabolic boundary fixed point o € dD;
(1) if f is strongly elliptic or hyperbolic then o is repelling;
(iii) if o =1, then f is parabolic;
(iv) {zn} goes to o inside a K -region, that is, there exists M > 0 so that z,, € K ,(0, M) eventu-
ally, where p is any point in D.

See Section 1 for (preliminaries and in particular) the definition of K -region; going to the
boundary inside a K-region is the natural several variables generalization of the one-variable
notion of non-tangential approach.

To show that our theorem is not empty we must prove the existence of backward orbits with
bounded Kobayashi step. This is done in Section 3 where, slightly adapting an argument due to
Poggi-Corradini ([10]; see also [9]), we shall prove that if 0 € D \ {r} is an isolated repelling
boundary point for a self-map f € Hol(D, D) strongly elliptic, hyperbolic or parabolic, then
there always exist a backward orbit with bounded Kobayashi step converging to o.

Finally, we would like to thank Pietro Poggi-Corradini and Olena Ostapyuk for bringing
this problem to our attention, and Nuria Fagella and the Institut de Matematica, Universitat de
Barcelona, for their warm hospitality during the completion of this work.

1. Preliminaries

In this section we shall collect a few facts about the geometry of the Kobayashi distance and
the dynamics of holomorphic self-maps of bounded strongly convex domains needed in the rest
of the paper.

Let us briefly recall the definition and the main properties of the Kobayashi distance; we refer
to [2,6,7] for details and much more. Let k5 denote the Poincaré distance on the unit disk A C C.
If X is a complex manifold, the Lempert function 8x : X x X — RT of X is defined by

Sx(z,w) = inf{kA(C, n) | ¢ : A — X holomorphic, with ¢ (¢) =z and ¢ (n) = w}

for all z, w € X. The Kobayashi pseudodistance kx : X x X — RT of X is the largest pseu-
dodistance on X bounded above by §x. We say that X is (Kobayashi) hyperbolic if ky is a true
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distance — and in that case it is known that the metric topology induced by kx coincides with
the manifold topology of X (see, e.g., [2, Proposition 2.3.10]). For instance, all bounded domains
are hyperbolic (see, e.g., [2, Theorem 2.3.14]).

The main property of the Kobayashi (pseudo)distance is that it is contracted by holomorphic
maps: if f : X — Y is a holomorphic map then

VzoweX ky(f(@), f(w)) <kx(z,w).

In particular, the Kobayashi distance is invariant under biholomorphisms.

It is easy to see that the Kobayashi distance of the unit disk coincides with the Poincaré dis-
tance. Furthermore, the Kobayashi distance of the unit ball B c C? coincides with the Bergman
distance (see, e.g., [2, Corollary 2.3.6]); and the Kobayashi distance of a bounded convex domain
coincides with the Lempert function (see, e.g., [2, Proposition 2.3.44]). Moreover, the Kobayashi
distance of a bounded convex domain D is complete [2, Proposition 2.3.45], and thus for each
p € D we have that kp(p, z) - +oo if and only if z — 9 D.

A complex geodesic in a hyperbolic manifold X is a holomorphic map ¢ : A — X which is an
isometry with respect to the Kobayashi distance of A and the Kobayashi distance of X. Lempert’s
theory (see [8] and [2, Chapter 2.6]) of complex geodesics in strongly convex domains is one
of the main tools for the study of the geometric function theory of strongly convex domains.
In particular, we shall need the following facts, summarizing Lempert’s and Royden—Wong’s
theory, valid for any bounded convex domain D € C¢:

(a) [2, Theorem 2.6.19 and Corollary 2.6.30] for every pair of distinct points z, w € D there
exists a complex geodesic ¢ : A — D such that ¢(0) =z and ¢(r) = w, where 0 <r < 1 is
such that ka (0, ) = kp(z, w); furthermore, if D is strongly convex then ¢ is unique;

(b) [2, Theorem 2.6.19] a holomorphic map ¢ € Hol(A, D) is a complex geodesic if and only if
kp(@(¢1), 9(£2)) = ka (&1, &2) for a pair of distinct points {1, & € A;

(c) [2, Proposition 2.6.22] every complex geodesic ¢ € Hol(A, D) admits a left-inverse, that is
a holomorphic map p, : D — A such that p, o ¢ =ida; the map p, = ¢ o p, is then a
holomorphic retraction of D onto the image of ¢;

(d) [2, Theorem 2.6.29] if D is strongly convex of class C2, then every complex geodesics
extend continuously (actually, %-Hélder) to the boundary of A, and the image of ¢ is
transversal to 0 D;

(e) [2, Theorem 2.6.45] if D is strongly convex and of class C 2 then for every z € D and
T € 9D there is a complex geodesic ¢ € Hol(A, D) with ¢(0) = z and ¢(1) = t; and for
every pair of distinct points o, T € d D there is a complex geodesic ¢ € Hol(A, D) such that
¢(—1) =0 and ¢(1) = 7. (The statement of [2, Theorem 2.6.45] requires D of class C3, but
the proof of the existence works assuming just C> smoothness.)

Now let D @ C? be a bounded strongly convex C 2 domain, and f € Hol(D, D) a holomor-
phic self-map of D. As mentioned in the Introduction, if the set Fix(f) of fixed points of f
in D is not empty, then (see [1-3]) the sequence {f"} of iterates of f is relatively compact
in Hol(D, D), and there exists a submanifold Dy C D, the limit manifold of f, such that every
limit of a subsequence of iterates is of the form y o p, where p : D — Dg is a holomorphic
retraction, and y is a biholomorphism of Dy; furthermore, f|p, is a biholomorphism of Dy, and
Fix(f) € D.
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Definition 1.1. Let D € C¢ be a bounded strongly convex C> domain. A holomorphic map
f € Hol(D, D) is elliptic if Fix(f) # @; and strongly elliptic if its limit manifold reduces to a
point (called the Wolff point of the strongly elliptic map). We shall say that a point p € Fix(f) is
attracting if all the eigenvalues of df), have modulus less than 1.

Later on we shall need an equivalent characterization of strongly elliptic maps:

Lemma 1.1. Ler D € C¢ be a bounded strongly convex C* domain, and f € Hol(D, D). Then
the following facts are equivalent:

(1) f is strongly elliptic;
(i1) the sequence of iterates of f converges to a point p € D;
(iii) f has an attracting fixed point p € D;
(iv) there exists p € Fix(f) such that kp(p, f(z)) <kp(p, z) forall z € D\ {p}.

Proof. The equivalence of (i), (ii) and (iii) is well known, and more generally valid in taut man-
ifolds (see, e.g., [2, Corollary 2.4.2]).

Now, if f is not strongly elliptic, the limit manifold Dg has positive dimension. Being a holo-
morphic retract of D, the Kobayashi distance of Dy coincides with the restriction of Kobayashi
distance of D; hence kp(f(2), f(w)) =kp(z, w) for all z, w € Dy, because f|p, is a biholo-
morphism of Dy (and thus an isometry for the Kobayashi distance). Since Fix(f) C Dy, this
shows that (iv) implies (i).

Finally, assume that (iv) does not hold, and thus there are p € Fix(f) and zo € D \ {p}
with kp(p, f(z0)) = kp(p, z0)- Let ¢ € Hol(A, D) be a complex geodesic with ¢(0) = p and
@(r) = zp, for a suitable 0 < r < 1. Then

kp(p. f(e(r)) =kp(p,20) =ka(0,r);

since f(p) = p this implies that f o ¢ is still a complex geodesic. Since complex geodesics are
also infinitesimal isometries with respect to the Kobayashi metric (see [2, Corollary 2.6.20]), the
Kobayashi length of ¢’(0) must be equal to the Kobayashi length of (f 0 ¢)'(0) = df,(¢'(0)). In
particular, p cannot be an attracting fixed point, and thus f cannot be strongly elliptic. O

In the study of the dynamics of self-maps without fixed points, a crucial role is played by the
horospheres, a generalization (introduced in [1]) of the classical notion of horocycle. Let D € cd
be a bounded strongly convex C? domain. For every t € 8D and p € D let hep:D—R" be
given by

1 .
5 loghe p(2) = lim [kp (z, w) = kp(p, w)];

notice that the existence of the limit is a non-trivial fact (see [1, Theorem 2.6.47] or [5]). Then
the horosphere of center T € 0D, radius R > 0 and pole p € D is the set

Ep(t,R)={z€D|he () <R}

It is well known (see, again, [1,2,5]) that the horospheres with pole at the origin in the unit
disk A C C coincide with the classical horocycles, that the horospheres with pole at the origin
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in the unit ball B" C C" again coincide with the usual horospheres, and that the horospheres
in strongly convex domains are convex. Furthermore, the closure of a horosphere intersects the
boundary of D exactly in the center of the horosphere; and the shape of a horosphere near the
boundary is comparable to the shape of the horospheres in the ball, that is, they are close to
be ellipsoids. An easy observation we shall need later on is that changing the pole amounts to
multiplying the radius by a fixed constant:

Lemma 1.2. Ler D € C? be a bounded strongly convex C* domain, and t € 3 D. Then

1
Y (@) P

forall p, g € D. In particular,
VR>0 E,(t,R)=E,(t,hrp(@)R).
Proof. It suffices to write

kp(z, w) —kp(g, w) =[kp(z, w) —kp(p, w)] — [kp(g, w) —kp(p, w)],
andletw — 1. O

In a similar way we can introduce K -regions. Let D € C? be a bounded strongly convex C?
domain. The K -region K ,(t, M) of center T € 9D, amplitude M > 0 and pole p € D is the set

1
K,(t,M)= {ze D ’ iloghf,p(z)jtkp(p,z) <logM}.

It is well known (see [2,3]) that the K-regions with pole at the origin in the unit disk coincide
with the classical Stolz regions, and that the K-regions with pole at the origin in the unit ball
B™ c C" coincide with the usual Kordnyi approach regions. Furthermore, in strongly convex
domains K -regions are comparable to Stein admissible regions; and changing the pole does not
change much the K-regions, because [2, Lemma 2.7.2] for each p, g € D there is L > 0 such
that

K,(t,M/L) C K,(t, M) C K ,(t, ML) (1.1)

for every M > 0. Given t € dD, we shall say that a function F : D — C" has K-limit £ € C"
at 7 if F(z) — € as z — 1 inside any K -region centered at 7; notice that the choice of the pole
is immaterial because of (1.1). Since K -regions in strongly convex domains are comparable to
Stein admissible regions, the notion of K-limit is equivalent to Stein admissible limit, and thus
it is the right generalization to several variables of the one-dimensional notion of non-tangential
limit (in particular, the existence of a K -limit always implies the existence of a non-tangential
limit). Finally, the intersection of a horosphere (or K -region) of center t € D and pole p € D
with the image of a complex geodesic ¢ with ¢(0) = p and ¢(1) = t is the image via ¢ of
the horosphere (or K-region) of center 1 and pole O in the unit disk [2, Proposition 2.7.8 and
Lemma 2.7.16].



M. Abate, J. Raissy / Advances in Mathematics 228 (2011) 2837-2854 2843

The correct generalization of the one-variable notion of angular derivative is given by the
dilation coefficient (see [2, Section 1.2.1 and Theorem 2.7.14]):

Definition 1.2. Take f € Hol(D, D), where again D € C? is a bounded strongly convex C>

domain, and let o € 9 D. The dilation coefficient B , € (0, +00] of f ato € 9D withpole p € D
is given by

1 o
5 log B p =limint[kp(p. ) — kn(p. /()]
Furthermore, o € D is a boundary fixed point of f if f has K-limit o at o.
Since

kp(p,2) —kp(p, f(2) = kn(f(p), (@) —kp(p, f@) = —kn(p, f(P)),

the dilation coefficient cannot be zero. We also recall the following useful formulas for computing
the dilation coefficient [2, Lemma 2.7.22]:

1
5108 Bop = tli_rg}[kp(p, 9(®)) —kp(p. f(e®))]

= lim[kp(p, ¢(1) —kn(p, Py o f(p(®))] (12)

where ¢ € Hol(A, D) is a complex geodesic with ¢(0) = p and ¢(1) =0, and py, = ¢ o py, is
the holomorphic retraction associated to ¢.
When o is a boundary fixed point then the dilation coefficient does not depend on the pole:

Lemma 1.3. Let D € C¢ be a bounded strongly convex C? domain, f € Hol(D, D) and o € 3D
a boundary fixed point of f. Then By p = Bs 4 forall p, q € D.

Proof. If the dilation coefficient is infinite for all poles we are done. Assume there is p € D such
that the dilation coefficient B, , is finite. Given g € D, write

kp(q.2) —kp(q. f(2)) =kp(p.z) —kp(p. f(2)) + [kp(q.2) —kp(p.2)]
+[kp(p. f(2) —kp(q. f(2)]. (1.3)

The first term inside square brackets converges to %loghg, p(q) when z — o. Now, let
¢ € Hol(A, D) be a complex geodesic with ¢(0) = p and ¢(1) = o. Since ¢(f) — o non-

tangentially as + — 1=, we have f(o(t)) — o. Therefore if we put z = ¢(¢) in (1.3), letting
t — 17 and recalling (1.2) we get

1 1 1 1 1
5 logﬁa,q < 5 IOgIBG,p + 5 logha,p(Q) - 5 logho,p(Q) = 5 IOgIBU,p
Thus B 4 is finite too, and reversing the roles of p and g we get the assertion. O

In particular, we shall simply denote by B, the dilation coefficient at a boundary fixed point.
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Definition 1.3. Let o € 3 D be a boundary fixed point for a self-map f € Hol(D, D) of a bounded
strongly convex C2 domain D € C?. We shall say that o is attracting if 0 < B, < 1, parabolic
if B = 1 and repelling if B, > 1.

We can now quote the general versions of Julia’s lemma proved in [1,3] (see [2, Theo-
rem 2.4.16 and Proposition 2.7.15]) that we shall need in this paper:

Proposition 1.4. (See Abate [1].) Let D € C" be a bounded strongly convex C? domain, and
f €Hol(D, D). Let 0 € 9D and p € D be such that the dilation coefficient B p is finite. Then
there exists a unique T € 0D such that

VR>0 f(Ep(0,R)) S Ep(,BopR),
and f has K-limit T at 0.

Finally, we recall the several variable version of the Wolff—-Denjoy theorem given in [1] (see
[2, Theorems 2.4.19 and 2.4.23]):

Theorem 1.5. (See Abate [1].) Let D @ C" be a bounded strongly convex C* domain, and f €
Hol(D, D) without fixed points. Then there exists a unique T € 3D such that the sequence of
iterates of [ converges to T.

Definition 1.4. Let D € C" be a bounded strongly convex C? domain, and f € Hol(D, D)
without fixed points. The point 7 € dD introduced in the previous theorem is the Wolff point

of f.
The Wolff point can be characterized by the dilation coefficient:

Proposition 1.6. Let D € C¢ be a bounded strongly convex C?> domain, and f € Hol(D, D)
without fixed points in D. Then the following assertions are equivalent for a point Tt € dD:

(1) t is a boundary fixed point with 0 < B, < 1;
(ii) f(Ep(r,R)) € Ey(t, R) forall R > 0 and any (and hence all) p € D;
(iii) t is the Wolff point of f.

Proof. (i) = (ii): it follows immediately from Proposition 1.4.

(i) = (iii): it follows, as in the proof of [2, Theorem 2.4.23], from the facts that the sequence
of iterates { f"} is compactly divergent and that £,(z, R) N 0D ={zr} forall R > O and p € D.

(iii) = (i): since f has no fixed points, by [2, Theorem 2.4.19] there is a t/ € 3D such
that f(E,(t',R)) S E,(t/,R) forall R >0 and p € D. Since E,(z’, R) N dD = {r'} we must
have T’ = 7. Now fix p € D and let ¢ € Hol(A, D) be a complex geodesic with ¢(0) = p and
(1) =7. Let p, € Hol(D, A) be the left-inverse of ¢, and put f = py o f op e Hol(A, A).
Since, as observed before, complex geodesics and left-inverses preserve the horospheres (see
[2, Proposition 2.7.8 and Lemma 2.7.16]), we have f(Eo(l, R)) C Eo(1, R) for all R > 0. This
easily implies that either f has no fixed points or it is the identity. In the latter case (1.2) implies
that 8; = 1, and we are done.
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If instead f has no fixed points, by the one-variable Wolff’s lemma, 1 € 0 A is its Wolff point,
and [2, Corollary 1.2.16] the dilation coefficient 8 of f at 1 belongs to (0, 1]. But, again by (1.2),
B = B, and we are done. O
Definition 1.5. Let D € C" be a bounded strongly convex C? domain, and f € Hol(D, D)
without fixed points and with Wolff point t € 9 D. We shall say that f is hyperbolicif 0 < ; < 1
and parabolic if B; = 1.

2. Convergence of backward orbits

In this section we shall prove our main Theorem 0.1. This will be accomplished by a sequence
of lemmas, but first we recall a couple of definitions:

Definition 2.1. Let f : X — X be a self-map of a set X. A backward orbit (or backward iteration
sequence) for f is a sequence {x,},en C X so that f(x,+1) =x, forall n € N.

Definition 2.2. Let X be a (Kobayashi) hyperbolic manifold. We say that a sequence {z,} C X
has bounded Kobayashi step if

a=supkx(Zn+1,2n) < +00.
n

The number a is the Kobayashi step of the sequence.
We shall first deal with the hyperbolic and parabolic cases.

Lemma 2.1. Let D € C¥ be a bounded strongly convex C? domain. Let {z,} C D be a backward
orbit for a parabolic or hyperbolic self-map f € Hol(D, D). Then z,, — 0D as n — +o00.

Proof. Assume, by contradiction, that the sequence does not converge to d D. Then there exists
a subsequence {z,, } converging to wgy € D, that is, such that

kp(wo, zp,) > 0 as k — +o0.
Therefore
kp(f™ (wo), f™ (zny)) < kp(wo,zn,) = 0 as k — 400.

But, on the other hand, f"(z,,) = zo for all k; moreover, f"*(wp) — 1 as k — 400, where
T € 9D is the Wolff point of f, and so

lim kp(f™ (wo), f™ (zn,)) = +00,
k— o0
because kp is complete, a contradiction. O
Lemma 2.2. Let D € C? be a bounded strongly convex C? domain. Let {z,} C D be a sequence

with bounded Kobayashi step a > 0 converging toward the boundary of D. Then there exists
o € 0D such that z,, — o as n — +00Q.
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Proof. Since z, — 9D, we can find a subsequence {z,, } converging to a point o € d D; we claim
that the whole sequence converges to o.

If for every k € N the subsequence {z,,+} converges to o, then clearly the whole sequence
converges to o and we are done. Otherwise, there exists a minimum k > 0 such that the sequence
{zn;+k—1} converges to o but {z,;4,} does not. Up to extracting a subsequence in both and
renaming, we may then assume that {z,;} converges to o while {z,,+1} converges to 6 € 3D
different from o.

Then [2, Corollary 2.3.55] yields ¢ > 0 and K > 0 such that, as soon as [z,; — ol <¢, and
lzn;+1 — & |l <&, we have

1 1
K - 5 logd(znj» BD) - E logd(an+1, aD) < kD(ans an-‘rl) < a.
Letting j — +00 we get a contradiction. O

Lemma 2.3. Let D € C? be a bounded strongly convex C? domain, and fix p € D. Let f €
Hol(D, D), and {z,} C D be a backward orbit for f with bounded Kobayashi step a = 1 logo
converging to o € dD. Then o is a boundary fixed point of f and B, < «.

Proof. Fix p € D. First of all we have

1 .. .
5108 oy = liminf[kp (w, p) — kp (f (w), p)] < }ﬂnf&f)[k[’ (Zn+1. P) — kD (Zns P)]

< liminfkp (241, 2n)

n——+00

1
<a=-loga.
a ) oguo

Since z, — o and f(z,) = z,—1 — 0 as n — 400, using [2, Proposition 2.4.15] we get that
f(Ep(o,R)) € Ep(o,aR) for all R > 0. Then Proposition 1.4 implies that f has K-limit o
at o, and we are done. O

Lemma 2.4. Let D € C? be a bounded strongly convex C* domain. Let f € Hol(D, D) be hy-
perbolic or parabolic with Wolff point T € 0 D and dilation coefficient 0 < ; < 1. Let {z,} C D
be a backward orbit for f with bounded Kobayashi step converging to o € 0D \ {t}. Then

1
Bo>—>1.
7 B

Proof. Let ¢ : A — D be a complex geodesic such that ¢(—1) = ¢ and ¢(1) = 7, and set
p = ¢(0). Proposition 1.4 yields

peEy0.l) = [f(p)€Eylo, Bo)

and

PeEy. ) = [f(p)eEp, fo).

Hence E, (0, B5) N Ep(z, Br) #9.
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Let p, : D — A be the left-inverse of . Then

0% py(Ep(0, Bo) NEp(T, Br)) € Po(Ep(0, Bs) ) N Py (Ep(T, Br))
= Eo(—1, Bs) N Eo(1, Br).

Now, Eo(1, B;) is a Euclidean disk of radius 8, /(8; + 1) tangent to dA in 1, and Eo(—1, B5) is a
Euclidean disk of radius B, /(Bs + 1) tangent to d A in —1. So these disks intersect if and only if

e, 28
Br+1 Bs +1

s

which is equivalent to S, 8; > 1, as claimed. O

In this way we have proved Theorem 0.1(i) for hyperbolic and parabolic maps. Now we prove
Theorem 0.1(iv):

Lemma 2.5. Ler D € C¢ be a bounded strongly convex C* domain, and fix p € D. Let f €
Hol(D, D) be hyperbolic or parabolic with Wolff point t € d D, and let {z,} C D be a backward
orbit for f with bounded Kobayashi step a = %loga converging to o € dD. Then for every
D € D there exists M > 0 such that z,, € K ,(0, M) eventually.

Proof. Choose p € M. We clearly have

.. 1
liminf[kp(p, zn+1) — kp(p. 20)] = < log Bs;
n— 00 2

since, by the previous lemma, 8, > 1, there thus exists 7o > 0 such that

1
kp(p.zns1) =kp(p.2n) > 5 log By/2

for all n > ng. Therefore

1 1
kp(p. znt1) — kp(p. zn) — kp(Znt1s 2n) = 510;;/9;/2 — 5 loga > —oo,
and hence

kp(p, Zn42) — kp(p,zn) — kD(Zn-‘rL Zn)
2 kp(p, zn+1) —kp@Zn+2, Zn+1) —kp (P, 20n) — kp(Zn+25 20)

2 kp(p,zn+1) —kp (P, z0) — kp(Zn+1, 20)

> 11 (17/2

>—1o )
2 g o

By induction, for any m > n > ng we thus have

1/2

o

kp(p,zm) —kp(p,zn) —kp(@m,2n) 2 Elog a
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1 —1/2
kp(zm,zn) —kp(P, Zm) +kp(p, 7n) < Elog(aﬂg )

Then

lim [kp(zn, w) —kp(p, w)| +kp(p,zx) = Lim [kp(zn, zm) — kp(p. zm)] + kp (P, 20)

w—>0o m—0o0

1
< 3 log(aﬁg_lﬂ) < +00,

for all n > ng, and we are done. O

To prove Theorem 0.1(iii) we need another lemma:

Lemma 2.6. Ler D € C¢ be a bounded strongly convex C* domain, and fix p € D. Let f €
Hol(D, D) be hyperbolic or parabolic with Wolff point T € 0D and dilation coefficient 0 <
B < 1. Let {z,} C D be a backward orbit for f. Then

Vn eN I’lr,p(Zn) > (%) hr,p(ZO)-

T

Proof. Putt, = h¢ ,(z,). By definition, z, € dE (7, t,). By Proposition 1.4, if 7,11 € E,(z, R)
then z, € E, (7, B R). Since z,, ¢ E (7, 1), we have that z,11 ¢ E (7, ﬂr—ltn), that is

1
tht1 2 Etna (21)

and the assertion follows by induction. O

Corollary 2.7. Let D € C¢ be a bounded strongly convex C 2 domain. Let f € Hol(D, D) be hy-
perbolic with Wolff point Tt € D. Let {z,,} C D be a backward orbit for f with bounded Kobayashi
step a > 0 converging to o € dD. Then o # t.

Proof. By Lemma 2.5, the sequence {z,} converges to o inside a Koranyi region with center o.
But, by Lemma 2.6, z,, is eventually outside any horosphere centered in 7, and this clearly implies
T # o asclaimed. O

So we have Theorem 0.1(iii), and together with Lemma 2.4 we have also proved Theo-
rem 0.1(ii) for the hyperbolic case.

Remark 2.1. Lemma 2.6 can be used to give another proof of the convergence of a backward
orbit of bounded Kobayashi step for hyperbolic maps. First of all [4, Remark 3] yields a constant
Cy > 0 such that

Ci Ci
lzn — zZn+1ll <ﬁ\/d(zn’al))< 1_&\/d(ZnsaD)s (2.2
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where a = tanha € (0, 1) and a is the Kobayashi step of the backward orbit {z,,}. On the other
hand, given p € D the triangular inequality and the upper estimate [2, Theorem 2.3.51] on the
boundary behavior of the Kobayashi distance yield a constant C2 > 0 such that

1 1
5 loghr,p(zn) < kD(P, Zn) < C2 - 5 logd(zn, BD),

C 1
lzn — znt1ll < =T (2.3)
l—a hr,p(Zn)

for a suitable C > 0. Therefore using Lemma 2.6 we get that for every m > n > 0 we have

and thus

1 n/2

lzm — znll < lzj+1—z; ”\_ ’
"= z, , mz TR iy

and so {z,,} is a Cauchy sequence in C¢, converging to a point o € 3D by Lemma 2.1.

Let us now deal with strongly elliptic maps. We need a preliminary lemma:

Lemma 2.8. Let D € C? be a bounded strongly convex C* domain. Let f € Hol(D, D) be
strongly elliptic with Wolff point p € D. Then for every Ry > 0 there exists 0 < ¢ = c(Rp) < 1
such that

1
kp(f (@), p) —kp(z, p) < logc <0
forall z € D withkp(z, p) 2 Ro

Proof. By contradiction, assume that for every ¢ < 1 there exists z(c) € D with kp(z(c), p) =
Ry so that

1
kp(f(z(c)., p) —kp(z(c). p) > Eloga
Let 700 € D be a limit point of the sequence {z(1 — 1/n)}. If zoo € D then
1
kp(f(zoo)s P) —kD(2o0s P) = = 5logl=0
against Lemma 1.1. Thus zo, € dD. But then
limini{kp (2. p) — kp(f(2). p)] <O.

By Proposition 1.4 we then have f(E,(zc0, R)) € Ep(200, R) for every R > 0. Choose R < 1
so that p ¢ E,(z0, R), and let w € E, (200, R) be the point closest to p with respect to the
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Kobayashi distance. Since f(w) € E (200, R), it follows that kp (f(w), p) = kp(w, p), which
is again impossible, because w # p and f is strongly elliptic. O

Lemma 2.9. Let D € C¢ be a bounded strongly convex C?> domain. Let f € Hol(D, D) be

strongly elliptic with Wolff point p € D, and let {z,} C D be a backward orbit with Kobayashi
bounded step a = % loga. Then z,, — o € dD, and o is a boundary fixed point of f with B, < «.

Proof. Let define s, > O by setting —% logs, = kp(z,, p). Without loss of generality, we can

assume that zg # p; let Rg = kp(zo0, p), and ¢ = c(Rp) < 1 given by Lemma 2.8. Arguing by
induction we have

1
kp(zn, p) — kp(znt1, p) < 3 logc < 0;

in particular, kp(z,+1, p) > kp(zs, p) = Ro always. Hence

1 1 1
—3 log s, + > log sp+1 < Elogc,
that is

Sp+1 < CSy.- 2.4)

Therefore s, < cks, for every n, k € N. So s, — 0 as n — 400, that is z; — 9D, and the
assertion follows from Lemmas 2.2 and 2.3. O

Remark 2.2. We can give another proof of the convergence of a backward orbit {z,} with
bounded Kobayashi step a > 0 for strongly elliptic maps along the lines of Remark 2.1. Indeed,
using (2.2) and [2, Theorem 2.3.51] we get

C
lzn — zngi1ll < 1_&\/sn

for a suitable C > 0, where a = tanha and —% logs, = kp(p, zn). Since (2.4) yields s, < ¢"sp,
arguing as in Remark 2.1 we see that {z,} is a Cauchy sequence in C? converging to a
point o € dD.

Lemma 2.10. Let D € C? be a bounded strongly convex C? domain. Let f € Hol(D, D) be
strongly elliptic with Wolff point p € D. If 0 € 3D is a boundary fixed point then s > 1.

Proof. Indeed, Lemma 2.8 yields 0 < ¢ < 1 such that
llogﬂa =liminf[kp(z, p) —kp(f(2), p)] = ! loge >0,
2 =0 2

and we are done. O

So we have proven Theorem 0.1(i) and (ii); (iii) follows from the obvious fact that p € D
whereas ¢ € dD. We now conclude the proof of Theorem 0.1 with
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Lemma 2.11. Let D € C? be a bounded strongly convex C? domain. Let f € Hol(D, D) be
strongly elliptic, with Wolff point p € D. Let {z,} C D be a backward orbit for f with bounded
Kobayashi step converging to o € dD. Then for every q € D there exists M > 0 such that z, €
K, (o, M) eventually.

Proof. As usual, it suffices to prove the statement for ¢ = p. Lemma 2.8 yields 0 < ¢ < 1 such
that

1 1
liminf[kp (p, zat1) — kp(p.za)] = 5 log— >0,
n—oo 2 c
and then the assertion follows arguing as in the proof of Lemma 2.5. O

3. Construction of backward orbits with bounded Kobayashi step

In this section we shall construct backward orbits with bounded Kobayashi step converging
to isolated boundary fixed points. To do so we need a definition and two lemmas.

Definition 3.1. Let D € C? be a bounded strongly convex C 2 domain, and f € Hol(D, D).
A boundary fixed point o € d D with dilation coefficient B, is isolated if there is a neighborhood
U c C? of o in C¢ such that U N d D contains no other boundary fixed point of f with dilation
coefficient at most S .

Lemma 3.1. Let D € C¢ be a bounded strongly convex C* domain, and f € Hol(D, D). Let
o € 0D be a boundary fixed point of f with finite dilation coefficient By, and choose a complex
geodesic ¢ € Hol(A, D) with ¢(1) = o. Then

1
im kp(e@), fe®)) = 7 1og B

Proof. We shall first prove the statement when D = A and ¢ =ida. In this case
l 11—]} ®
_ tf (1)
1 tf ®

Now, the classical Julia—Wolff—Carathéodory theorem yields

1—tf () 1— f(0) 1—tf () 1
=l o LA T—Fo = L+ fO f() 1+E

as t — 17 ; therefore

t—f(t)_l—f(t)_ 1—1¢ N 1 _ 1 -1
L—tf(@) 1—1f(0) 1—tf@) 140/ 1+ pi+1

and the assertion follows.
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In the general case, let p, € Hol(D, A) be the left-inverse of ¢, and p, = ¢ o p,. Put f, =
py o f € Hol(D, D) and f = pyo fop e Hol(A, A). First of all

k(o). f(e®)) =kp(e®). fole®)) +kn(p®), f(e®)) —kp (). fo(e®))
=ka(t. F0) +kp(p@®). £(¢®)) = kp(p@). fo(0(1))-
Since o is a boundary fixed point of f it immediately follows that 1 is a boundary fixed point

of f . Furthermore, (1.2) implies that the dilation coefficient of f at 1 is B, ; hence ka (¢, f (1)) —>
%|10gﬂ0| ast — 17. Now,

lkp (o), f(e®)) = kp(e®), fole®))| <kn(f(e®), fole®));

so to conclude the proof it suffices to show that kp (f(¢(¢)), fu(p())) = Oast — 1.
Set y(t) = f(@(t)). By [2, Proposition 2.7.11] it suffices to prove

— that py, o y (t) — o non-tangentially;
— that y (¢) is eventually inside a Euclidean ball contained in D and tangent to dD in o;
— and that

ly @) = oy DI? _

im (3.1)
t—1= d(py(y (1)), dD)

Since ¢ is transversal to d D, to prove that p, o y (t) — o non-tangentially it suffices to show

that pyoy (t) = f (t) — 1 non-tangentially. But the classical Julia—Wolff—Carathéodory theorem
yields

1— f@ 1—f()] 1—1 1
| {()I:‘ f@) LN ) 3.2)
1L—17®)I L=t J1—|f(@)] Bs
and this is done.
To prove (3.1), we first recall that [2, Proposition 2.7.23] yields
2
1) — t
lim ly (@) — pe(y ) _o (3.3)
t—>1- 1—1¢
Furthermore, we already noticed that
1—1¢ 1
(3.4

lim ———=—>0
> 1= fOl B
Finally, the lower estimate [2, Theorem 2.3.52] on the boundary behavior of the Kobayashi dis-

tance yields ¢ € R such that

D og LHIFOL _
1 og LEIL D1

~ 1
3108 1 7, = ka0 7 @) =k (9 0). £y (0®) > e1 = Flozd (£ 6(1). 9D).
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that is

=1L o

T s S 3.5
d(fp(@(1)),0D) )

Putting together (3.3), (3.4) and (3.5) we get (3.1).

More precisely, (3.2) says that the curve t — f (t) converges to 1 radially (that is, tangent to
the radius ending in 1); therefore the curve p, o y goes to o tangentially to the transversal curve
t — @(t). Furthermore, the upper estimate [2, Theorem 2.3.51] yields ¢, € R such that

1. 1+(f@)] 1 .
Elogm <o — Elogd(fga((p(t)), ID);

hence recalling (3.4) and (3.5) we see that d(f,(¢(¢)), 9D) is comparable to 1 — ¢. Recalling
(3.3) we then obtain that y (¢) is eventually contained in Euclidean balls internally tangent to d D
in o of arbitrarily small radius, and we are done. O

Lemma 3.2. Let D € C? be a bounded strongly convex C? domain, and f € Hol(D, D).
Let {z,} C D be a sequence converging to o € 0D such that limsup,_, , . kp(zn, f(zn)) =

% loga < 4-00. Then o is a boundary fixed point with dilation coefficient at most «.

Proof. The lower estimate [2, Corollary 2.3.55] immediately implies that f(z,) — o as well.
Fix p € D; then

1 . : 1
5108 Bop < ian_i{rolg[kD(Zn’ p) —kp(f(zn), p)] <limsupkp(za, f(zn)) = 5 loga.

n——+00

The assertion then follows arguing as in the proof of Lemma 2.3. O
And now we can prove the announced

Theorem 3.3. Let D @ C? be a bounded strongly convex C 2 domain, and take f € Hol(D, D)
hyperbolic, parabolic or strongly elliptic with Wolff point T € D. Let o € 3D \ {t} be an isolated
repelling boundary fixed point for f with dilation coefficient B; > 1. Then there is a backward
orbit with Kobayashi step bounded by % log B, converging to o.

Proof. We follow closely the proof of [10, Lemma 1.4].

Let U € C4 be a small ball centered at o in C¢ such that U N D contains neither T nor other
boundary fixed points with dilation coefficient at most S, and put J =9U N D.

Let ¢ € Hol(A, D) be a complex geodesic with ¢ (1) = o, and put p = ¢(0). Furthermore, let
ng = 0 be such that E; = E, (o, ﬁ;"o_k) c U for all k > 0; set rp = @(t), where t; € (0, 1) is
such that 7, € 9Ex N (A).

For each k, let y; be the line segment connecting r; and f(rx). Since f*(ry) — © ¢ U,
and U?;(l) f J (yx) is a path connecting ry with f”(r¢), there is a smallest integer ny such that
S (yr) intersects J. Since, by Proposition 1.4, f(Er+1) C Ek, and the horospheres are convex,
we necessarily have ny > k.
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Put zx = f™(rx) € U N D; we claim that the sequence {zjz} is relatively compact in D.
If not, we can extract a subsequence {zx;} converging to a point n € 3D. By Lemma 3.1,

kp(zk;, f(zk;)) — %log Bo. It follows, by Lemma 3.2, that n is a boundary fixed point with

dilation coefficient at most B, ; since n € U N 3D, this contradicts the choice of U.

So there is an infinite set /o € N such that {zx}xes, converges to wo € D. Fix j > 1, and
assume that we can extract from /;_; an infinite set /; such that { f "—J(ry)} converges to some
wj€D.LetS= {f”"_(j“)(rk)}kgj; since

. . 1
kp(f™ YD (), 57 (1)) < kp (rie, f(re)) — 510285

the sequence S is still relatively compact in D, and thus we can extract from /; an infinite set /41
such that { £~ U+D () eer ;41 converges to a point w41 € D. Notice that by construction,
Sf(wj+1) = wy; therefore {w]} is a backward orbit.

Since points of the form f "= () with ny > J are contained in U, we have that w; € UnbD
for all j. Furthermore,

kp(wjpr, wj) = lim kp(f"" D (), T (1)) < Jim kep (re, £r0) = —1ogﬂa;

Jj+1 /+1

so we are left to prove that w; — o.

Assume, by contradiction, that there is a subsequence {wj,} converging to g € D\ {o}. If
g € D, then the sequence K = {w},} is relatively compact in D; so there is an n > 0 such that
fM(K)NU = . But K is a subsequence of a backward orbit contained in U, and so f"*(K) N
U #@foralln >0.

Finally, if ¢ € 9D, then, again by Lemma 3.2, ¢ is a boundary fixed point with dilation coef-
ficient at most B, ; since g € U, this contradicts the choice of U, and we are done. [

References

[1] M. Abate, Horospheres and iterates of holomorphic maps, Math. Z. 198 (1988) 225-238.
[2] M. Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds, Mediterranean Press, Cosenza, 1989. See also
http://www.dm.unipi.it/~abate/libri/libriric/libriric.html.
[3] M. Abate, Iteration theory, compactly divergent sequences and commuting holomorphic maps, Ann. Sc. Norm.
Super. Pisa 18 (1991) 167-191.
[4] M. Abate, A. Saracco, Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains,
J. London Math. Soc. 83 (2011) 587-605.
[5] F. Bracci, G. Patrizio, Monge—Ampere foliation with singularities at the boundary of strongly convex domains,
Math. Ann. 232 (2005) 499-522.
[6] M. Jarnicki, P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter & Co., Berlin, 1993.
[7] S. Kobayashi, Hyperbolic Complex Spaces, Springer-Verlag, Berlin, 1998.
[8] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109
(1981) 427-474.
[9] O. Ostapyuk, Backward iteration in the unit ball, preprint, arXiv:0910.5451, 2010, Illinois J. Math., in press.
[10] P. Poggi-Corradini, Canonical conjugations at fixed points other than the Denjoy—Wolff point, Ann. Acad. Sci. Fenn.
Math. 25 (2000) 487-499.
[11] P. Poggi-Corradini, Backward iteration sequences with bounded hyperbolic steps for analytic self-maps of the disk,
Rev. Mat. Iberoamericana 19 (2003) 943-970.



	Backward iteration in strongly convex domains
	0 Introduction
	1 Preliminaries
	2 Convergence of backward orbits
	3 Construction of backward orbits with bounded Kobayashi step
	References


