Basins of attraction in quadratic dynamical systems with a Jordan fixed point

Marco Abate
Dipartimento di Matematica, Università di Roma Tor Vergata
Via della ricerca scientifica, 00133 Roma, Italy
Fax: $+39 / 06 / 7259-4699$ e-mail: abate@mat.uniroma2.it

Abstract

In this note we study the dynamics of the family of maps $f(z, w)=\left(z+w+\alpha z^{2}+\beta w^{2}, w+w^{2}\right)$, both on \mathbb{R}^{2} and on \mathbb{C}^{2}. All these maps have the origin as an isolated non-hyperbolic fixed point where the differential is not diagonalizable. We shall give sufficient conditions on the parameters for the existence of an open set attracted by the origin.

Keywords: Discrete complex dynamics, parabolic fixed point, Jordan fixed point, basin of attraction.

0. Introduction

Recently, a number of papers studying the behavior of holomorphic discrete dynamical systems about a nonhyperbolic fixed point in several variables have appeared (see, e.g., [1-3, 7-9, 10-13]). Their main concern was to determine the existence of complex submanifolds attracted by the fixed point under the action of the dynamical system.

To be more precise, let us fix a (germ of) holomorphic self-map f of \mathbb{C}^{n} fixing the origin, and such that the spectrum of $d f_{O}$ is contained in $\Delta \cup\{1\}$ (the more extensively studied case up to now), where Δ is the open unit disk in the plane. A parabolic d-manifold for f at the origin is a complex d-manifold $M \subset \mathbb{C}^{n}$ such that $O \in \bar{M} \backslash M$ (where the closure is taken with respect to the topology of \mathbb{C}^{n}), $f(M) \subset M$ and $\left(\left.f\right|_{M}\right)^{k} \rightarrow O$ as $k \rightarrow+\infty$; they are a natural several variables generalization of the petals appearing in the classical Leau-Fatou flower theorem. A parabolic n-manifold will be called a basin of attraction of the origin.

We shall limit ourselves here to recall what is known for $n=2$, which is enough to put the results of the present note in perspective. We shall always assume that the origin is an isolated fixed point. If $\left(d f_{O}\right)=\{1, \lambda\}$ with $|\lambda|<1$ (the so-called semiattractive situation), Ueda [11, 12] and Hakim [7] proved the existence of a basin of attraction of the origin. If, on the other hand, $\left(d f_{O}\right)=\{1\}$, there are two cases to consider. When $d f_{O}=$ id, then there always exists a parabolic 1-manifold (i.e., a parabolic curve) at the origin [2]; furthermore, Hakim [8, 9] and Weickert [13] gave sufficient conditions for the existence of a basin of attraction of the origin.

When $d f_{O}=J_{2}$, where J_{2} is the Jordan canonical matrix associated to the eigenvalue 1 (and then we say that the origin is a Jordan fixed point), the situation has been studied in [1]. In this case the map f can be written as

$$
\begin{aligned}
& f_{1}(z, w)=z+w+a_{11}^{1} z^{2}+2 a_{12}^{1} z w+a_{22}^{1} w^{2}+\cdots \\
& f_{2}(z, w)=w+a_{11}^{2} z^{2}+2 a_{12}^{2} z w+a_{22}^{2} w^{2}+a_{111}^{2} z^{3}+\cdots
\end{aligned}
$$

In [1] it is proved that (assuming that the origin is an isolated fixed point) if at least one of the quantities a_{11}^{2}, $\varepsilon=a_{11}^{1}+a_{12}^{2}, \eta=\left(a_{11}^{1}-a_{12}^{2}\right)^{2}+2 a_{111}^{2}$ is different from zero then the map f has at least one parabolic curve at the origin. But it turns out that this is always true, even when $a_{11}^{2}=\varepsilon=\eta=0$. Indeed, in the latter case blowing up the origin the germ f lifts to a germ of the form

$$
\tilde{f}\left(z_{1}, z_{2}\right)=\left(z_{1}+\alpha z_{1}^{2}+z_{1} z_{2}+O\left(\|z\|^{3}\right), z_{2}-2 \alpha^{2} z_{1}^{2}-3 \alpha z_{1} z_{2}-z_{2}^{2}+O\left(\|z\|^{3}\right)\right)
$$

for some $\alpha \in \mathbb{C}$. Using the terminology introduced in [2], it is easy to see that this map has two singular directions, $[1:-\alpha]$ and $[0: 1]$. The latter gives rise to a parabolic curve that should be discarded, because it is contained in the exceptional divisor of the blow-up. But the former, even if it is a degenerate characteristic direction in the sense of Hakim, has residual index $-1 / 2$ and thus, thanks to [2, Corollary 3.3], it also gives rise to a parabolic curve, which is transversal to the exceptional divisor and thus it can be projected down
producing a parabolic curve at the origin for our map f. Thus, we have proved the existence of a parabolic curve in all cases when $d f_{O}=J_{2}$ and the origin is an isolated fixed point (it should be remarked that this result is not a consequence of Hakim's theory, but it can be obtained only using the techniques introduced in [2]).

In [1] we also applied Hakim's results to get sufficient conditions for the existence of basins of attraction when $d f_{O}=J_{2}$. The aim of this short note is to provide an example of a family of quadratic holomorphic self maps of \mathbb{C}^{2}, with the origin as isolated fixed point, such that $d f_{O}=J_{2}$ and with a basin of attraction of the origin even if they do not satisfy the sufficient conditions described in [1]. The family is the following:

$$
\begin{equation*}
f(z, w)=\left(z+w+\alpha z^{2}+\beta w^{2}, w+w^{2}\right) \tag{0.1}
\end{equation*}
$$

with $\alpha \neq 0$ and $\beta \in \mathbb{C}$. When $\operatorname{Re} \alpha>0$ this map has a basin of attraction of the origin (Theorem 1.3) but it does not satisfy the criterion described in [1, Remark 3.5].

We shall also study the action of map (0.1) on the real plane \mathbb{R}^{2} when α and β are real; we shall obtain a fairly complete description of the dynamics, which is interesting because, as far as I know, there exist only a few papers devoted to real dynamical systems with a fixed point where the differential is not diagonalizable (the only ones I am aware of, that is $[5,6]$, do not study the family (0.1), and deal only with the existence of invariant curves).

1. Complex dynamics

We begin recalling a couple of results about the well-known map $g(w)=w+w^{2}$, which is the standard example of holomorphic map of one variable with a parabolic basin (at its unique fixed point, the origin); see, e.g., [4] for all unproved assertions. The basin of attraction to the origin is a cauliflower-like bounded set $C \subset \mathbb{C}$; the orbits of points outside \bar{C} go to infinity at an exponential rate; the boundary ∂C is the Julia set of g, and it is a closed completely invariant set containing the origin.

The following Lemma, whose proof is elementary, describes the behavior of g restricted to \mathbb{R} :
Lemma 1.1: For $\tilde{u}_{0} \in \mathbb{R}$ set $\tilde{u}_{n}=g^{n}\left(\tilde{u}_{0}\right)$. Then:
(i) For all $\tilde{u}_{0} \in \mathbb{R} \backslash\{0,-1\}$ the sequence $\left\{\tilde{u}_{n}\right\}$ is strictly increasing.
(ii) If $\tilde{u}_{0} \in[-1,0]$ then $\tilde{u}_{n} \rightarrow 0$; otherwise $\tilde{u}_{n} \rightarrow+\infty$.
(iii) If $\tilde{u}_{0} \in(-1,0)$ then

$$
\forall n \geq 1 \quad-\frac{1}{n} \leq \tilde{u}_{n} \leq \frac{\tilde{u}_{1}}{n}
$$

that is $\left|\tilde{u}_{n}\right|=O(1 / n)$.
We shall also need a quantitative extimate on the way orbits inside C approach the origin:
Lemma 1.2: For all $w_{0} \in C$ set $w_{n}=u_{n}+i v_{n}=g^{n}\left(w_{0}\right)$. Then

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} n w_{n}=\lim _{n \rightarrow+\infty} n u_{n}=-1 \quad \text { and } \quad \lim _{n \rightarrow \infty} n v_{n}=0 \tag{1.2}
\end{equation*}
$$

More precisely, there are $c_{1}, c_{2}>0$ depending on w_{0} such that

$$
\begin{equation*}
\left|1+n u_{n}\right| \leq\left|1+n w_{n}\right| \leq \frac{c_{1}}{n} \log n \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|y_{n}\right| \leq \frac{c_{2}}{n^{2}}\left(1+\frac{c_{1}}{n} \log n\right)^{2} \tag{1.4}
\end{equation*}
$$

for all $n \geq 1$.
Proof: For all $w_{0} \in C$ and $j \geq 1$ we can write

$$
\frac{1}{w_{j}}=\frac{1}{w_{j-1}}-1+\frac{w_{j-1}}{1+w_{j-1}}
$$

Adding for $j=1, \ldots, n$ and dividing by n we find

$$
\frac{1}{n w_{n}}=\frac{1}{n w_{0}}-1+\frac{1}{n} \sum_{j=1}^{n} \frac{w_{j-1}}{1+w_{j-1}}
$$

and thus (1.2) follows by the convergence of the averages of a converging sequence. In particular, we get a $k_{1}>0$ (depending on w_{0}) such that $\left|w_{j}\right| \leq k_{1} / j$ for all $j \geq 1$. Thus there exists $k_{2}>0$ such that

$$
\forall n \geq 1
$$

$$
\frac{1}{n}\left|\sum_{j=1}^{n} \frac{w_{j-1}}{1+w_{j-1}}\right| \leq \frac{1}{n} \sum_{j=1}^{n} \frac{\left|w_{j-1}\right|}{1-\left|w_{j-1}\right|} \leq \frac{k_{2}}{n} \log n
$$

Therefore we can find a suitable $c_{1}>0$ so that

$$
\left|1+n u_{n}\right| \leq\left|1+n w_{n}\right| \leq n\left|w_{n}\right|\left[\frac{1}{n\left|w_{0}\right|}+\frac{1}{n}\left|\sum_{j=1}^{n} \frac{w_{j-1}}{1+w_{j-1}}\right|\right] \leq \frac{c_{1}}{n} \log n
$$

for all $n \geq 1$, and (1.3) is proved.
Now let $F=\left\{\operatorname{Re} w<-3|w|^{2}\right\}$, and for every $c>0$ set $H_{c}=\left\{|\operatorname{Im} w|<c|\operatorname{Re} w|^{2} \mid\right\} \cap F$. The set F is a disk of center $-1 / 6$ and radius $1 / 6$, and it is well-known that for every $w_{0} \in C$ there is $n_{0} \geq 0$ such that $g^{n}\left(w_{0}\right) \in F$ for all $n \geq n_{0}$. Furthermore, it is easy to check that H_{c} is g-invariant for all $c>0$. In particular, the g-invariance of $H_{\left|v_{n_{0}}\right| /\left|u_{n_{0}}\right|^{2}}$ implies

$$
\forall n \geq n_{0} \quad\left|v_{n}\right| \leq \frac{\left|v_{n_{0}}\right|}{\left|u_{n_{0}}\right|^{2}}\left|u_{n}\right|^{2} \leq \frac{\left|v_{n_{0}}\right|}{\left|u_{n_{0}}\right|^{2}} \frac{1}{n^{2}}\left(1+\frac{c_{1}}{n} \log n\right)^{2}
$$

and so we can find $c_{2}>0$ such that (1.4) is satisfied for all $n \geq 1$.
As described in the introduction, we are interested in the dynamics of maps of the form

$$
\begin{equation*}
f(z, w)=\left(z+w+\alpha z^{2}+\beta w^{2}, w+w^{2}\right) \tag{1.5}
\end{equation*}
$$

with $\alpha \neq 0$ and $\beta \in \mathbb{C}$, whose only fixed point is the origin, which is a Jordan fixed point.
We first of all remark that they are conjugated to maps of the form

$$
\begin{equation*}
\tilde{f}(z, w)=\left(z+z^{2}+\alpha\left(w+\beta w^{2}\right), w+w^{2}\right) \tag{1.6}
\end{equation*}
$$

via the map $(z, w) \mapsto(z / \alpha, w)$. We set $g_{\alpha, \beta}(w)=\alpha\left(w+\beta w^{2}\right)$; in particular, $g_{1,1}=g$.
We shall write $z_{0}=x_{0}+i y_{0}, w_{0}=u_{0}+i v_{0}$ and $\left(z_{n}, w_{n}\right)=\tilde{f}^{n}\left(z_{0}, w_{0}\right)$. We now prove the existence of a basin of attraction of the origin when $\operatorname{Re} \alpha>0$ and $\beta \in \mathbb{C}$:
Theorem 1.3: Let $\tilde{f}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be given by (1.6). Assume $\operatorname{Re} \alpha>0$, and choose $k_{0}>0$. Then there are $c_{1}, c_{2}, c_{3}>0$, continuous functions $a_{1}, a_{2}:[-1 / 2,0) \rightarrow \mathbb{R}^{+}$and a (discontinuous) function $n_{0}:[-1 / 2,0) \rightarrow \mathbb{N}$ such that setting

$$
D=\left\{\left.\left(z_{0}, w_{0}\right) \in \mathbb{C}^{2}\left|x_{0} \in[-1 / 2,0),\left|y_{0}\right|<a_{1}\left(x_{0}\right),-a_{2}\left(x_{0}\right)<u_{0}<0,\left|v_{0}\right|<k_{0}\right| u_{0}\right|^{2}\right\}
$$

then for every $\left(z_{0}, w_{0}\right) \in D$ we have

$$
\forall n \geq 1 \quad x_{n} \leq-\frac{c_{1}\left|x_{1}\right|}{n^{1 / 2}}
$$

and

$$
\begin{equation*}
\forall n \geq n_{0}\left(x_{0}\right) \quad\left|x_{n}\right| \leq \frac{c_{2}}{\left|x_{1}\right| n^{1 / 2}} \quad \text { and } \quad\left|y_{n}\right| \leq \frac{c_{3}}{\left|x_{1}\right| n^{1 / 2}} \tag{1.8}
\end{equation*}
$$

In particular, if we denote by D^{\prime} the symmetric of D with respect to the plane $z=-1 / 2$, then the set $D \cup D^{\prime}$ is contained into the basin of attraction of the origin.
Proof: It is easy to check that in the set $\left\{\left|v_{0}\right| \leq k\left|u_{0}\right|^{2}\right\}$ one has

$$
\operatorname{Re} g_{\alpha, \beta}\left(w_{0}\right)=(\operatorname{Re} \alpha) u_{0}+O\left(\left|u_{0}\right|^{2}\right) \quad \text { and } \quad \operatorname{Im} g_{\alpha, \beta}\left(w_{0}\right)=(\operatorname{Im} \alpha) u_{0}+O\left(\left|u_{0}\right|^{2}\right)
$$

Therefore, recalling Lemma 1.2, we can find $a_{3}, k_{1}, k_{2}, k_{3}>0$ (with $k_{1}<1<k_{2}$) such that if $u_{0} \in\left(-a_{3}, 0\right)$ and $\left|v_{0}\right| \leq k_{0}\left|u_{0}\right|^{2}$ then

$$
-\frac{k_{1}}{n} \geq \operatorname{Re} g_{\alpha, \beta}\left(w_{n}\right) \geq-\frac{k_{2}}{n} \quad \text { and } \quad\left|\operatorname{Im} g_{\alpha, \beta}\left(w_{n}\right)\right| \leq \frac{k_{3}}{n}
$$

for all $n \geq 1$.
Now set $c_{1}=\sqrt{k_{1}}, c_{3}=k_{3} / c_{1}$ and $c_{2}=\sqrt{2\left(k_{2}+c_{3}^{2}\right)}$. For $x_{0} \in[-1 / 2,0)$ let $n_{0}=n_{0}\left(x_{0}\right) \geq 1$ be the least integer greater than $\left|\tilde{x}_{1}\right|^{-2} \max \left\{\left(4 c_{1}^{2}\right)^{-1}, 4 c_{2}^{2}\right\}$, where $\tilde{x}_{1}=x_{0}+x_{0}^{2}=g\left(x_{0}\right)$. Notice that $\left|x_{1}\right| \geq\left|\tilde{x}_{1}\right|$ for any $y_{0} \in \mathbb{R}$ and $u_{0} \in\left(-a_{3}, 0\right)$, and thus

$$
\begin{equation*}
n_{0}>\frac{1}{\left|x_{1}\right|^{2}} \max \left\{\frac{1}{4 c_{1}^{2}}, 4 c_{2}^{2}\right\} . \tag{1.9}
\end{equation*}
$$

Set $\tilde{x}_{n}=g^{n}\left(x_{0}\right)$, so that $\left(\tilde{x}_{n}, 0\right)=\tilde{f}^{n}\left(x_{0}, 0\right)$. By Lemma 1.1 we have $\tilde{x}_{n} \in[-1 / 4,0)$ and

$$
\left|\tilde{x}_{n}\right| \leq \frac{1}{n}<\frac{c_{2}}{n^{1 / 2}}
$$

for all $n \geq 1$. Therefore we can choose $a_{1}\left(x_{0}\right), a_{2}\left(x_{0}\right)>0$ (with $a_{2}\left(x_{0}\right)<a_{3}$), depending continuously on x_{0}, such that if $\left|y_{0}\right|<a_{1}\left(x_{0}\right),-a_{2}\left(x_{0}\right)<u_{0}<0$ and $\left|v_{0}\right|<k_{0}\left|u_{0}\right|^{2}$ then $\left|x_{n_{0}}\right| \leq c_{2} / n_{0}^{1 / 2},\left|y_{n_{0}}\right| \leq c_{3} / n_{0}^{1 / 2}$ and $x_{k} \in(-1 / 2,0)$ for $k=0, \ldots, n_{0}$. In particular, (1.7) holds for $n=1$ and (1.8) holds for $n=n_{0}$.

We now show, by induction, that (1.7) holds for $n=1, \ldots, n_{0}$. Assume it holds for some $1 \leq n<n_{0}$; since, by assumption, $x_{n} \in(-1 / 2,0)$ and g is increasing in that interval, we have

$$
\begin{align*}
x_{n+1} & =x_{n}+x_{n}^{2}-y_{n}^{2}+\operatorname{Re} g_{\alpha, \beta}\left(w_{n}\right) \leq-\frac{c_{1}\left|x_{1}\right|}{n^{1 / 2}}+\frac{c_{1}^{2}\left|x_{1}\right|^{2}}{n}-\frac{k_{1}}{n} \\
& =-\frac{c_{1}\left|x_{1}\right|}{(n+1)^{1 / 2}}\left(1+\frac{1}{n}\right)^{1 / 2}\left(1+\frac{k_{1}\left(1-\left|x_{1}\right|^{2}\right)}{c_{1}\left|x_{1}\right| n^{1 / 2}}\right) \leq-\frac{c_{1}\left|x_{1}\right|}{(n+1)^{1 / 2}} \tag{1.10}
\end{align*}
$$

So (1.7) holds for $n \leq n_{0}$.
Now we prove simultaneously both (1.7) and (1.8) by induction for $n \geq n_{0}$. First of all, notice that for any $A>0$ we have

$$
\begin{equation*}
n \geq \frac{1}{4 A^{2}} \quad \Longrightarrow \quad\left(1+\frac{1}{n}\right)^{1 / 2}\left(1-\frac{A}{n^{1 / 2}}\right)<1 \tag{1.11}
\end{equation*}
$$

Assume then that (1.7) and (1.8) hold for some $n \geq n_{0}$; in particular,

$$
0>-\frac{c_{1}\left|x_{1}\right|}{n^{1 / 2}} \geq x_{n} \geq-\frac{c_{2}}{\left|x_{1}\right| n^{1 / 2}} \geq-\frac{c_{2}}{\left|x_{1}\right| n_{0}^{1 / 2}}>-1 / 2
$$

by (1.9), and we can repeat the computations in (1.10) to get (1.7) for $n+1$.
Next

$$
\begin{aligned}
\left|y_{n+1}\right| & \leq\left|y_{n}\right|\left(1-2\left|x_{n}\right|\right)+\left|\operatorname{Im} g_{\alpha, \beta}\left(w_{n}\right)\right| \leq \frac{c_{3}}{\left|x_{1}\right| n^{1 / 2}}\left(1-\frac{2 c_{1}\left|x_{1}\right|}{n^{1 / 2}}\right)+\frac{k_{3}}{n} \\
& =\frac{c_{3}}{\left|x_{1}\right|(n+1)^{1 / 2}}\left(1+\frac{1}{n}\right)^{1 / 2}\left(1-\frac{c_{1}\left|x_{1}\right|}{n^{1 / 2}}\right) \leq \frac{c_{3}}{\left|x_{1}\right|(n+1)^{1 / 2}}
\end{aligned}
$$

where the last inequality holds because of (1.11) and (1.9).
We are ready for the last inductive step. We have

$$
\begin{aligned}
\left|x_{n+1}\right| & =\left|x_{n}+x_{n}^{2}\right|+\left|y_{n}\right|^{2}+\left|\operatorname{Re} g_{\alpha, \beta}\left(w_{n}\right)\right| \leq \frac{c_{2}}{\left|x_{1}\right| n^{1 / 2}}\left(1-\frac{c_{2}}{\left|x_{1}\right| n^{1 / 2}}\right)+\frac{c_{3}^{2}}{\left|x_{1}\right|^{2} n}+\frac{k_{2}}{n} \\
& =\frac{c_{2}}{\left|x_{1}\right|(n+1)^{1 / 2}}\left(1+\frac{1}{n}\right)^{1 / 2}\left(1-\frac{c_{2}^{2}-\left|x_{1}\right|^{2} k_{2}-c_{3}^{2}}{c_{2}\left|x_{1}\right| n^{1 / 2}}\right) \leq \frac{c_{2}}{(n+1)^{1 / 2}}\left(1+\frac{1}{n}\right)^{1 / 2}\left(1-\frac{c_{2}}{2\left|x_{1}\right| n^{1 / 2}}\right) \\
& \leq \frac{c_{2}}{\left|x_{1}\right|(n+1)^{1 / 2}},
\end{aligned}
$$

again by (1.11), because if $A=c_{2} / 2\left|x_{1}\right|$ then $1 / 4 A^{2}=\left|x_{1}\right|^{2} / c_{2}^{2}<1$.
Finally the final assertion follows from the fact that the basin of attraction to the origin is symmetric with respect to the plane $z_{0}=-1 / 2$. Indeed, if we conjugate \tilde{f} by $(z, w) \mapsto(z-1 / 2, w)$ we get $\left(z^{2}+1 / 4+g_{\alpha, \beta}(w), w+w^{2}\right)$ which is symmetric with respect to the w-axis.

Remark. The criterion proved in [1] applying Hakim's results for the existence of basins of attraction for 2 -dimensional maps with a Jordan fixed point is the following. Write $f=\left(f_{1}, f_{2}\right)$,

$$
\begin{aligned}
& f_{1}(z, w)=z+w+a_{11}^{1} z^{2}+2 a_{12}^{1} z w+a_{22}^{1} w^{2}+\cdots \\
& f_{2}(z, w)=w+a_{11}^{2} z^{2}+2 a_{12}^{2} z w+a_{22}^{2} w^{2}+a_{111}^{2} z^{3}+\cdots
\end{aligned}
$$

and set $\varepsilon=a_{11}^{1}+a_{12}^{2}$ and $\eta=\left(a_{11}^{1}-a_{12}^{2}\right)^{2}+2 a_{111}^{2}$. Then there is a basin of attraction of the origin if $a_{11}^{2}=0$, $\eta \neq 0$ and $|\operatorname{Re}(\varepsilon / \sqrt{\eta})|>1$. In our case we have $a_{11}^{2}=0$ but $\varepsilon=\eta=1$ (independently of α and β), and so this criterion does not apply. See Figures 1.a and 1.b for two bidimensional slices of the basin of attraction when $\alpha=1$ and $\beta=0$.

2. Real dynamics

We now study the restriction of \tilde{f} to \mathbb{R}^{2} when both α and β are real, so that $\tilde{f}\left(\mathbb{R}^{2}\right) \subseteq \mathbb{R}^{2}$. The results in this case are fairly complete and interesting in their own right.

Take $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \mathbb{R}^{2}$ and set $\left(\tilde{x}_{n}, \tilde{u}_{n}\right)=\tilde{f}^{n}\left(\tilde{x}_{0}, \tilde{u}_{0}\right)$ as usual. First of all, if $\tilde{u}_{0} \notin[-1,0]$ then $\tilde{u}_{n} \rightarrow+\infty$. If $\tilde{u}_{0}=-1,0$, then $\tilde{u}_{n}=0$ for all $n \geq 1$ and therefore $\tilde{x}_{n} \rightarrow 0$ iff $\tilde{x}_{1} \in[-1,0]$, and $\tilde{x}_{n} \rightarrow+\infty$ otherwise. Now, if $\tilde{u}_{0}=0$ then $\tilde{x}_{1}=g\left(\tilde{x}_{0}\right) \in[-1,0]$ iff $\tilde{x}_{0} \in[-1,0]$. On the other hand, if $\tilde{u}_{0}=-1$ then $\tilde{x}_{1}=g\left(\tilde{x}_{0}\right)+g_{\alpha, \beta}(-1)$, and again we find the exact conditions ensuring $\tilde{x}_{n} \rightarrow 0$.

This is enough to determine the behavior of \tilde{x}_{n} when $\alpha<0$:
Proposition 2.1: Let $\tilde{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by (1.6) with $\alpha<0$ and $\beta \in \mathbb{R}$. Take ($\left.\tilde{x}_{0}, \tilde{u}_{0}\right) \in \mathbb{R} \times(-1,0)$. Then $\tilde{x}_{n} \rightarrow+\infty$; more precisely, $\tilde{x}_{n}=O(\log n)$. In particular, we have $\left(\tilde{x}_{n}, \tilde{u}_{n}\right) \rightarrow(0,0)$ iff $\tilde{u}_{0}=0$ and $\tilde{x}_{0} \in[-1,0]$ or $\tilde{u}_{0}=-1$ and $\tilde{x}_{0} \in g^{-1}\left(\left[-1-g_{\alpha, \beta}(-1),-g_{\alpha, \beta}(-1)\right]\right)$.
Proof: The point is that when $\alpha<0$ there is $b>0$ such that $g_{\alpha, \beta}$ is (positive and) decreasing in $[-b, 0]$; to be precise, $b=1 / 2 \beta$ if $\beta>0$, and any $b>0$ works if $\beta \leq 0$. Choose $n_{0} \geq 0$ so that $\tilde{u}_{n} \in(-b, 0)$ for all $n \geq n_{0}$. Then

$$
\begin{aligned}
\tilde{x}_{n} & =\tilde{x}_{n_{0}}+\sum_{j=n_{0}}^{n-1}\left(\tilde{x}_{j+1}-\tilde{x}_{j}\right)=\tilde{x}_{n_{0}}+\sum_{j=n_{0}}^{n-1}\left(\tilde{x}_{j}^{2}+g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right) \\
& \geq \tilde{x}_{n_{0}}+\sum_{j=n_{0}}^{n-1} g_{\alpha, \beta}\left(\frac{\tilde{u}_{1}}{j}\right)=\tilde{x}_{n_{0}}+|\alpha|\left|\tilde{u}_{1}\right| \sum_{j=n_{0}}^{n-1} \frac{1}{j}-|\alpha|\left|\tilde{u}_{1}\right|^{2} \beta \sum_{j=n_{0}}^{n-1} \frac{1}{j^{2}},
\end{aligned}
$$

thanks to Lemma 1.1.(ii), and we are done.
To study the case $\alpha>0$ we need the following observation:

Lemma 2.2: Let $\tilde{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by (1.6) with $\alpha>0$ and $\beta \in \mathbb{R}$. Then there is $b_{0}=b_{0}(\alpha, \beta) \in(0,1]$ such that if $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in[-1,0] \times\left[-b_{0}, 0\right]$ then $\tilde{x}_{n} \in[-1,0]$ for all $n \geq 0$ and there is $n_{0}=n_{0}(\alpha, \beta) \geq 0$ such that $\tilde{x}_{n} \in[-1 / 2,0]$ for all $n \geq n_{0}$.
Proof: Let

$$
b_{0}=\max \left\{b \in[0,1] \mid g_{\alpha, \beta}([-b, 0]) \subseteq[-3 / 4,0]\right\}
$$

and define $b_{1}<b_{0}$ in the same way replacing $-3 / 4$ by $-1 / 4$. Let $n_{0} \geq 0$ be the minimum integer such that $g^{n_{0}}\left(\left[-b_{0}, 0\right]\right) \subseteq\left[-b_{1}, 0\right]$ (and hence $g^{n}\left(\left[-b_{0}, 0\right]\right) \subseteq\left[-b_{1}, 0\right]$ for all $\left.n \geq n_{0}\right)$. The assertion then follows by remarking that $(\tilde{x}, \tilde{u}) \in[-1,0] \times\left[-b_{0}, 0\right]$ implies $g(\tilde{x})+g_{\alpha, \beta}(\tilde{u}) \in[-1,0]$, and that $(\tilde{x}, \tilde{u}) \in[-1,0] \times\left[-b_{1}, 0\right]$ implies $g(\tilde{x})+g_{\alpha, \beta}(\tilde{u}) \in[-1 / 2,0]$.

Set $D_{\mathbb{R}}=(-1,0) \times\left(-b_{0}, 0\right)$, where $b_{0}>0$ is given by the previous lemma. Then:
Lemma 2.3: Let $\tilde{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by (1.6) with $\alpha>0$ and $\beta \in \mathbb{R}$. Take $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in D_{\mathbb{R}}$. Then there are $c_{1}=c_{1}(\alpha, \beta)>0$ and $c_{2}=c_{2}\left(\alpha, \beta, \tilde{x}_{0}, \tilde{u}_{0}\right)>0$ such that

$$
\begin{equation*}
\forall n \geq 1 \tag{2.1}
\end{equation*}
$$

$$
\frac{c_{2}}{n^{1 / 2}} \leq\left|\tilde{x}_{n}\right| \leq \frac{c_{1}}{n^{1 / 2}}
$$

In particular, $\left(\tilde{x}_{n}, \tilde{u}_{n}\right) \rightarrow(0,0)$.
Proof: Let us start with the right-hand side of (2.1). Let $0<a_{0} \leq b_{0}$ be such that $g_{\alpha, \beta}$ is (negative and) increasing on $\left[-a_{0}, 0\right.$), and choose $n_{1} \geq n_{0}$ (where n_{0} is given by the previous lemma) such that $-1 / n$ (and hence \tilde{u}_{n}) belongs to $\left[-a_{0}, 0\right)$ for all $n \geq n_{1}$. Set

$$
c_{1}=\max \left\{\frac{1}{4}(1+\sqrt{1+16 \alpha(1+|\beta|)}), 1, \ldots, n_{1}^{1 / 2}\right\}
$$

Clearly the right-hand side of (2.1) holds for $1 \leq n \leq n_{1}$. Assume it holds for some $n \geq n_{1}$; then (recalling Lemmas 2.2 and 1.1)

$$
0 \geq \tilde{x}_{n+1}=\tilde{x}_{n}+\tilde{x}_{n}^{2}+g_{\alpha, \beta}\left(\tilde{u}_{n}\right) \geq-\frac{c_{1}}{n^{1 / 2}}+\frac{c_{1}^{2}}{n}+g_{\alpha, \beta}\left(-\frac{1}{n}\right) \geq-\frac{c_{1}}{(n+1)^{1 / 2}}
$$

because $\left(1+n^{-1}\right)^{1 / 2}-1<1 / 2 n$ implies
$c_{1}\left[\frac{1}{(n+1)^{1 / 2}}-\frac{1}{n^{1 / 2}}\right]+\frac{c_{1}^{2}-\alpha}{n}+\frac{\alpha \beta}{n^{2}} \geq \frac{1}{n}\left[c_{1}^{2}-\alpha-\frac{c_{1}}{2(n+1)^{1 / 2}}-\frac{\alpha|\beta|}{n}\right]>\frac{1}{n}\left[c_{1}^{2}-\frac{1}{2} c_{1}-\alpha(1+|\beta|)\right]=0$,
by the choice of c_{1}, and we are done.
To prove the left-hand side of (2.1), choose $a_{0}>0$ as before, and $n_{1} \geq n_{0}$ such that \tilde{u}_{n} (and hence \tilde{u}_{1} / n) belongs to $\left[-a_{0}, 0\right)$ for all $n \geq n_{1}$; we moreover require that $n_{1}>|\beta|\left|\tilde{u}_{1}\right|$. Set

$$
c_{2}=\min \left\{\frac{1}{\sqrt{2}} \sqrt{\alpha\left|\tilde{u}_{1}\right|\left(1-|\beta|\left|\tilde{u}_{1}\right| / n_{1}\right)},\left|\tilde{x}_{1}\right|, \ldots, n_{1}^{1 / 2}\left|\tilde{x}_{n_{1}}\right|\right\}
$$

Clearly the left-hand side of (2.1) holds for $1 \leq n \leq n_{1}$. Assume it holds for some $n \geq n_{1}$; then (recalling again Lemmas 2.2 and 1.1)

$$
\begin{aligned}
\tilde{x}_{n+1} & =\tilde{x}_{n}+\tilde{x}_{n}^{2}+g_{\alpha, \beta}\left(\tilde{u}_{n}\right) \leq-\frac{c_{2}}{n^{1 / 2}}+\frac{c_{2}^{2}}{n}+g_{\alpha, \beta}\left(\frac{\tilde{u}_{1}}{n}\right) \\
& =-\frac{c_{2}}{(n+1)^{1 / 2}}\left(\frac{n+1}{n}\right)^{1 / 2}\left[1+\frac{1}{c_{2} n^{1 / 2}}\left(\alpha\left|\tilde{u}_{1}\right|\left(1-\frac{\beta\left|\tilde{u}_{1}\right|}{n}\right)-c_{2}^{2}\right)\right] \leq-\frac{c_{2}}{(n+1)^{1 / 2}}
\end{aligned}
$$

again by the choice of c_{2}.

Set

$$
\Omega_{\mathbb{R}}=\bigcup_{n \geq 0}\left(\tilde{f}^{-n}\left(D_{\mathbb{R}}\right) \cap \mathbb{R}^{2}\right)
$$

Clearly, $\left(\tilde{x}_{n}, \tilde{u}_{n}\right) \rightarrow(0,0)$ for all $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \Omega_{\mathbb{R}}$. We now prove that $\Omega_{\mathbb{R}}$ is exactly the basin of attraction to the origin for \tilde{f} restricted to \mathbb{R}^{2}; in the proof we shall describe it precisely.
Theorem 2.4: Let $\tilde{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by (1.6) with $\alpha>0$ and $\beta \in \mathbb{R}$. Then $\Omega_{\mathbb{R}}$ is the basin of attraction of $(0,0)$ for $\left.\tilde{f}\right|_{\mathbb{R}^{2}}$. Furthermore, $\left(\tilde{x}_{n}, \tilde{u}_{n}\right) \rightarrow(0,0)$ for all $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \overline{\Omega_{\mathbb{R}}}$, whereas $\left\{\left(\tilde{x}_{n}, \tilde{u}_{n}\right)\right\}$ diverges if $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \notin \overline{\Omega_{\mathbb{R}}}$.
Proof: First of all, notice again that both $\Omega_{\mathbb{R}}$ and the basin of attraction are symmetric with respect to the axis $\tilde{x}_{0}=-1 / 2$.

Now take $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \mathbb{R} \times\left[-b_{0}, 0\right)$. We have the following possibilities:
(a) $\tilde{x}_{0} \in[-1,0]$;
(b) $\tilde{x}_{0}>0$;
(c) $\tilde{x}_{0}<-1$.

In case (a) we have $\left(\tilde{x}_{1}, \tilde{u}_{1}\right) \in D_{\mathbb{R}}$, and thus $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \Omega_{\mathbb{R}}$. Case (c) is equivalent to case (b), because of the simmetry with respect to $\tilde{x}_{0}=-1 / 2$; so we are left with the latter.

Take then $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \mathbb{R}^{2}$ so that $\tilde{x}_{0}>0$ and $\tilde{u}_{0} \in\left[-b_{0}, 0\right)$. There are only two possibilities: either there is a first $j_{0} \geq 1$ such that $\tilde{x}_{j_{0}}<0$, or $\tilde{x}_{j}>0$ for all $j \geq 0$ (remark that $\tilde{x}_{j_{0}}=0$ forces $\tilde{x}_{j_{0}+1}<0$). In the first case we have $\tilde{x}_{j_{0}}>g_{\alpha, \beta}\left(\tilde{u}_{j_{0}-1}\right)>-1$; therefore $\left(\tilde{x}_{j_{0}}, \tilde{u}_{j_{0}}\right) \in D_{\mathbb{R}}$ and $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \Omega_{\mathbb{R}}$.

So we are interested in understanding when the whole sequence $\left\{\tilde{x}_{n}\right\}$ stays positive. Since $\tilde{x}_{j+1}<\tilde{x}_{j}$ iff $\left|\tilde{x}_{j}\right|<\sqrt{\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|}$, it follows that if we have $\tilde{x}_{j_{0}+1} \geq \tilde{x}_{j_{0}}>0$ for some j_{0} large enough as to have $\tilde{u}_{j_{0}} \in\left[-a_{0}, 0\right]$, where a_{0} is as in the proof of Lemma 2.3, then

$$
\tilde{x}_{j_{0}+1} \geq \tilde{x}_{j_{0}} \geq \sqrt{\left|g_{\alpha, \beta}\left(\tilde{u}_{j_{0}}\right)\right|}>\sqrt{\left|g_{\alpha, \beta}\left(\tilde{u}_{j_{0}+1}\right)\right|}
$$

and so $\tilde{x}_{j_{0}+2} \geq \tilde{x}_{j_{0}+1}$. This means that, if it stays positive, the sequence $\left\{\tilde{x}_{n}\right\}$ is either eventually decreasing to 0 or eventually increasing to $+\infty$ (remember that if the sequence $\left\{\left(\tilde{x}_{n}, \tilde{u}_{n}\right)\right\}$ is converging it must converge to a fixed point of \tilde{f}).

We shall now prove that there is a function $\eta:\left[-b_{0}, 0\right] \rightarrow \mathbb{R}^{+}$such that:

- if $0<\tilde{x}_{0}<\eta\left(\tilde{u}_{0}\right)$ then $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \Omega_{\mathbb{R}}$;
- if $\tilde{x}_{0}=\eta\left(\tilde{u}_{0}\right)$ then $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \partial \Omega_{\mathbb{R}}$ and $\tilde{x}_{n} \rightarrow 0^{+}$;
- if $\tilde{x}_{0}>\eta\left(\tilde{u}_{0}\right)$ then $\tilde{x}_{n} \rightarrow+\infty$.

Set $\chi_{ \pm}(x)=\frac{1}{2}(\pm \sqrt{1+4 x}-1)$. It is easy to check that $\tilde{x}_{j+1}>a \geq 0$ iff $\tilde{x}_{j}>\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|+a\right)$. In particular,

$$
\begin{aligned}
\tilde{x}_{j+1}>0 & \Longleftrightarrow \tilde{x}_{j}>\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|\right) \Longleftrightarrow \tilde{x}_{j-1}>\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{j-1}\right)\right|+\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|\right)\right) \Longleftrightarrow \cdots \\
& \Longleftrightarrow \tilde{x}_{0}>\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{0}\right)\right|+\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{1}\right)\right|+\cdots+\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{j-1}\right)\right|+\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|\right)\right) \cdots\right)\right)=l_{j} \\
\tilde{x}_{j+1}<\tilde{x}_{j} & \Longrightarrow \tilde{x}_{j}<\sqrt{\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|} \Longrightarrow \tilde{x}_{j-1}<\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{j-1}\right)\right|+\sqrt{\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|}\right) \Longrightarrow \cdots \\
& \Longrightarrow \tilde{x}_{0}<\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{0}\right)\right|+\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{1}\right)\right|+\cdots+\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{j-1}\right)\right|+\sqrt{\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|}\right) \cdots\right)\right)=m_{j}
\end{aligned}
$$

It is easy to check that $l_{j}<m_{j}$ for all $j \geq 0$ (because χ_{+}is increasing and $\chi_{+}(x) \leq \sqrt{x}$). Furthermore, the sequence $\left\{l_{j}\right\}$ is strictly increasing (this is obvious) and the sequence $\left\{m_{j}\right\}$ is eventually strictly decreasing (this follows from $\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{j-1}\right)\right|+\sqrt{\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|}\right)<\sqrt{\left|g_{\alpha, \beta}\left(\tilde{u}_{j-1}\right)\right|}$, which is a consequence of $\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|<\left|g_{\alpha, \beta}\left(\tilde{u}_{j-1}\right)\right|$, which in turns holds as soon as j is large enough). Finally, since $0<\chi_{+}^{\prime}(x)<1$ for all $x>0$, we have

$$
\begin{aligned}
\left|m_{j}-l_{j}\right| \leq & \mid \chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{1}\right)\right|+\cdots+\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{j-1}\right)\right|+\sqrt{\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|}\right) \cdots\right) \\
& \quad-\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{1}\right)\right|+\cdots \chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{j-1}\right)\right|+\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|\right)\right) \cdots\right) \mid \\
\leq & \cdots \leq\left|\sqrt{\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|}-\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{j}\right)\right|\right)\right| \rightarrow 0
\end{aligned}
$$

as $j \rightarrow+\infty$; therefore the two sequences converge to the same limit, which we shall denote by $\eta\left(\tilde{u}_{0}\right)$.
Now consider our \tilde{x}_{0}. We have three possibilities:
$-0<\tilde{x}_{0}<\eta\left(\tilde{u}_{0}\right)$. This means that $\tilde{x}_{0}<l_{j}$ eventually, that is $\tilde{x}_{j}<0$ eventually, and we have seen that this implies $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \Omega_{\mathbb{R}}$.
$-\tilde{x}_{0}>\eta\left(\tilde{u}_{0}\right)$. Then $\tilde{x}_{0}>l_{j}$ for all j 's, that is $\tilde{x}_{j}>0$ always, and $\tilde{x}_{0}>m_{j}$ if j is greater than some j_{0}. This means that $\tilde{x}_{j+1} \geq \tilde{x}_{j}$ eventually, and this forces $\tilde{x}_{n} \rightarrow+\infty$, as already remarked.

- $\tilde{x}_{0}=\eta\left(\tilde{u}_{0}\right)$. Then $l_{j}<\tilde{x}_{0}<m_{j}$ for all j large enough, and thus $\left\{\tilde{x}_{j}\right\}$ is positive and eventually strictly decreasing, necessarily to 0 . Thus $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \partial \Omega_{\mathbb{R}}$ and $\left(\tilde{x}_{n}, \tilde{u}_{n}\right) \rightarrow(0,0)$.
Clearly, $\eta(0)=0=\chi_{+}(0)$; but $l_{1}>\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{0}\right)\right|\right)$ as soon as $\left|g_{\alpha, \beta}\left(\tilde{u}_{1}\right)\right| \neq 0$, and thus in general we have

$$
\eta\left(\tilde{u}_{0}\right)>\chi_{+}\left(\left|g_{\alpha, \beta}\left(\tilde{u}_{0}\right)\right|\right) \geq 0
$$

Finally, take a generic $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \mathbb{R} \times[-1,0]$. Obviously, there is an $n_{0} \geq 0$ (it can be chosen depending only on α and β) such that $\tilde{u}_{n_{0}} \in\left[-b_{0}, 0\right]$. Then there are again only three possibilities:
(i) $-1-\eta\left(\tilde{u}_{n_{0}}\right)<\tilde{x}_{n_{0}}<\eta\left(\tilde{u}_{n_{0}}\right)$: then $\left(\tilde{x}_{n_{0}}, \tilde{u}_{n_{0}}\right) \in \Omega_{\mathbb{R}}$ - and thus $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \Omega_{\mathbb{R}}$ too.
(ii) $\tilde{x}_{n_{0}}=-1-\eta\left(\tilde{u}_{n_{0}}\right)$ or $\tilde{x}_{n_{0}}=\eta\left(\tilde{u}_{n_{0}}\right)$: then $\left(\tilde{x}_{n_{0}}, \tilde{u}_{n_{0}}\right) \in \partial \Omega_{\mathbb{R}}-$ and thus $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \partial \Omega_{\mathbb{R}}$, because $\left(\tilde{x}_{n}, \tilde{u}_{n}\right) \rightarrow(0,0)$.
(iii) $\tilde{x}_{n_{0}}<-1-\eta\left(\tilde{u}_{n_{0}}\right)$ or $\tilde{x}_{n_{0}}>\eta\left(\tilde{u}_{n_{0}}\right)$: then $\tilde{x}_{n} \rightarrow+\infty$.

Summing up, we have shown that the basin of attraction of the origin for $\left.\tilde{f}\right|_{\mathbb{R}^{2}}$ is $\Omega_{\mathbb{R}}$, that $\left(\tilde{x}_{n}, \tilde{u}_{n}\right) \rightarrow(0,0)$ iff $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \in \overline{\Omega_{\mathbb{R}}}$, and that $\left\{\left(\tilde{x}_{n}, \tilde{u}_{n}\right)\right\}$ diverges iff $\left(\tilde{x}_{0}, \tilde{u}_{0}\right) \notin \overline{\Omega_{\mathbb{R}}}$. See Figure 2 for a typical example of what $\Omega_{\mathbb{R}}$ looks like.

References

[1] M. Abate: Diagonalization of non-diagonalizable discrete holomorphic dynamical systems. Amer. J. Math. 122 (2000), 757-781.
[2] M. Abate: The residual index and the dynamics of holomorphic maps tangent to the identity. Duke Math. J. 107 (2001), 173-207.
[3] D. Coman, M. Dabija: On the dynamics of some diffeomorphisms of \mathbb{C}^{2} near parabolic fixed points. Houston J. Math. 24 (1998), 85-96.
[4] L. Carleson, T.W. Gamelin: Complex dynamics. Springer-Verlag, Berlin, 1993.
[5] E. Fontich: Asymptotic behavior near parabolic fixed points for a class of reversible maps. In Hamiltonian systems and celestial mechanics (Guanajuato, 1991), Adv. Ser. Nonlinear Dynam. 4, World Sci. Publ, River Edge, NJ, 1993, pp. 101-110.
[6] E. Fontich: Stable curves asymptotic to degenerate fixed points. Nonlinear Anal. 35 (1999), 711-733.
[7] M. Hakim: Attracting domains for semi-attractive transformations of \mathbb{C}^{p}. Publ. Matem. 38 (1994), 479-499.
[8] M. Hakim: Analytic transformations of $\left(\mathbb{C}^{p}, 0\right)$ tangent to the identity. Duke Math. J. 92 (1998), 403-428.
[9] M. Hakim: Stable pieces of manifolds in transformations tangent to the identity. Preprint, 1998.
[10] M. Rivi: Stable manifolds for semi-attractive holomorphic germs. To appear in Mich. Math. J., 2000.
[11] T. Ueda: Local structure of analytic transformations of two complex variables, I. J. Math. Kyoto Univ. 26 (1986), 233-261.
[12] T. Ueda: Local structure of analytic transformations of two complex variables, II. J. Math. Kyoto Univ. 31 (1991), 695-711.
$[13]$ B. Weickert: Attracting basins for automorphisms of \mathbb{C}^{2}. Inv. Math. 132 (1998), 581-605.

Figure legend 1.a: Figure 1.a. Bidimensional section $(z=w)$ of the basin of attraction when $\alpha=1$ and $\beta=0$.

Figure legend 1.b: Figure 1.b. Bidimensional section $(\operatorname{Re} z=\operatorname{Re} w=0)$ of the basin of attraction when $\alpha=1$ and $\beta=0$.

Figure legend 2: Figure 2.

