Basins of attraction in quadratic dynamical systems with a Jordan fixed point

Marco Abate

Dipartimento di Matematica, Università di Roma Tor Vergata Via della ricerca scientifica, 00133 Roma, Italy Fax: +39/06/7259-4699 e-mail: abate@mat.uniroma2.it

Abstract

In this note we study the dynamics of the family of maps $f(z, w) = (z+w+\alpha z^2+\beta w^2, w+w^2)$, both on \mathbb{R}^2 and on \mathbb{C}^2 . All these maps have the origin as an isolated non-hyperbolic fixed point where the differential is not diagonalizable. We shall give sufficient conditions on the parameters for the existence of an open set attracted by the origin.

Keywords: Discrete complex dynamics, parabolic fixed point, Jordan fixed point, basin of attraction.

0. Introduction

Recently, a number of papers studying the behavior of holomorphic discrete dynamical systems about a nonhyperbolic fixed point in several variables have appeared (see, e.g., [1–3, 7–9, 10–13]). Their main concern was to determine the existence of complex submanifolds attracted by the fixed point under the action of the dynamical system.

To be more precise, let us fix a (germ of) holomorphic self-map f of \mathbb{C}^n fixing the origin, and such that the spectrum of df_O is contained in $\Delta \cup \{1\}$ (the more extensively studied case up to now), where Δ is the open unit disk in the plane. A parabolic *d*-manifold for f at the origin is a complex *d*-manifold $M \subset \mathbb{C}^n$ such that $O \in \overline{M} \setminus M$ (where the closure is taken with respect to the topology of \mathbb{C}^n), $f(M) \subset M$ and $(f|_M)^k \to O$ as $k \to +\infty$; they are a natural several variables generalization of the petals appearing in the classical Leau-Fatou flower theorem. A parabolic *n*-manifold will be called a basin of attraction of the origin.

We shall limit ourselves here to recall what is known for n = 2, which is enough to put the results of the present note in perspective. We shall always assume that the origin is an isolated fixed point. If $(df_O) = \{1, \lambda\}$ with $|\lambda| < 1$ (the so-called *semiattractive* situation), Ueda [11, 12] and Hakim [7] proved the existence of a basin of attraction of the origin. If, on the other hand, $(df_O) = \{1\}$, there are two cases to consider. When $df_O = id$, then there always exists a parabolic 1-manifold (i.e., a parabolic curve) at the origin [2]; furthermore, Hakim [8, 9] and Weickert [13] gave sufficient conditions for the existence of a basin of attraction of the origin.

When $df_O = J_2$, where J_2 is the Jordan canonical matrix associated to the eigenvalue 1 (and then we say that the origin is a *Jordan fixed point*), the situation has been studied in [1]. In this case the map f can be written as

$$f_1(z,w) = z + w + a_{11}^1 z^2 + 2a_{12}^1 z w + a_{22}^1 w^2 + \cdots,$$

$$f_2(z,w) = w + a_{11}^2 z^2 + 2a_{12}^2 z w + a_{22}^2 w^2 + a_{111}^2 z^3 + \cdots$$

In [1] it is proved that (assuming that the origin is an isolated fixed point) if at least one of the quantities a_{11}^2 , $\varepsilon = a_{11}^1 + a_{12}^2$, $\eta = (a_{11}^1 - a_{12}^2)^2 + 2a_{111}^2$ is different from zero then the map f has at least one parabolic curve at the origin. But it turns out that this is always true, even when $a_{11}^2 = \varepsilon = \eta = 0$. Indeed, in the latter case blowing up the origin the germ f lifts to a germ of the form

$$\tilde{f}(z_1, z_2) = \left(z_1 + \alpha z_1^2 + z_1 z_2 + O(\|z\|^3), z_2 - 2\alpha^2 z_1^2 - 3\alpha z_1 z_2 - z_2^2 + O(\|z\|^3)\right),$$

for some $\alpha \in \mathbb{C}$. Using the terminology introduced in [2], it is easy to see that this map has two singular directions, $[1 : -\alpha]$ and [0 : 1]. The latter gives rise to a parabolic curve that should be discarded, because it is contained in the exceptional divisor of the blow-up. But the former, even if it is a degenerate characteristic direction in the sense of Hakim, has residual index -1/2 and thus, thanks to [2, Corollary 3.3], it also gives rise to a parabolic curve, which is transversal to the exceptional divisor and thus it can be projected down

Marco Abate

producing a parabolic curve at the origin for our map f. Thus, we have proved the existence of a parabolic curve in all cases when $df_O = J_2$ and the origin is an isolated fixed point (it should be remarked that this result is not a consequence of Hakim's theory, but it can be obtained only using the techniques introduced in [2]).

In [1] we also applied Hakim's results to get sufficient conditions for the existence of basins of attraction when $df_O = J_2$. The aim of this short note is to provide an example of a family of quadratic holomorphic self maps of \mathbb{C}^2 , with the origin as isolated fixed point, such that $df_O = J_2$ and with a basin of attraction of the origin even if they do not satisfy the sufficient conditions described in [1]. The family is the following:

$$f(z,w) = (z + w + \alpha z^2 + \beta w^2, w + w^2), \qquad (0.1)$$

with $\alpha \neq 0$ and $\beta \in \mathbb{C}$. When $\operatorname{Re} \alpha > 0$ this map has a basin of attraction of the origin (Theorem 1.3) but it does not satisfy the criterion described in [1, Remark 3.5].

We shall also study the action of map (0.1) on the real plane \mathbb{R}^2 when α and β are real; we shall obtain a fairly complete description of the dynamics, which is interesting because, as far as I know, there exist only a few papers devoted to real dynamical systems with a fixed point where the differential is not diagonalizable (the only ones I am aware of, that is [5, 6], do not study the family (0.1), and deal only with the existence of invariant curves).

1. Complex dynamics

We begin recalling a couple of results about the well-known map $g(w) = w + w^2$, which is the standard example of holomorphic map of one variable with a parabolic basin (at its unique fixed point, the origin); see, e.g., [4] for all unproved assertions. The basin of attraction to the origin is a cauliflower-like bounded set $C \subset \mathbb{C}$; the orbits of points outside \overline{C} go to infinity at an exponential rate; the boundary ∂C is the Julia set of g, and it is a closed completely invariant set containing the origin.

The following Lemma, whose proof is elementary, describes the behavior of g restricted to \mathbb{R} :

Lemma 1.1: For $\tilde{u}_0 \in \mathbb{R}$ set $\tilde{u}_n = g^n(\tilde{u}_0)$. Then:

- (i) For all $\tilde{u}_0 \in \mathbb{R} \setminus \{0, -1\}$ the sequence $\{\tilde{u}_n\}$ is strictly increasing.
- (ii) If $\tilde{u}_0 \in [-1, 0]$ then $\tilde{u}_n \to 0$; otherwise $\tilde{u}_n \to +\infty$.
- (iii) If $\tilde{u}_0 \in (-1, 0)$ then

$$\forall n \ge 1 \qquad \qquad -\frac{1}{n} \le \tilde{u}_n \le \frac{\tilde{u}_1}{n},\tag{1.1}$$

that is $|\tilde{u}_n| = O(1/n)$.

We shall also need a quantitative extimate on the way orbits inside C approach the origin:

Lemma 1.2: For all $w_0 \in C$ set $w_n = u_n + iv_n = g^n(w_0)$. Then

$$\lim_{n \to +\infty} nw_n = \lim_{n \to +\infty} nu_n = -1 \quad and \quad \lim_{n \to \infty} nv_n = 0.$$
(1.2)

More precisely, there are $c_1, c_2 > 0$ depending on w_0 such that

$$|1 + nu_n| \le |1 + nw_n| \le \frac{c_1}{n} \log n$$
(1.3)

and

$$|y_n| \le \frac{c_2}{n^2} \left(1 + \frac{c_1}{n} \log n \right)^2 \tag{1.4}$$

for all $n \geq 1$.

Proof: For all $w_0 \in C$ and $j \ge 1$ we can write

$$\frac{1}{w_j} = \frac{1}{w_{j-1}} - 1 + \frac{w_{j-1}}{1 + w_{j-1}}$$

Adding for j = 1, ..., n and dividing by n we find

$$\frac{1}{nw_n} = \frac{1}{nw_0} - 1 + \frac{1}{n} \sum_{j=1}^n \frac{w_{j-1}}{1 + w_{j-1}},$$

and thus (1.2) follows by the convergence of the averages of a converging sequence. In particular, we get a $k_1 > 0$ (depending on w_0) such that $|w_j| \le k_1/j$ for all $j \ge 1$. Thus there exists $k_2 > 0$ such that

$$\forall n \ge 1 \qquad \qquad \frac{1}{n} \left| \sum_{j=1}^n \frac{w_{j-1}}{1+w_{j-1}} \right| \le \frac{1}{n} \sum_{j=1}^n \frac{|w_{j-1}|}{1-|w_{j-1}|} \le \frac{k_2}{n} \log n.$$

Therefore we can find a suitable $c_1 > 0$ so that

$$|1 + nu_n| \le |1 + nw_n| \le n|w_n| \left[\frac{1}{n|w_0|} + \frac{1}{n} \left|\sum_{j=1}^n \frac{w_{j-1}}{1 + w_{j-1}}\right|\right] \le \frac{c_1}{n} \log n$$

for all $n \ge 1$, and (1.3) is proved.

Now let $F = \{\operatorname{Re} w < -3|w|^2\}$, and for every c > 0 set $H_c = \{|\operatorname{Im} w| < c|\operatorname{Re} w|^2|\} \cap F$. The set F is a disk of center -1/6 and radius 1/6, and it is well-known that for every $w_0 \in C$ there is $n_0 \geq 0$ such that $g^n(w_0) \in F$ for all $n \geq n_0$. Furthermore, it is easy to check that H_c is g-invariant for all c > 0. In particular, the g-invariance of $H_{|v_{n_0}|/|u_{n_0}|^2}$ implies

$$\forall n \ge n_0 \qquad \qquad |v_n| \le \frac{|v_{n_0}|}{|u_{n_0}|^2} |u_n|^2 \le \frac{|v_{n_0}|}{|u_{n_0}|^2} \frac{1}{n^2} \left(1 + \frac{c_1}{n} \log n\right)^2,$$

and so we can find $c_2 > 0$ such that (1.4) is satisfied for all $n \ge 1$.

As described in the introduction, we are interested in the dynamics of maps of the form

$$f(z,w) = (z + w + \alpha z^2 + \beta w^2, w + w^2),$$
(1.5)

with $\alpha \neq 0$ and $\beta \in \mathbb{C}$, whose only fixed point is the origin, which is a Jordan fixed point.

We first of all remark that they are conjugated to maps of the form

$$\tilde{f}(z,w) = (z + z^2 + \alpha(w + \beta w^2), w + w^2),$$
(1.6)

via the map $(z, w) \mapsto (z/\alpha, w)$. We set $g_{\alpha,\beta}(w) = \alpha(w + \beta w^2)$; in particular, $g_{1,1} = g$.

We shall write $z_0 = x_0 + iy_0$, $w_0 = u_0 + iv_0$ and $(z_n, w_n) = \tilde{f}^n(z_0, w_0)$. We now prove the existence of a basin of attraction of the origin when $\operatorname{Re} \alpha > 0$ and $\beta \in \mathbb{C}$:

Theorem 1.3: Let $\tilde{f}:\mathbb{C}^2 \to \mathbb{C}^2$ be given by (1.6). Assume $\operatorname{Re} \alpha > 0$, and choose $k_0 > 0$. Then there are $c_1, c_2, c_3 > 0$, continuous functions $a_1, a_2: [-1/2, 0] \to \mathbb{R}^+$ and a (discontinuous) function $n_0: [-1/2, 0] \to \mathbb{N}$ such that setting

$$D = \left\{ (z_0, w_0) \in \mathbb{C}^2 \mid x_0 \in [-1/2, 0), \, |y_0| < a_1(x_0), \, -a_2(x_0) < u_0 < 0, \, |v_0| < k_0 |u_0|^2 \right\}$$

then for every $(z_0, w_0) \in D$ we have

$$\forall n \ge 1 \qquad \qquad x_n \le -\frac{c_1 |x_1|}{n^{1/2}},\tag{1.7}$$

and

$$\forall n \ge n_0(x_0)$$
 $|x_n| \le \frac{c_2}{|x_1|n^{1/2}}$ and $|y_n| \le \frac{c_3}{|x_1|n^{1/2}}$. (1.8)

In particular, if we denote by D' the symmetric of D with respect to the plane z = -1/2, then the set $D \cup D'$ is contained into the basin of attraction of the origin.

Proof: It is easy to check that in the set $\{|v_0| \le k|u_0|^2\}$ one has

$$\operatorname{Re} g_{\alpha,\beta}(w_0) = (\operatorname{Re} \alpha)u_0 + O(|u_0|^2) \quad \text{and} \quad \operatorname{Im} g_{\alpha,\beta}(w_0) = (\operatorname{Im} \alpha)u_0 + O(|u_0|^2).$$

Therefore, recalling Lemma 1.2, we can find a_3 , k_1 , k_2 , $k_3 > 0$ (with $k_1 < 1 < k_2$) such that if $u_0 \in (-a_3, 0)$ and $|v_0| \le k_0 |u_0|^2$ then

$$-\frac{k_1}{n} \ge \operatorname{Re} g_{\alpha,\beta}(w_n) \ge -\frac{k_2}{n}$$
 and $|\operatorname{Im} g_{\alpha,\beta}(w_n)| \le \frac{k_3}{n}$

for all $n \geq 1$.

Now set $c_1 = \sqrt{k_1}$, $c_3 = k_3/c_1$ and $c_2 = \sqrt{2(k_2 + c_3^2)}$. For $x_0 \in [-1/2, 0)$ let $n_0 = n_0(x_0) \ge 1$ be the least integer greater than $|\tilde{x}_1|^{-2} \max\{(4c_1^2)^{-1}, 4c_2^2\}$, where $\tilde{x}_1 = x_0 + x_0^2 = g(x_0)$. Notice that $|x_1| \ge |\tilde{x}_1|$ for any $y_0 \in \mathbb{R}$ and $u_0 \in (-a_3, 0)$, and thus

$$n_0 > \frac{1}{|x_1|^2} \max\left\{\frac{1}{4c_1^2}, 4c_2^2\right\}.$$
(1.9)

Set $\tilde{x}_n = g^n(x_0)$, so that $(\tilde{x}_n, 0) = \tilde{f}^n(x_0, 0)$. By Lemma 1.1 we have $\tilde{x}_n \in [-1/4, 0)$ and

$$|\tilde{x}_n| \le \frac{1}{n} < \frac{c_2}{n^{1/2}}$$

for all $n \ge 1$. Therefore we can choose $a_1(x_0)$, $a_2(x_0) > 0$ (with $a_2(x_0) < a_3$), depending continuously on x_0 , such that if $|y_0| < a_1(x_0)$, $-a_2(x_0) < u_0 < 0$ and $|v_0| < k_0|u_0|^2$ then $|x_{n_0}| \le c_2/n_0^{1/2}$, $|y_{n_0}| \le c_3/n_0^{1/2}$ and $x_k \in (-1/2, 0)$ for $k = 0, \ldots, n_0$. In particular, (1.7) holds for n = 1 and (1.8) holds for $n = n_0$.

We now show, by induction, that (1.7) holds for $n = 1, ..., n_0$. Assume it holds for some $1 \le n < n_0$; since, by assumption, $x_n \in (-1/2, 0)$ and g is increasing in that interval, we have

$$x_{n+1} = x_n + x_n^2 - y_n^2 + \operatorname{Re} g_{\alpha,\beta}(w_n) \le -\frac{c_1 |x_1|}{n^{1/2}} + \frac{c_1^2 |x_1|^2}{n} - \frac{k_1}{n}$$

$$= -\frac{c_1 |x_1|}{(n+1)^{1/2}} \left(1 + \frac{1}{n}\right)^{1/2} \left(1 + \frac{k_1(1-|x_1|^2)}{c_1 |x_1| n^{1/2}}\right) \le -\frac{c_1 |x_1|}{(n+1)^{1/2}}.$$
(1.10)

So (1.7) holds for $n \leq n_0$.

Now we prove simultaneously both (1.7) and (1.8) by induction for $n \ge n_0$. First of all, notice that for any A > 0 we have

$$n \ge \frac{1}{4A^2} \implies \left(1 + \frac{1}{n}\right)^{1/2} \left(1 - \frac{A}{n^{1/2}}\right) < 1.$$
 (1.11)

Assume that (1.7) and (1.8) hold for some $n \ge n_0$; in particular,

$$0 > -\frac{c_1|x_1|}{n^{1/2}} \ge x_n \ge -\frac{c_2}{|x_1|n^{1/2}} \ge -\frac{c_2}{|x_1|n_0^{1/2}} > -1/2.$$

by (1.9), and we can repeat the computations in (1.10) to get (1.7) for n + 1.

Next

$$|y_{n+1}| \le |y_n|(1-2|x_n|) + |\operatorname{Im} g_{\alpha,\beta}(w_n)| \le \frac{c_3}{|x_1|n^{1/2}} \left(1 - \frac{2c_1|x_1|}{n^{1/2}}\right) + \frac{k_3}{n}$$
$$= \frac{c_3}{|x_1|(n+1)^{1/2}} \left(1 + \frac{1}{n}\right)^{1/2} \left(1 - \frac{c_1|x_1|}{n^{1/2}}\right) \le \frac{c_3}{|x_1|(n+1)^{1/2}},$$

where the last inequality holds because of (1.11) and (1.9).

We are ready for the last inductive step. We have

$$\begin{aligned} |x_{n+1}| &= |x_n + x_n^2| + |y_n|^2 + |\operatorname{Re} g_{\alpha,\beta}(w_n)| \le \frac{c_2}{|x_1|n^{1/2}} \left(1 - \frac{c_2}{|x_1|n^{1/2}}\right) + \frac{c_3^2}{|x_1|^2n} + \frac{k_2}{n} \\ &= \frac{c_2}{|x_1|(n+1)^{1/2}} \left(1 + \frac{1}{n}\right)^{1/2} \left(1 - \frac{c_2^2 - |x_1|^2k_2 - c_3^2}{c_2|x_1|n^{1/2}}\right) \le \frac{c_2}{(n+1)^{1/2}} \left(1 + \frac{1}{n}\right)^{1/2} \left(1 - \frac{c_2}{2|x_1|n^{1/2}}\right) \\ &\le \frac{c_2}{|x_1|(n+1)^{1/2}}, \end{aligned}$$

again by (1.11), because if $A = c_2/2|x_1|$ then $1/4A^2 = |x_1|^2/c_2^2 < 1$.

Finally the final assertion follows from the fact that the basin of attraction to the origin is symmetric with respect to the plane $z_0 = -1/2$. Indeed, if we conjugate \tilde{f} by $(z, w) \mapsto (z - 1/2, w)$ we get $(z^2 + 1/4 + g_{\alpha,\beta}(w), w + w^2)$ which is symmetric with respect to the *w*-axis.

Remark. The criterion proved in [1] applying Hakim's results for the existence of basins of attraction for 2-dimensional maps with a Jordan fixed point is the following. Write $f = (f_1, f_2)$,

$$f_1(z,w) = z + w + a_{11}^1 z^2 + 2a_{12}^1 z w + a_{22}^1 w^2 + \cdots,$$

$$f_2(z,w) = w + a_{11}^2 z^2 + 2a_{12}^2 z w + a_{22}^2 w^2 + a_{111}^2 z^3 + \cdots,$$

and set $\varepsilon = a_{11}^1 + a_{12}^2$ and $\eta = (a_{11}^1 - a_{12}^2)^2 + 2a_{111}^2$. Then there is a basin of attraction of the origin if $a_{11}^2 = 0$, $\eta \neq 0$ and $|\operatorname{Re}(\varepsilon/\sqrt{\eta})| > 1$. In our case we have $a_{11}^2 = 0$ but $\varepsilon = \eta = 1$ (independently of α and β), and so this criterion does not apply. See Figures 1.a and 1.b for two bidimensional slices of the basin of attraction when $\alpha = 1$ and $\beta = 0$.

2. Real dynamics

We now study the restriction of \tilde{f} to \mathbb{R}^2 when both α and β are real, so that $\tilde{f}(\mathbb{R}^2) \subseteq \mathbb{R}^2$. The results in this case are fairly complete and interesting in their own right.

Take $(\tilde{x}_0, \tilde{u}_0) \in \mathbb{R}^2$ and set $(\tilde{x}_n, \tilde{u}_n) = \tilde{f}^n(\tilde{x}_0, \tilde{u}_0)$ as usual. First of all, if $\tilde{u}_0 \notin [-1, 0]$ then $\tilde{u}_n \to +\infty$. If $\tilde{u}_0 = -1, 0$, then $\tilde{u}_n = 0$ for all $n \ge 1$ and therefore $\tilde{x}_n \to 0$ iff $\tilde{x}_1 \in [-1, 0]$, and $\tilde{x}_n \to +\infty$ otherwise. Now, if $\tilde{u}_0 = 0$ then $\tilde{x}_1 = g(\tilde{x}_0) \in [-1, 0]$ iff $\tilde{x}_0 \in [-1, 0]$. On the other hand, if $\tilde{u}_0 = -1$ then $\tilde{x}_1 = g(\tilde{x}_0) + g_{\alpha,\beta}(-1)$, and again we find the exact conditions ensuring $\tilde{x}_n \to 0$.

This is enough to determine the behavior of \tilde{x}_n when $\alpha < 0$:

Proposition 2.1: Let $\tilde{f}: \mathbb{R}^2 \to \mathbb{R}^2$ be given by (1.6) with $\alpha < 0$ and $\beta \in \mathbb{R}$. Take $(\tilde{x}_0, \tilde{u}_0) \in \mathbb{R} \times (-1, 0)$. Then $\tilde{x}_n \to +\infty$; more precisely, $\tilde{x}_n = O(\log n)$. In particular, we have $(\tilde{x}_n, \tilde{u}_n) \to (0, 0)$ iff $\tilde{u}_0 = 0$ and $\tilde{x}_0 \in [-1, 0]$ or $\tilde{u}_0 = -1$ and $\tilde{x}_0 \in g^{-1}([-1 - g_{\alpha,\beta}(-1), -g_{\alpha,\beta}(-1)])$.

Proof: The point is that when $\alpha < 0$ there is b > 0 such that $g_{\alpha,\beta}$ is (positive and) decreasing in [-b, 0]; to be precise, $b = 1/2\beta$ if $\beta > 0$, and any b > 0 works if $\beta \le 0$. Choose $n_0 \ge 0$ so that $\tilde{u}_n \in (-b, 0)$ for all $n \ge n_0$. Then

$$\tilde{x}_{n} = \tilde{x}_{n_{0}} + \sum_{j=n_{0}}^{n-1} (\tilde{x}_{j+1} - \tilde{x}_{j}) = \tilde{x}_{n_{0}} + \sum_{j=n_{0}}^{n-1} (\tilde{x}_{j}^{2} + g_{\alpha,\beta}(\tilde{u}_{j}))$$
$$\geq \tilde{x}_{n_{0}} + \sum_{j=n_{0}}^{n-1} g_{\alpha,\beta}\left(\frac{\tilde{u}_{1}}{j}\right) = \tilde{x}_{n_{0}} + |\alpha||\tilde{u}_{1}|\sum_{j=n_{0}}^{n-1} \frac{1}{j} - |\alpha||\tilde{u}_{1}|^{2}\beta \sum_{j=n_{0}}^{n-1} \frac{1}{j^{2}}$$

thanks to Lemma 1.1.(ii), and we are done.

To study the case $\alpha > 0$ we need the following observation:

Lemma 2.2: Let $\tilde{f}: \mathbb{R}^2 \to \mathbb{R}^2$ be given by (1.6) with $\alpha > 0$ and $\beta \in \mathbb{R}$. Then there is $b_0 = b_0(\alpha, \beta) \in (0, 1]$ such that if $(\tilde{x}_0, \tilde{u}_0) \in [-1, 0] \times [-b_0, 0]$ then $\tilde{x}_n \in [-1, 0]$ for all $n \ge 0$ and there is $n_0 = n_0(\alpha, \beta) \ge 0$ such that $\tilde{x}_n \in [-1/2, 0]$ for all $n \ge n_0$.

Proof: Let

$$b_0 = \max\{b \in [0,1] \mid g_{\alpha,\beta}([-b,0]) \subseteq [-3/4,0]\}$$

and define $b_1 < b_0$ in the same way replacing -3/4 by -1/4. Let $n_0 \ge 0$ be the minimum integer such that $g^{n_0}([-b_0, 0]) \subseteq [-b_1, 0]$ (and hence $g^n([-b_0, 0]) \subseteq [-b_1, 0]$ for all $n \ge n_0$). The assertion then follows by remarking that $(\tilde{x}, \tilde{u}) \in [-1, 0] \times [-b_0, 0]$ implies $g(\tilde{x}) + g_{\alpha,\beta}(\tilde{u}) \in [-1, 0]$, and that $(\tilde{x}, \tilde{u}) \in [-1, 0] \times [-b_1, 0]$ implies $g(\tilde{x}) + g_{\alpha,\beta}(\tilde{u}) \in [-1, 0]$, and that $(\tilde{x}, \tilde{u}) \in [-1, 0] \times [-b_1, 0]$ implies $g(\tilde{x}) + g_{\alpha,\beta}(\tilde{u}) \in [-1, 0]$.

Set $D_{\mathbb{R}} = (-1, 0) \times (-b_0, 0)$, where $b_0 > 0$ is given by the previous lemma. Then:

Lemma 2.3: Let $\tilde{f}: \mathbb{R}^2 \to \mathbb{R}^2$ be given by (1.6) with $\alpha > 0$ and $\beta \in \mathbb{R}$. Take $(\tilde{x}_0, \tilde{u}_0) \in D_{\mathbb{R}}$. Then there are $c_1 = c_1(\alpha, \beta) > 0$ and $c_2 = c_2(\alpha, \beta, \tilde{x}_0, \tilde{u}_0) > 0$ such that

$$\forall n \ge 1$$
 $\frac{c_2}{n^{1/2}} \le |\tilde{x}_n| \le \frac{c_1}{n^{1/2}}.$ (2.1)

In particular, $(\tilde{x}_n, \tilde{u}_n) \to (0, 0)$.

Proof: Let us start with the right-hand side of (2.1). Let $0 < a_0 \leq b_0$ be such that $g_{\alpha,\beta}$ is (negative and) increasing on $[-a_0, 0)$, and choose $n_1 \geq n_0$ (where n_0 is given by the previous lemma) such that -1/n (and hence \tilde{u}_n) belongs to $[-a_0, 0)$ for all $n \geq n_1$. Set

$$c_1 = \max\left\{\frac{1}{4}\left(1 + \sqrt{1 + 16\alpha(1 + |\beta|)}\right), 1, \dots, n_1^{1/2}\right\}$$

Clearly the right-hand side of (2.1) holds for $1 \le n \le n_1$. Assume it holds for some $n \ge n_1$; then (recalling Lemmas 2.2 and 1.1)

$$0 \ge \tilde{x}_{n+1} = \tilde{x}_n + \tilde{x}_n^2 + g_{\alpha,\beta}(\tilde{u}_n) \ge -\frac{c_1}{n^{1/2}} + \frac{c_1^2}{n} + g_{\alpha,\beta}\left(-\frac{1}{n}\right) \ge -\frac{c_1}{(n+1)^{1/2}} + \frac{c_1^2}{n^{1/2}} + \frac{c_1^2}{n^$$

because $(1 + n^{-1})^{1/2} - 1 < 1/2n$ implies

$$c_1\left[\frac{1}{(n+1)^{1/2}} - \frac{1}{n^{1/2}}\right] + \frac{c_1^2 - \alpha}{n} + \frac{\alpha\beta}{n^2} \ge \frac{1}{n}\left[c_1^2 - \alpha - \frac{c_1}{2(n+1)^{1/2}} - \frac{\alpha|\beta|}{n}\right] > \frac{1}{n}\left[c_1^2 - \frac{1}{2}c_1 - \alpha(1+|\beta|)\right] = 0,$$

by the choice of c_1 , and we are done.

To prove the left-hand side of (2.1), choose $a_0 > 0$ as before, and $n_1 \ge n_0$ such that \tilde{u}_n (and hence \tilde{u}_1/n) belongs to $[-a_0, 0)$ for all $n \ge n_1$; we moreover require that $n_1 > |\beta| |\tilde{u}_1|$. Set

$$c_2 = \min\left\{\frac{1}{\sqrt{2}}\sqrt{\alpha|\tilde{u}_1|(1-|\beta||\tilde{u}_1|/n_1)}, |\tilde{x}_1|, \dots, n_1^{1/2}|\tilde{x}_{n_1}|\right\}.$$

Clearly the left-hand side of (2.1) holds for $1 \le n \le n_1$. Assume it holds for some $n \ge n_1$; then (recalling again Lemmas 2.2 and 1.1)

$$\begin{split} \tilde{x}_{n+1} &= \tilde{x}_n + \tilde{x}_n^2 + g_{\alpha,\beta}(\tilde{u}_n) \le -\frac{c_2}{n^{1/2}} + \frac{c_2^2}{n} + g_{\alpha,\beta}\left(\frac{\tilde{u}_1}{n}\right) \\ &= -\frac{c_2}{(n+1)^{1/2}} \left(\frac{n+1}{n}\right)^{1/2} \left[1 + \frac{1}{c_2 n^{1/2}} \left(\alpha |\tilde{u}_1| \left(1 - \frac{\beta |\tilde{u}_1|}{n}\right) - c_2^2\right)\right] \le -\frac{c_2}{(n+1)^{1/2}}, \end{split}$$

again by the choice of c_2 .

Set

$$\Omega_{\mathbb{R}} = \bigcup_{n \ge 0} \left(\tilde{f}^{-n}(D_{\mathbb{R}}) \cap \mathbb{R}^2 \right).$$

Clearly, $(\tilde{x}_n, \tilde{u}_n) \to (0, 0)$ for all $(\tilde{x}_0, \tilde{u}_0) \in \Omega_{\mathbb{R}}$. We now prove that $\Omega_{\mathbb{R}}$ is exactly the basin of attraction to the origin for \tilde{f} restricted to \mathbb{R}^2 ; in the proof we shall describe it precisely.

Theorem 2.4: Let $\tilde{f}:\mathbb{R}^2 \to \mathbb{R}^2$ be given by (1.6) with $\alpha > 0$ and $\beta \in \mathbb{R}$. Then $\Omega_{\mathbb{R}}$ is the basin of attraction of (0,0) for $\tilde{f}|_{\mathbb{R}^2}$. Furthermore, $(\tilde{x}_n, \tilde{u}_n) \to (0,0)$ for all $(\tilde{x}_0, \tilde{u}_0) \in \overline{\Omega_{\mathbb{R}}}$, whereas $\{(\tilde{x}_n, \tilde{u}_n)\}$ diverges if $(\tilde{x}_0, \tilde{u}_0) \notin \Omega_{\mathbb{R}}$.

Proof: First of all, notice again that both $\Omega_{\mathbb{R}}$ and the basin of attraction are symmetric with respect to the axis $\tilde{x}_0 = -1/2$.

Now take $(\tilde{x}_0, \tilde{u}_0) \in \mathbb{R} \times [-b_0, 0)$. We have the following possibilities:

- (a) $\tilde{x}_0 \in [-1,0];$
- (b) $\tilde{x}_0 > 0;$
- (c) $\tilde{x}_0 < -1$.

In case (a) we have $(\tilde{x}_1, \tilde{u}_1) \in D_{\mathbb{R}}$, and thus $(\tilde{x}_0, \tilde{u}_0) \in \Omega_{\mathbb{R}}$. Case (c) is equivalent to case (b), because of the

similar with respect to $\tilde{x}_0 = -1/2$; so we are left with the latter. Take then $(\tilde{x}_0, \tilde{u}_0) \in \mathbb{R}^2$ so that $\tilde{x}_0 > 0$ and $\tilde{u}_0 \in [-b_0, 0)$. There are only two possibilities: either there is a first $j_0 \ge 1$ such that $\tilde{x}_{j_0} < 0$, or $\tilde{x}_j > 0$ for all $j \ge 0$ (remark that $\tilde{x}_{j_0} = 0$ forces $\tilde{x}_{j_0+1} < 0$). In the first case we have $\tilde{x}_{j_0} > g_{\alpha,\beta}(\tilde{u}_{j_0-1}) > -1$; therefore $(\tilde{x}_{j_0}, \tilde{u}_{j_0}) \in D_{\mathbb{R}}$ and $(\tilde{x}_0, \tilde{u}_0) \in \Omega_{\mathbb{R}}$.

So we are interested in understanding when the whole sequence $\{\tilde{x}_n\}$ stays positive. Since $\tilde{x}_{j+1} < \tilde{x}_j$ iff $|\tilde{x}_j| < \sqrt{|g_{\alpha,\beta}(\tilde{u}_j)|}$, it follows that if we have $\tilde{x}_{j_0+1} \ge \tilde{x}_{j_0} > 0$ for some j_0 large enough as to have $\tilde{u}_{j_0} \in [-a_0, 0]$, where a_0 is as in the proof of Lemma 2.3, then

$$\tilde{x}_{j_0+1} \ge \tilde{x}_{j_0} \ge \sqrt{|g_{\alpha,\beta}(\tilde{u}_{j_0})|} > \sqrt{|g_{\alpha,\beta}(\tilde{u}_{j_0+1})|}$$

and so $\tilde{x}_{i_0+2} \geq \tilde{x}_{i_0+1}$. This means that, if it stays positive, the sequence $\{\tilde{x}_n\}$ is either eventually decreasing to 0 or eventually increasing to $+\infty$ (remember that if the sequence $\{(\tilde{x}_n, \tilde{u}_n)\}$ is converging it must converge to a fixed point of f).

We shall now prove that there is a function $\eta: [-b_0, 0] \to \mathbb{R}^+$ such that:

- if $0 < \tilde{x}_0 < \eta(\tilde{u}_0)$ then $(\tilde{x}_0, \tilde{u}_0) \in \Omega_{\mathbb{R}}$;
- if $\tilde{x}_0 = \eta(\tilde{u}_0)$ then $(\tilde{x}_0, \tilde{u}_0) \in \partial \Omega_{\mathbb{R}}$ and $\tilde{x}_n \to 0^+$;
- if $\tilde{x}_0 > \eta(\tilde{u}_0)$ then $\tilde{x}_n \to +\infty$.

Set $\chi_{\pm}(x) = \frac{1}{2}(\pm\sqrt{1+4x}-1)$. It is easy to check that $\tilde{x}_{j+1} > a \ge 0$ iff $\tilde{x}_j > \chi_+(|g_{\alpha,\beta}(\tilde{u}_j)|+a)$. In particular, $(1 \quad (2))$

$$\begin{split} \tilde{x}_{j+1} > 0 &\iff \tilde{x}_j > \chi_+(|g_{\alpha,\beta}(\tilde{u}_j)|) \iff \tilde{x}_{j-1} > \chi_+(|g_{\alpha,\beta}(\tilde{u}_{j-1})| + \chi_+(|g_{\alpha,\beta}(\tilde{u}_j)|)) \iff \cdots \\ &\iff \tilde{x}_0 > \chi_+\left(|g_{\alpha,\beta}(\tilde{u}_0)| + \chi_+(|g_{\alpha,\beta}(\tilde{u}_1)| + \cdots + \chi_+(|g_{\alpha,\beta}(\tilde{u}_{j-1})| + \chi_+(|g_{\alpha,\beta}(\tilde{u}_j)|)) \cdots)\right) = l_j;\\ \tilde{x}_{j+1} < \tilde{x}_j \implies \tilde{x}_j < \sqrt{|g_{\alpha,\beta}(\tilde{u}_j)|} \implies \tilde{x}_{j-1} < \chi_+(|g_{\alpha,\beta}(\tilde{u}_{j-1})| + \sqrt{|g_{\alpha,\beta}(\tilde{u}_j)|}) \implies \cdots \\ \implies \tilde{x}_0 < \chi_+\left(|g_{\alpha,\beta}(\tilde{u}_0)| + \chi_+(|g_{\alpha,\beta}(\tilde{u}_1)| + \cdots + \chi_+(|g_{\alpha,\beta}(\tilde{u}_{j-1})| + \sqrt{|g_{\alpha,\beta}(\tilde{u}_j)|}) \cdots)\right) = m_j. \end{split}$$

It is easy to check that $l_j < m_j$ for all $j \ge 0$ (because χ_+ is increasing and $\chi_+(x) \le \sqrt{x}$). Furthermore, the sequence $\{l_j\}$ is strictly increasing (this is obvious) and the sequence $\{m_j\}$ is eventually strictly decreasing (this follows from $\chi_+(|g_{\alpha,\beta}(\tilde{u}_{j-1})| + \sqrt{|g_{\alpha,\beta}(\tilde{u}_j)|}) < \sqrt{|g_{\alpha,\beta}(\tilde{u}_{j-1})|}$, which is a consequence of $|g_{\alpha,\beta}(\tilde{u}_j)| < |g_{\alpha,\beta}(\tilde{u}_{j-1})|$, which in turns holds as soon as j is large enough). Finally, since $0 < \chi'_+(x) < 1$ for all x > 0, we have

$$|m_{j} - l_{j}| \leq \left| \chi_{+} \left(|g_{\alpha,\beta}(\tilde{u}_{1})| + \dots + \chi_{+} \left(|g_{\alpha,\beta}(\tilde{u}_{j-1})| + \sqrt{|g_{\alpha,\beta}(\tilde{u}_{j})|} \right) \dots \right) - \chi_{+} \left(|g_{\alpha,\beta}(\tilde{u}_{1})| + \dots + \chi_{+} \left(|g_{\alpha,\beta}(\tilde{u}_{j-1})| + \chi_{+} \left(|g_{\alpha,\beta}(\tilde{u}_{j})| \right) \right) \dots \right) \right|$$
$$\leq \dots \leq \left| \sqrt{|g_{\alpha,\beta}(\tilde{u}_{j})|} - \chi_{+} \left(|g_{\alpha,\beta}(\tilde{u}_{j})| \right) \right| \rightarrow 0$$

- as $j \to +\infty$; therefore the two sequences converge to the same limit, which we shall denote by $\eta(\tilde{u}_0)$. Now consider our \tilde{x}_0 . We have three possibilities:
 - $-0 < \tilde{x}_0 < \eta(\tilde{u}_0)$. This means that $\tilde{x}_0 < l_i$ eventually, that is $\tilde{x}_i < 0$ eventually, and we have seen that this implies $(\tilde{x}_0, \tilde{u}_0) \in \Omega_{\mathbb{R}}$.
 - $\tilde{x}_0 > \eta(\tilde{u}_0)$. Then $\tilde{x}_0 > l_j$ for all j's, that is $\tilde{x}_j > 0$ always, and $\tilde{x}_0 > m_j$ if j is greater than some j_0 . This means that $\tilde{x}_{j+1} \geq \tilde{x}_j$ eventually, and this forces $\tilde{x}_n \to +\infty$, as already remarked.
 - $\tilde{x}_0 = \eta(\tilde{u}_0)$. Then $l_j < \tilde{x}_0 < m_j$ for all j large enough, and thus $\{\tilde{x}_j\}$ is positive and eventually strictly decreasing, necessarily to 0. Thus $(\tilde{x}_0, \tilde{u}_0) \in \partial \Omega_{\mathbb{R}}$ and $(\tilde{x}_n, \tilde{u}_n) \to (0, 0)$.

Clearly, $\eta(0) = 0 = \chi_+(0)$; but $l_1 > \chi_+(|g_{\alpha,\beta}(\tilde{u}_0)|)$ as soon as $|g_{\alpha,\beta}(\tilde{u}_1)| \neq 0$, and thus in general we have $\eta(\tilde{u}_0) > \chi_+(|g_{\alpha,\beta}(\tilde{u}_0)|) \ge 0.$

Finally, take a generic $(\tilde{x}_0, \tilde{u}_0) \in \mathbb{R} \times [-1, 0]$. Obviously, there is an $n_0 \ge 0$ (it can be chosen depending only on α and β) such that $\tilde{u}_{n_0} \in [-b_0, 0]$. Then there are again only three possibilities:

- (i) $-1 \eta(\tilde{u}_{n_0}) < \tilde{x}_{n_0} < \eta(\tilde{u}_{n_0})$: then $(\tilde{x}_{n_0}, \tilde{u}_{n_0}) \in \Omega_{\mathbb{R}}$ and thus $(\tilde{x}_0, \tilde{u}_0) \in \Omega_{\mathbb{R}}$ too.
- (ii) $\tilde{x}_{n_0} = -1 \eta(\tilde{u}_{n_0})$ or $\tilde{x}_{n_0} = \eta(\tilde{u}_{n_0})$: then $(\tilde{x}_{n_0}, \tilde{u}_{n_0}) \in \partial\Omega_{\mathbb{R}}$ and thus $(\tilde{x}_0, \tilde{u}_0) \in \partial\Omega_{\mathbb{R}}$, because $(\tilde{x}_n, \tilde{u}_n) \to (0, 0).$
- (iii) $\tilde{x}_{n_0} < -1 \eta(\tilde{u}_{n_0})$ or $\tilde{x}_{n_0} > \eta(\tilde{u}_{n_0})$: then $\tilde{x}_n \to +\infty$.

Summing up, we have shown that the basin of attraction of the origin for $\tilde{f}|_{\mathbb{R}^2}$ is $\Omega_{\mathbb{R}}$, that $(\tilde{x}_n, \tilde{u}_n) \to (0,0)$ iff $(\tilde{x}_0, \tilde{u}_0) \in \overline{\Omega_{\mathbb{R}}}$, and that $\{(\tilde{x}_n, \tilde{u}_n)\}$ diverges iff $(\tilde{x}_0, \tilde{u}_0) \notin \overline{\Omega_{\mathbb{R}}}$. See Figure 2 for a typical example of what $\Omega_{\mathbb{R}}$ looks like.

References

- [1]M. Abate: Diagonalization of non-diagonalizable discrete holomorphic dynamical systems. Amer. J. Math. **122** (2000), 757–781.
- M. Abate: The residual index and the dynamics of holomorphic maps tangent to the identity. Duke [2]Math. J. **107** (2001), 173–207.
- D. Coman, M. Dabija: On the dynamics of some diffeomorphisms of \mathbb{C}^2 near parabolic fixed points. [3]Houston J. Math. 24 (1998), 85–96.
- L. Carleson, T.W. Gamelin: Complex dynamics. Springer-Verlag, Berlin, 1993. [4]
- E. Fontich: Asymptotic behavior near parabolic fixed points for a class of reversible maps. In Hamil-[5]tonian systems and celestial mechanics (Guanajuato, 1991), Adv. Ser. Nonlinear Dynam. 4, World Sci. Publ, River Edge, NJ, 1993, pp. 101–110.
- [6]E. Fontich: Stable curves asymptotic to degenerate fixed points. Nonlinear Anal. 35 (1999), 711–733.
- M. Hakim: Attracting domains for semi-attractive transformations of \mathbb{C}^p . Publ. Matem. 38 (1994), [7]479 - 499.
- M. Hakim: Analytic transformations of $(\mathbb{C}^p, 0)$ tangent to the identity. Duke Math. J. 92 (1998), [8] 403 - 428.
- [9]M. Hakim: Stable pieces of manifolds in transformations tangent to the identity. Preprint, 1998.
- [10]M. Rivi: Stable manifolds for semi-attractive holomorphic germs. To appear in Mich. Math. J., 2000.
- T. Ueda: Local structure of analytic transformations of two complex variables, I. J. Math. Kyoto [11]Univ. 26 (1986), 233–261.
- T. Ueda: Local structure of analytic transformations of two complex variables, II. J. Math. Kyoto [12]Univ. **31** (1991), 695–711.
- B. Weickert: Attracting basins for automorphisms of \mathbb{C}^2 . Inv. Math. **132** (1998), 581–605. [13]

Figure legend 1.a: Figure 1.a. Bidimensional section (z = w) of the basin of attraction when $\alpha = 1$ and $\beta = 0$.

Figure legend 1.b: Figure 1.b. Bidimensional section ($\operatorname{Re} z = \operatorname{Re} w = 0$) of the basin of attraction when $\alpha = 1$ and $\beta = 0$.

Figure legend 2: Figure 2.