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ABSTRACT
In this note we study the dynamics of the family of maps f(z,w) = (2 +w+az?+ Bw?, w+w?),
both on R? and on C?. All these maps have the origin as an isolated non-hyperbolic fixed point
where the differential is not diagonalizable. We shall give sufficient conditions on the parameters
for the existence of an open set attracted by the origin.
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0. Introduction

Recently, a number of papers studying the behavior of holomorphic discrete dynamical systems about a non-
hyperbolic fixed point in several variables have appeared (see, e.g., [1-3, 7-9, 10-13]). Their main concern
was to determine the existence of complex submanifolds attracted by the fixed point under the action of the
dynamical system.

To be more precise, let us fix a (germ of ) holomorphic self-map f of C™ fixing the origin, and such that
the spectrum of dfo is contained in A U {1} (the more extensively studied case up to now), where A is the
open unit disk in the plane. A parabolic d-manifold for f at the origin is a complex d-manifold M c C"
such that O € M \ M (where the closure is taken with respect to the topology of C"), f(M) C M and
(fla)* — O as k — +o0; they are a natural several variables generalization of the petals appearing in the
classical Leau-Fatou flower theorem. A parabolic n-manifold will be called a basin of attraction of the origin.

We shall limit ourselves here to recall what is known for n = 2, which is enough to put the results
of the present note in perspective. We shall always assume that the origin is an isolated fixed point. If
(dfo) = {1,\} with |\| < 1 (the so-called semiattractive situation), Ueda [11, 12] and Hakim [7] proved the
existence of a basin of attraction of the origin. If, on the other hand, (dfo) = {1}, there are two cases to
consider. When dfo = id, then there always exists a parabolic 1-manifold (i.e., a parabolic curve) at the
origin [2]; furthermore, Hakim [8, 9] and Weickert [13] gave sufficient conditions for the existence of a basin
of attraction of the origin.

When dfo = Jo, where Jy is the Jordan canonical matrix associated to the eigenvalue 1 (and then we
say that the origin is a Jordan fixed point), the situation has been studied in [1]. In this case the map f can
be written as

filz,w) =z +w+aj, 22 + 2al,2w + adow® + - - -
fo(z,w) = w + a2, 2% 4+ 2022w + adow? + a3, 25 + .

In [1] it is proved that (assuming that the origin is an isolated fixed point) if at least one of the quantities a?;,
e =al, +aly, n = (a}; —a?y)? + 242, is different from zero then the map f has at least one parabolic curve
at the origin. But it turns out that this is always true, even when a3, = ¢ = n = 0. Indeed, in the latter
case blowing up the origin the germ f lifts to a germ of the form

f(zl, 29) = (zl + az% + 2120 + O(HZH?’), 2o — 20427;% — 3az129 — zg + O(||z||3))7

for some o € C. Using the terminology introduced in [2], it is easy to see that this map has two singular
directions, [1: —a] and [0 : 1]. The latter gives rise to a parabolic curve that should be discarded, because it
is contained in the exceptional divisor of the blow-up. But the former, even if it is a degenerate characteristic
direction in the sense of Hakim, has residual index —1/2 and thus, thanks to [2, Corollary 3.3], it also gives
rise to a parabolic curve, which is transversal to the exceptional divisor and thus it can be projected down
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producing a parabolic curve at the origin for our map f. Thus, we have proved the existence of a parabolic
curve in all cases when dfo = Jo and the origin is an isolated fixed point (it should be remarked that this
result is not a consequence of Hakim’s theory, but it can be obtained only using the techniques introduced
in [2]).

In [1] we also applied Hakim’s results to get sufficient conditions for the existence of basins of attraction
when dfp = Js. The aim of this short note is to provide an example of a family of quadratic holomorphic
self maps of C?, with the origin as isolated fixed point, such that dfo = J» and with a basin of attraction of
the origin even if they do not satisfy the sufficient conditions described in [1]. The family is the following:

flz,w) = (z—&—w—i—ozzQ—i—ﬁwz,w—&—wQ)7 (0.1)

with a # 0 and § € C. When Rea > 0 this map has a basin of attraction of the origin (Theorem 1.3) but
it does not satisfy the criterion described in [1, Remark 3.5].

We shall also study the action of map (0.1) on the real plane R? when « and 8 are real; we shall obtain
a fairly complete description of the dynamics, which is interesting because, as far as I know, there exist only
a few papers devoted to real dynamical systems with a fixed point where the differential is not diagonalizable
(the only ones I am aware of, that is [5, 6], do not study the family (0.1), and deal only with the existence
of invariant curves).

1. Complex dynamics

We begin recalling a couple of results about the well-known map g(w) = w + w?, which is the standard
example of holomorphic map of one variable with a parabolic basin (at its unique fixed point, the origin);
see, e.g., [4] for all unproved assertions. The basin of attraction to the origin is a cauliflower-like bounded
set C' C C; the orbits of points outside C' go to infinity at an exponential rate; the boundary dC' is the Julia
set of g, and it is a closed completely invariant set containing the origin.

The following Lemma, whose proof is elementary, describes the behavior of g restricted to R:

Lemma 1.1: For iy € R set @, = g"(tg). Then:

(i) For all ay € R\ {0,—1} the sequence {uy,} is strictly increasing.
(ii) If g € [—1,0] then @, — 0; otherwise @, — +o0.
(ifi) If dip € (—1,0) then

Vn>1 _
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that is |ty = O(1/n).
We shall also need a quantitative extimate on the way orbits inside C' approach the origin:

Lemma 1.2: For all wy € C set w, = Uy, + v, = g"(wp). Then

lim nw, = lim nu, =-1 and lim nv, = 0. (1.2)
n—-+o0o n—-4oo n—oo

More precisely, there are c1, ca > 0 depending on wgy such that
|1+nun\§|1+nwn\§c—110gn (1.3)
n

and )
C2 C1
W< 2 (142 ) 14
vl < 5 (1+ S logn (14)
for alln > 1.

Proof: For all wy € C' and j > 1 we can write

14 ——.
wy wj—1 ].-I—'U}j,l
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Adding for j = 1,...,n and dividing by n we find

1 1 1 _
nWy, nwg n~—1+w;_4
Jj=1
and thus (1.2) follows by the convergence of the averages of a converging sequence. In particular, we get
a k1 > 0 (depending on wy) such that |w,| < kq/j for all j > 1. Thus there exists ks > 0 such that

n n

1 Wi_1 1 ‘w'—1| ko
Yn > 1 - = <= I < Zoen.

Therefore we can find a suitable ¢; > 0 so that

1 1~ wj_1 c1
1+nu,| <|1+n < nlw —_ 4 = — I || < Zlogn
1ot mal < Wl b\ SR 0 T S| < e

for all n > 1, and (1.3) is proved.

Now let F' = {Rew < —3Jw|?}, and for every ¢ > 0 set H. = {|Imw| < c|Rewl|?|} N F. The set F is
a disk of center —1/6 and radius 1/6, and it is well-known that for every wg € C there is ng > 0 such that
9" (wp) € F for all n > ny. Furthermore, it is easy to check that H, is g-invariant for all ¢ > 0. In particular,
the g-invariance of H\vno\/\unoP implies

Yn > ng |vp] < [n, [, |? < [on| 1 (1 + C—llogn) ,
|t 2 [t |? n? n
and so we can find ¢z > 0 such that (1.4) is satisfied for all n > 1. O

As described in the introduction, we are interested in the dynamics of maps of the form
flz,w) = (z +w+ az® + pw?, w + w?), (1.5)

with a # 0 and 8 € C, whose only fixed point is the origin, which is a Jordan fixed point.
We first of all remark that they are conjugated to maps of the form

fzw) = (z+ 22 + a(w + fw?), w + w?), (1.6)

via the map (z,w) — (2/a,w). We set go g(w) = a(w + Bw?); in particular, g11 = g.
We shall write zo = xg + iyo, wo = ug + v and (z,,w,) = f™(z0,wp). We now prove the existence of
a basin of attraction of the origin when Rea > 0 and § € C:

Theorem 1.3: Let f:C?> — C? be given by (1.6). Assume Rea > 0, and choose kg > 0. Then
there are ci, co, c3 > 0, continuous functions ai, as:[—1/2,0) — RT and a (discontinuous) function
ng: [—1/2,0) — N such that setting

D = {(ZO,'U}U) e (CQ ’ o € [—1/2,0), |y0| < al(x0)7 —ag(ifo) < ug < 0, |U()| < k()|U0|2}

then for every (zg,wg) € D we have

01|I1|
\V/TLZl xng_n1/2a

and

and |y < —2
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In particular, if we denote by D’ the symmetric of D with respect to the plane z = —1/2, then the set DUD’
is contained into the basin of attraction of the origin.

Proof: 1t is easy to check that in the set {|vg| < k|ug|?} one has
Re 9o 5(wo) = (Rea)ug + O(|ug|?) and Im g, 5(wo) = (Im a)ug + O(|uo|?).

Therefore, recalling Lemma 1.2, we can find as, k1, ko, k3 > 0 (with k1 < 1 < ko) such that if ug € (—as,0)
and |vg| < ko|uo|? then

-— >R a n Z - d I a, n S —_
—2Regap(wn) 2 - an | Tm g, 5(wn)| < —

for all n > 1.

Now set ¢1 = vVk1, c3 = ks/c1 and ca = /2(ka + c2). For zo € [—1/2,0) let ng = no(zo) > 1 be the
least integer greater than |#1| 2 max{(4c3)~1, 4¢3}, where 1 = x¢ + 22 = g(x0). Notice that |z1| > |#1] for
any yo € R and ug € (—as,0), and thus

1 1
ng > — max —,402}. 1.9
o> s a4 )

Set ., = g™ (xg), so that (Z,,0) = f"(z0,0). By Lemma 1.1 we have Z,, € [-1/4,0) and

|Zn| < 1
"=n nl/2
for all n > 1. Therefore we can choose a1 (o), az(xo) > 0 (with az(xo) < ag), depending continuously on zg,
such that if |yo| < a1(zo), —aa(xo) < ug < 0 and |vg| < ko|ug|? then |z,,| < cz/né/Q, [Yng| < 03/n(1)/2 and
xp € (=1/2,0) for k=0,...,ng. In particular, (1.7) holds for n = 1 and (1.8) holds for n = ny.
We now show, by induction, that (1.7) holds for n = 1,...,n9. Assume it holds for some 1 < n < ng;
since, by assumption, z,, € (—1/2,0) and g is increasing in that interval, we have

alzi] | Glw? k

Tn4+1 = Tn + mi - y72L + Rega,,@(wn) < -

nl/2 n n
(1.10)
:_M 1+l V2 1+k1(1—\x1|2) < _ ez
(n+1)1/2 n alzn’2 ) = (n+ 1)V/2

So (1.7) holds for n < nyg.
Now we prove simultaneously both (1.7) and (1.8) by induction for n > ng. First of all, notice that for
any A > 0 we have

1 1/2 A

Assume then that (1.7) and (1.8) hold for some n > ng; in particular,

cl|x1| Co C2
— > — >
nt/2 == T nie =

0> > —1/2,

a1 g

by (1.9), and we can repeat the computations in (1.10) to get (1.7) for n + 1.
Next

C3 261|I1| kg
[Ynt1] < |ynl(1 = 2[zn]) + [Im go,p(wn)| < |21 |n1/2 <1 T2 ) -

n
_ s (1 2 L alzly o c3
|z1|(n + 1)1/2 n nt/2 ) = |zi|(n+1)1/2’
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where the last inequality holds because of (1.11) and (1.9).
We are ready for the last inductive step. We have

2
2 2 C2 C2 c3 ko
n = [¥n n Re ga W) < =5 (1— —_
onial = ko + 2]l Rego )] < 2 (1= 2 ) 4
2 1_|_l 2 I_C%*|x1|2k2*03 < C2 1+l 1/2 1__Cc
|z1|(n + 1)1/2 n calzy|nt/? ~ (n+1)1/2 n 2|xq|nt/?
Co

[
= zf(n+ 12

again by (1.11), because if A = co/2|x1| then 1/4A4% = |21]?/c3 < 1.

Finally the final assertion follows from the fact that the basin of attraction to the origin is symmet-
ric with respect to the plane zg = —1/2. Indeed, if we conjugate f by (z,w) — (z — 1/2,w) we get
(22 +1/4+ ga p(w), w + w?) which is symmetric with respect to the w-axis. O

Remark. The criterion proved in [1] applying Hakim’s results for the existence of basins of attraction
for 2-dimensional maps with a Jordan fixed point is the following. Write f = (f1, f2),

fi(z,w) = 2+ w+ aj 2% + 2ai,2w + agow® + - -,

fo(z,w) = w + a3, 2% 4+ 2aT52w + azw® + a3 25 + -,
and set € = al; +a3, and n = (ai; —a35)?+2a?,;. Then there is a basin of attraction of the origin if a3, = 0,
n # 0 and |Re(e/\/n)| > 1. In our case we have af; = 0 but e =7 = 1 (independently of a and ), and so

this criterion does not apply. See Figures 1.a and 1.b for two bidimensional slices of the basin of attraction
when a« =1 and § = 0.

2. Real dynamics

We now study the restriction of f to R? when both a and 3 are real, so that f (Rz) C R?. The results in
this case are fairly complete and interesting in their own right.

Take (Zo,0) € R? and set (Z,,,) = f"(&o, o) as usual. First of all, if @y ¢ [—1,0] then @, — +oc.
If ap = —1, 0, then @, = 0 for all n > 1 and therefore z,, — 0 iff #; € [—1,0], and &,, — +o0o otherwise. Now,
if g = 0 then &1 = g(&o) € [—1,0] iff Zy € [-1,0]. On the other hand, if 4y = —1 then #1 = ¢(Z0)+ga,5(—1),
and again we find the exact conditions ensuring z,, — 0.

This is enough to determine the behavior of z,, when a < 0:

Proposition 2.1: Let f:R? — R? be given by (1.6) with o < 0 and 8 € R. Take (Zo, o) € R x (—1,0).
Then &, — 4o0; more precisely, &, = O(logn). In particular, we have (Z,,@,) — (0,0) iff 49 = 0 and
To € [—1,0] ortig = —1 and Ig € g_l([—l — gaﬂ(—l), —gaﬂ(—l)])-

Proof: The point is that when a < 0 there is b > 0 such that g, g is (positive and) decreasing in [—b, 0];

to be precise, b = 1/28 if § > 0, and any b > 0 works if 3 < 0. Choose ng > 0 so that @, € (=b,0) for
all n > ng. Then

n—1 n—1
B =Fng + Y, (@1 — &) = Fng + Y (&7 + ga,8(1))
Jj=mno Jj=no
n—1 i n—1 1 n—1 1
- 1 - . _
> g+ Y g () = +lallin] X 3~ ol Y 5,
Jj=no J Jj=no J J=mno J
thanks to Lemma 1.1.(ii), and we are done. O

To study the case a > 0 we need the following observation:
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Lemma 2.2: Let f:R? — R? be given by (1.6) with a > 0 and 3 € R. Then there is by = by(a, 3) € (0, 1]
such that if (Zg,ug) € [—1,0] X [=bg, 0] then &, € [-1,0] for all n > 0 and there is ng = ng(, 3) > 0 such
that &, € [—1/2,0] for all n > ny.

Proof: Let
by = max{b € [0,1] | ga,5([-b,0]) C [-3/4,0]},

and define by < by in the same way replacing —3/4 by —1/4. Let ng > 0 be the minimum integer such
that g™ ([—bo, 0]) C [—b1,0] (and hence g™([—bo,0]) C [—b1,0] for all n > ng). The assertion then follows by

remarking that (Z,a) € [—1,0] x [—bg, 0] implies g(Z) + ga,5(4) € [-1,0], and that (z,a) € [-1,0] x [~b1, 0]
implies ¢(Z) + ga, () € [-1/2,0]. O

Set Dr = (—1,0) x (—bg,0), where by > 0 is given by the previous lemma. Then:

Lemma 2.3: Let f:R* — R? be given by (1.6) with a > 0 and 3 € R. Take (&0, ) € Dg. Then there are
c1 =ci1(a,B) >0 and ¢o = co(a, B, &g, Bg) > 0 such that

C2 ~ C

1
Vn>1 i

In particular, (Z,4y,) — (0,0).

Proof: Let us start with the right-hand side of (2.1). Let 0 < ag < by be such that g, g is (negative and)
increasing on [—ag,0), and choose ny > ny (where ng is given by the previous lemma) such that —1/n (and
hence @) belongs to [—ag,0) for all n > ny. Set

1
cl:max{z(l—‘r 1“"160{(1""5'))7177”&/2}

Clearly the right-hand side of (2.1) holds for 1 < n < n;. Assume it holds for some n > ny; then (recalling
Lemmas 2.2 and 1.1)

S - L 2 RS c1 c? 1 S c1
02 Fnan = En b Bt geoplln) 2 =0q 5 F 0\ =3 ) 2 i

because (14 n~1)'/2 — 1 < 1/2n implies

C1
n

1 1] A —a af C1 alﬁl}

1
_ s 22 a0 _
(n+1)1/2  pl/2 Tt T h {Cl “ 2(n+1)1/2 n

1 1
> — [cf — 50 a(l+|8)| =0,
by the choice of ¢, and we are done.
To prove the left-hand side of (2.1), choose ag > 0 as before, and n; > ng such that a, (and hence @, /n)
belongs to [—ag, 0) for all n > ny; we moreover require that ny > |G||41]. Set

. 1 — = - 1/2)~ }
co =min < —+/alu|[(1 — ui|/n1), |T1],. .-, T Tn .
2 = i { /Al = ATl ).

Clearly the left-hand side of (2.1) holds for 1 < n < ny. Assume it holds for some n > ny; then (recalling
again Lemmas 2.2 and 1.1)

- - 92 . Co C% ’111
Tnit = In + T + Ja,s(lin) < =75 + 7+ gas |

1/2 -
Co n+1 1 . Bl | 9 Co
— 14— 1 2l <2
(n+1)1/2 ( n > { + conl/2 (a|u1 ( n 2= (n+1)1/2’

again by the choice of cs. |
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Set 5
o = | (f‘"(DR) HRQ) .
n>0
Clearly, (Zn,1,) — (0,0) for all (Zo, o) € Qr. We now prove that Qg is exactly the basin of attraction to
the origin for f restricted to R?; in the proof we shall describe it precisely.

Theorem 2.4: Let f:R? — R? be given by (1.6) with @ > 0 and 3 € R. Then Qg is the basin of
attraction of (0,0) for f|g>. Furthermore, (&y,,1y,) — (0,0) for all (&0, ) € Qr, whereas {(&,, ii,)} diverges
if (Zo,Uo) ¢ Or.
Proof: First of all, notice again that both Qg and the basin of attraction are symmetric with respect to the
axis T = —1/2.

Now take (Zg, @p) € R x [—bg,0). We have the following possibilities:

(a) To € [-1,0];

(b) To > 0;

(C) To < —1.

In case (a) we have (Z1,11) € Dg, and thus (Zo, o) € Qr. Case (c) is equivalent to case (b), because of the
simmetry with respect to Zgp = —1/2; so we are left with the latter.

Take then (&, ) € R? so that &5 > 0 and @g € [~bo,0). There are only two possibilities: either there
is a first jo > 1 such that Z,, <0, or &; > 0 for all j > 0 (remark that Z;, = 0 forces Z,+1 < 0). In the first
case we have &, > ga,3(4j,—1) > —1; therefore (Z;,,4;,) € Dr and (Zo, to) € Or.

So we are interested in understanding when the whole sequence {Z,} stays positive. Since &1 < Z;
iff |Z;] < \/|9a,5(4;)], it follows that if we have Z;y1 > &;, > 0 for some jj large enough as to have
@j, € [—ao, 0], where qq is as in the proof of Lemma 2.3, then

‘ijo-‘rl 2 ‘ijo 2 \/|9047[3(1~Ljo)| > \/|gaﬂ(ﬂjo+1)‘7

and so Zj 42 > Zj,4+1. This means that, if it stays positive, the sequence {Z,} is either eventually decreasing
to 0 or eventually increasing to 400 (remember that if the sequence {(Z,, 4, )} is converging it must converge
to a fixed point of f).
We shall now prove that there is a function 7: [~bg, 0] — R™ such that:

—if0<Zg < 77(’&0) then (.’30717,0) S QR;

— if Zo = n(tg) then (Zo, uo) € Qg and z,, — 0T;

— if g > n(ap) then Z,, — +oo.
Set x+(2) = $(+v1+ 4z —1). It is easy to check that &1 > a > 0iff Z; > x4 (|ga,s(@;)|+a). In particular,

(g
(o

Zjp1 >0 <= 25 > x4 (|90.8(05)]) <= Tj-1 > X4 (190.8(@5-1)] + X+ (|9a,8(05)])) <= -

= T > X+(Iga,ﬂ(ﬂo)| + X+ (19a,8(@)| + - 4+ X4 (190,8(@5-1)| + X+ (|9a,5(a;)])) )) =1
Fjp1 < Tj = Tj < \/19a,p(05)| = Tj-1 < X4 (190,6(T5-1)] + 1/ 19a,5(5)]) = -
= I < X+(\9a,ﬁ(@o)\ + X+ (I90,3(@)| + - - + X4 (190,885 -1)| + \/ga5(E@5)]) - - ~)> = m;.

It is easy to check that I; < m; for all j > 0 (because x4 is increasing and x4 (z) < /z). Further-
more, the sequence {l;} is strictly increasing (this is obvious) and the sequence {m,} is eventually strictly
decreasing (this follows from x4 (|ga.8(@-1)| + /190.8(@;)]) < v/|9a.8(@;—1)|, which is a consequence of
|90,8(%;)| < |ga,8(tj—1)|, which in turns holds as soon as j is large enough). Finally, since 0 < x/, (z) <1
for all x > 0, we have

Im; — 1| < x4 (19a.8(@1)| + - + X+ (|9a,8(@5-1)| + \/19a,8(@;)]) -+

= X+ (|9ap(@)| + - X+ (19os(@5-1)| + X+ (190,8(@5)])) - --)

e < | |9a,5(0;)] — X+(‘ga,,ﬁ(ﬁj)|)| —0

IN
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as j — 4o0; therefore the two sequences converge to the same limit, which we shall denote by n(yg).
Now consider our Zo. We have three possibilities:
— 0 < Zo < n(@p). This means that £y < I; eventually, that is &; < 0 eventually, and we have seen that
this implies (Zg,tg) € Or.
— Zo > n(t). Then Zy > I; for all j’s, that is Z; > 0 always, and Zo > m; if j is greater than some jo.
This means that Z;,, > ; eventually, and this forces Z,, — +o00, as already remarked.
— Zo = (o). Then l; < &y < m; for all j large enough, and thus {Z;} is positive and eventually strictly
decreasing, necessarily to 0. Thus (Zo, @) € 0Qr and (Zy, @y) — (0,0).
Clearly, n(0) = 0 = x+(0); but {1 > x+(|ga,5(T0)|) as soon as |ga,g(@1)| # 0, and thus in general we have

(o) > X+(|9a,6(t0)) > 0.
Finally, take a generic (Zg, ug) € R x [—1,0]. Obviously, there is an ng > 0 (it can be chosen depending
only on o and ) such that 4y, € [—=bg,0]. Then there are again only three possibilities:
(i) =1 = N(Tngy) < Zng < N(ng): then (Tng,Un,) € Qr — and thus (Zo, @) € Qg too.
(i) Zpny = =1 — N(tn,) OF Tpy, = N(liny): then (ZTp,,Un,) € Ir — and thus (Zg,ug) € g, because
(Zp, ) — (0,0).
(iil) Zpy < —1 = N(tny) O Tpny > N(ln,): then &, — +o0.
Summing up, we have shown that the basin of attraction of the origin for f|g> is Qg, that (Z,, @,) — (0,0) iff
(Zo,0) € Or, and that {(Z,, Uy, )} diverges iff (Zo,Uo) ¢ Qr. See Figure 2 for a typical example of what Qg

looks like. (]
References
[1] M. Abate: Diagonalization of non-diagonalizable discrete holomorphic dynamical systems. Amer. J.

Math. 122 (2000), 757-781.

[2] M. Abate: The residual index and the dynamics of holomorphic maps tangent to the identity. Duke
Math. J. 107 (2001), 173-207.

[3] D. Coman, M. Dabija: On the dynamics of some diffeomorphisms of C? near parabolic fixed points.
Houston J. Math. 24 (1998), 85-96.

[4] L. Carleson, T.W. Gamelin: Complex dynamics. Springer-Verlag, Berlin, 1993.

[5]  E. Fontich: Asymptotic behavior near parabolic fixed points for a class of reversible maps. In Hamil-
tonian systems and celestial mechanics (Guanajuato, 1991), Adv. Ser. Nonlinear Dynam. 4,
World Sci. Publ, River Edge, NJ, 1993, pp. 101-110.

[6) E. Fontich: Stable curves asymptotic to degenerate fixed points. Nonlinear Anal. 35 (1999), 711-733.

[7] M. Hakim: Attracting domains for semi-attractive transformations of C*. Publ. Matem. 38 (1994),
479-499.

[8] M. Hakim: Analytic transformations of (C?,0) tangent to the identity. Duke Math. J. 92 (1998),
403-428.

[9] M. Hakim: Stable pieces of manifolds in transformations tangent to the identity. Preprint, 1998.
[10] M. Rivi: Stable manifolds for semi-attractive holomorphic germs. To appear in Mich. Math. J., 2000.

[11] T. Ueda: Local structure of analytic transformations of two complex variables, I. J. Math. Kyoto
Univ. 26 (1986), 233-261.

[12] T. Ueda: Local structure of analytic transformations of two complex variables, II. J. Math. Kyoto
Univ. 31 (1991), 695-711.

[13] B. Weickert: Attracting basins for automorphisms of C?. Tnv. Math. 132 (1998), 581-605.

Figure legend 1.a: Figure 1.a. Bidimensional section (z = w) of the basin of attraction when oo =1
and 8 =0.

Figure legend 1.b: Figure 1.b. Bidimensional section (Rez = Rew = 0) of the basin of attraction
when a« =1 and g = 0.

Figure legend 2: Figure 2.



