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ABSTRACT
A complex geodesic in a complex manifold X is a holomorphic map
w: I — X, where D is the unit disk in C, which is an isometry be-
tween the Poincaré distance on [J and the Kobayashi distance on X. In
this paper we give a complete description of all complex geodesics in non-
compact hermitian symmetric spaces. The proof relies on the fact that
every non-compact hermitian symmetric spaces can be realized as the
unit ball for a suitable norm in a complex vector space; then Vesentini's
results on complex geodesics in balls combined with the structure theory
of hermitian symmetric spaces allow us to provide the desired list. We

end the paper providing ad hoc descriptions and proofs for $he classical
domains in E. Cartan’s realization.
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0. Introduction where 1 £ d < n, Ia is the d x d identity matrix, U € U{n) and
A complex geodesic in a complex manifold X is a holomorphic map : ;Zrzl;}é(g_\-fg}!s a holomerphic map with 3(0) = 0 and ||5(¢)] < I¢i

@: D — X from the unit disk D C C into X which is an isometry between
the Poincaré distance of [ and the Kobayashi distance of X (for defini-
i tion and properties of the Kobayashi distance we refer to [14] and [2]).
| Originally introduced by Vesentini in [20] to study the automorphism
2 group of the unit ball of L}(M. i), where (M, p) is a measure space, they
are a biholomorphic invariant attached to the manifold, and so their un-
derstanding may be useful for the study of the complex geometry of the
manifold. For instance, after the work of Lempert {16, 17] the complex
geodesics have become an important tool in the theory of bounded con-
vex domains of C"; see, e.g. [5], [18] and [3]. Furthermore, tliere are
important connections with the complex Monge-Amptre equation, con-
nections leading to fruitful investigations of circular domains and, more
generally, of manifolds of cireular type; see [22], [23]; [19] and [4]. Other
important works on complex geodesics are [7], [8], [25], [26], [27] and [28];
see [2, chapter 2.6] for a more complete introduction to the theory.
¢ An important problem is how to compute explicitely all complex 1. Bounded symmetric domains
b geodesics passing through a given peoint i a complex manifold. As far as
we know, up to now this problem has been solved only for the standard
hermitian unit ball of C* (Vesentini [27]) and for domains of the form

The general statement is very similar. Up io an automorphism, a
complex geodesic in a non-compact Lermitian symmetric spacelsplits in
two parts: a diagonal one, and a second one which is almost arhitrary
and orthogonal to the first one.

Since the proof of our main theorem relies on the machinery of sym-
metric spaces (and thus it may be not easily comprehensible for people
not used to that language), at the end of the paper we shall give a short
discussion of complex geodesics in the classical domains, providing ad
hoc elementary descriptions and prools, with the hope of maldngolem
mysterious the arguments used to prove our main result.

After the completion of this work T became aware that the main re-
sult {Theorem 1.8) may be obtained as a consequence of the boundary
structure of bounded symmetric domains in C* (see, e.g., [20, Theo-
rem 6.3]). Anyway, the present proof is more direct and elementary.

Let Xp be a non-compact hermitian symmetric space. We want to de-
scribe all complex geodesics : D — X;. Since X is homogeneous, it
suffices to describe all complex geodesics ¢ such that (2{0) = zq, where
xp € Xp is a fixed base point.

k. [z C™ |5+ + ] < 1} Let us recall a few facts from the theory of hermitian symmetric
. N -~ spaces; for all unproved assertions, we refer to [11], [20] and f1]. X, is
. (Poletskif [24] for p; = +-- = pu > 1, Genttlh [9] for py = -~ = pa = 1, a homogeneous space, and so it can be written as Xp = o/ Ky, where
i Blank et al. {6} for n = 2 and py = 2, Jarnicky, Pflug and Zeinstra {13] _ Gy is a non-compact connected simply connected semisimple Lie group
for the general case). : and Ky, the identity component of the isotropy group of zg, is a compacf?.
In this paper we shall describe all complex geodesics in non-compact : connected Lie subgroup of Gy. Let g, (respectively, by) be the Lie algebra
: hermitian symmetric spaces. The complete statement (Theorem 1.8) is of Gp (respectively, Ko}, and gy = f & mp the splitting induced by the
. slightly technical, but the Havor of the result is easily conveyed by an ; symmetty @ at To; Wo can be naturally identified with T, X, and thus
example. Let B(n) denote the Siegel disk of rank n, i.e., the domain of : it is endowed with a complex structure J. Let g (respectively, ¥, m) be
- - all symmetric complex n x n matrices of operator norm less than 1; B(n) the complexification of g, (respectively, &, mp), m, = imy, g, = 8 ® m,
%‘?&?@%& . is a typical non-compact hermitian symmetric space. Since it is homo- a compact real form of g, and + the conjugation of g with respect to Ge
g&g@,ﬂ%ﬁ:&%ﬁk . geneous, to list all complex geodesics it suffices to describe the complex ? (so that T|p = idg and T|m, = —idm,). ¥ {,) is the Killing form of g
Wg& . geodesics ¢ such that ¢(0) = 0. Then we shall prove that a holomorphic : set ’

«%‘, . ;2;111; w: D — B{n) with (0} = 0 is a complex geodesic iff it is of the Vu,neg (u,v), = (4, 7v).

- : .
pﬁw‘%f (< I, 0 . Since Xo is non-compact, the Killing form restricted to ¥, is negative
(%”%R@@ w0 =1 0 $(¢) v : definite, and restricted to mg is positive definite; it follows that {,), is a
":’3.";.\




positive definite hermitian product on g. In particular. we can introduce
a first norm on @

Yu &g lue| = ({u, u) )12

A second narm is obtained pulling back the operator noim via the adjoint
representation:

vueg ([l = ad(wl]| = sup{llw, ]l |+ € g, |z = 1}.

The norm || - | can be used to realize Xp as a bounded domain in the
complex vector space (mg,J):

Theorem 1.1: (Harish-Chandra [10], Hermann [12}) Let
B={uemg||lul <1}

Then there is a biholomorphism x: Xo — B such that v{zg) = 0.

S pur aim is to describe all complex geodesics = D -+ B such t.hfzt.
{0) = 0. Vesentini has studied the complex geodesics through‘t.he origin
in the unit ball for a norm on C"; his results are sununarized in

Theorem 1.2: (Vesentini [26, 27, 28]) Let B = {= € C” | [|:.|[ < 1}
be the unit ball for 2 norm || - || on C". Then for a ho.lomorph:c map
@D — B with{(0)=10 the following assertions are equivalent:

(i) ¢ is a complex geodesic;
(@) (Ol = ¢] for all ( € Ds
(iii) there is (p # 0 such that [l=o(Ca)ll = ICal-

Note that if u € &8 is a vector of norm 1, Theorem 1.2 shows that
the map @{¢) = Cu is a complex peodesic. These maps are the.z only
complex geodesics passing through the origin in the standard unit ball

of C™:

Proposition 1.3: (Vesentini [27]) Let B be the unit ball for t.he standard
hermitian norm of C". Then a holomorphic mapw: D — B with @(0) =0
is a complex geodesic iff it is of the form () = (u for some u € 85,

In general, as we shall see in our case toa, this i‘s -no.t true: Fhere may
be other complex geodesics passing through the origin in a 1fmt ball. |

Coming back to our problem, our goa¥ thus is to describe al}ll.ho o-
morphic maps @ D — B with it Ol = ¢ for all ¢ € D, For this, we
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need a sensible way to compute the norm | - i| — whence more technical
facts.

Cheose a Cartan subzlgebra h € £ and let A be the set of roots
of (g,h). If & € &, let g be the root space associated to a. For ev-
ery @ € A, take by € b such that ar(h) = {h, b} for all h € b; moreover,
set hy = 2ho/elha) €8, so that alh,) = 2.

Let {en [ @ € A} be a Wey! basis of g. The elements e, € g® have
the following properties:

{z) first of all

[fuae—a] = ha., [hn.,fjn] = Qea'

(€a1ewa) = 2/0.’(;10), TC€a = ™y

{b) if Ay {Anr) denoies the set of compact (non-compact} roots, le.,
the set of roots & € O such that g* C € (respectively, g% C m), we
have

o — C_a, Leg +e_a) El faecAy,

€x + € _q, ifeg - e_a) € Mg ifae Ay,

(¢} feares] = Nageospforall o, € A, o+ #0, where N, 5 €7 is

such that

(i) Napg=0iff e+ 8¢ A

(i) N_a,—g=Ngn=—Nap.
Let iy = }:we& Bha. Then hMty = ify; furthermore, there is iz € by so
that ad(fz){m yields the complex structure J on my inherited by the iden-
tification with T, Xo. Let m = mt @ m™ be the decomposition induced
by J {m¥ is the ti-eigenspace of J). Choose an ordering on A such that,
denoting by Al, (AT) the set of non-compact {(compact) positive roots,
we have m* = @QEA;& g”. Set

Tao = (Ea+ e al/2, Yaw =ilex —e—n)/2 € mg, foree AL;

then {&4 0, Veo o € A}\!}} is a B-basis of mg; furthermore, Jr,, = Yoo
and Jya,a = ~Laae

Let bp be a maximal abelian subalgebra of mg; the real dimension
r of By is called the rank of Xy, This is a well defined quantity since it
does not depend on the choice of the subalgebra by. In fact, given any
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two maximal abelian subalgebras by, by C mp, there exists an element Lemma 1.5: (i) Foralla € A we have
i € Ky such that
Ad{k)bg = by,

lihal® = (harha) = 4/alha);
Moreover, for every maximal abelian subalgebra by C wg one has

Ad(Kq)bo = my, (i) for all » € @ we have
! that is every element of mg is contained in a maximal abelian subalgebra. 1
A particularly nice maximal abelian subalgebra of mg has been con- |2 o = §|'fhw|;
. structed by Harish.Chandra. Two roots «, 3 are said to be strongly
orthogonal if & + B, a — 3 ¢ A. Let ¥ = {31,...,%} be the maximal A
/ set of strongly orthogonal non-compact positive roots construcied in {10] (iif) for all « € Aj; we have
- - where r is the rank of the non-compact hermitian symmetric space —
- ordered in such a way that ¥ < --+ <. Then ag = B Rryeisa lza.ol = [taol;
| maximal abelian subalgebra of mp. Let
%5‘%' T (iv) {Taoilao|a €AY} is areal (.),-orthogonal basis of mp.
a= EB(R%”"U @ Ryu; 0) = 00 B Jaai Proof: (1) It suffices to compute:
% i=1
w then @ is a 2-dimensional complex subspace of (mg, J) such that Jihal? = (ihas ihads = —(ioy iha) = (hay o)
5 Ad{Ky)a = mg. 4 - . :
. (Ko) o = (aha) = 4
2 o is the complexification of ng in (mo, J); in particular, writing (u instead a(li,)* alhy)
of (ReC)u -+ (Im{}Ju for (€T and u € my, a generic element of a is of
- the form

~ z \ {ii) Let cy be the generalized Cayley transform introcuced by Kora-
| U= w0y nyi and Wolf [13]. Ad{cg) is a (. )-isometry such that Ad(cy)zy . = Lhy
Hed for all ¢b € ¥, Hence ' -

with Ay € Cfor all ¥ € ¥.

This is more or less all what we need to compute the norm -1 : . 1 1. .
Tndeed, in [1] it is proved the following ool = (o f0.0) = glhes fru) = GHRT-
Proposition 1.4: (i) fAd(k)u]l = |lu]| for all u € mg and k € Ky;
(H) fu=3 ,cr o belongs to a, then (iii} Since [{hq, ®a.0] = 204 .6, it 1s easy to check that
llull = max{Ay| | ¥ € T}

A(i(exp(%[hu));ralo = Yo or

So to compute the norm of u € Wy it suffices to move it in gy using
Ad(Ky), and then apply the previous proposition. .
To prove our main theorem, we shall also use the first norm we ! {iv) Since e, is orthogonal to e for # # a, —a, it remains to check
: introduced. We summarize here the computations we shall need: : that o , is orthogonal to ya,0, which is an easy computation. O

and the assertion follows,
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As mentioned in the intreduction, a generic complex geodesic will Lemmea 1.6: Let I' C ¥, and take vy & Mgy, Then there is ko & K,
be the sum of two pieces, living in different subspaces. We turn now to such that Ad(ko) is the identity on ap , and Ad{ko)vy € QT o

the definition of these subspaces.

. . Proof: Let
For every a € A}, let g, , denote the 3-dimensional real subalgebra

= {uct|[ua j=(0)}

be the centralizer of ar , in &, and set &' = exp{ca) C Mop; C is a compact
subgroup of Ky such that Ad(k)|q,. = idg,  for all k € C.
Take uy € ag such that gp is the centralizer of ug in mg, Le., such

G0 = Bliha) B Bra o B Rya o C ag5

g, is o-invariant, r-invariant and ad{iz)-invariant. Moreover, it is clear
an
that g, ,NmMy = Craq is a complex subspace of (mg, J).

'

that
Now, let T' < ¥ be auy subset. We shall denote by AF the set of all ao = {1 € mg | [, w0} = 0}, (1.2}
non-compact positive roots which are orthogonal to ¥\ T. Put and consider the continuous function f:C — R given by
mp , = @ (R-L'n',n o Rya,a} = @ Cl‘c\-,a C my, f”") = (UU!Ad(k)UU)'
. aeat agalk Being € compact, f attains its absolute minimum in a point kg € C. In
. particular,
ol
- and - d
- ap o =mr ,Mag = EBR‘I T Vuce 0= d—(-un.Ad(e:{p(tu))Ad(kQ)UU) ,
;:% vEr i t=0
o Note that, since (by [L0]} a root a € Aj’, belongs to ;2\:;;\1. il @~ is not that is
a oot for all v € T — and & + + is never a root — we have Yu € cp {[Ad(ka)vo, uo), u) = 0. (1.3)
[ar o My r.al = (0} Now, it is easy to check that [Ad{kg)vg, ugl € cp- Hence, being ()
Yy ot M 0 ; N
negative definite on ¥y, (1.3) forces {Ad{fq)vp, ug] = 0 and thus, by (1.2),
Mg non-compact positive roat can be crthogonal to all elements of ¥, Ad(ky)vs € ag. Finally, vy was orthogonal tao ar oi thus Ad{kg)vy must
- so, by Lemma 1.5.(iv), we obtain the orthogonal decomposition be so, and therefore Ad(ko)vo € ay\p - |
o = My, B Myypo & W5 . Corollary 1.7: Let I' C ¥ and take u € ap , and v € Mg\r o+ Lhen
e + il = max{|lul], lv||}.
L oist [ 2o oo witha € Ar = AT\{AFUAT, ), the |
where mp 18 the span of ¥4 0. o, ) [ M r . p\_r. Proof: Writeu =} er AvTq0. Take kg € Ky as in Lemma 1.4, so that
set of roots which are orthogonal neither to T nor to ¥\ T, Accordingly, Ad(ke)v = 30 ; 'I:l' s recalling P ition 1.4, we get
any {holomorphic) map : D — mg can be decomposed as SEVRITT Loyeunr ATy JREN, TECAIIRE Troposiion 1.8, We ge
-+ = o = 2
oot B s an i + 0l = IAdUka) o+ 03] = s+ Ad (ko)
. . i = pep ATyl = max{|Ay]| | v € ¥
with (D) C mp4 B(D) C manyp., and ¢ (D) C mp . We shalt prove [Zoes 2z Uhllvew)
that, up to the action of Ad{/g}, any complex geodesic can be decm}l— _ = max{max{|A\,[ | v € T}, max{|Ay| | v € & \T}}
. . . — n — 7 i,
posed as in (1.1) with 7 = 0 and @r(C) = (3 er 2. f0F o te = max{|[ul, |Ad(ko)v]|} = max{lfull, [lo]|}-
» We still need a preliminary lenima. allowing us to compute the norm
L

- of u 4 v with u € ap , and © € My\r 4 _ 0




We are finally able to prove our main theorem:

Theorem 1.8: The complex geodesics w: D — B with (0) = 0 are all
the maps of the form

@(Q) = Ad(R) [ €Y 20+ 310 | (1.4)

Terl’

where k € Ko, T C % and ¢: D — wyp, is @ holomorphic map with
$(0) = 0 and [[B({)]| < [C} for all ¢ 7 0.

Proof: We start by showing that all maps of the form (1.4) are complex
geodesics. Take ¢y > 0; then, by Propesition 1.4 and Corollary 1.7,

ot Co)ll = 6o D _ 24,0 + @(C0) || = max{IGol, I3(Co)k} = ICol,

rel

and ¢ is a complex geodesic by Theorem 1.2.
Conversely, let v be a complex geodesic with {0} = 0, and choose
Co > 0. Up to the adjoint action of Ky, we can assume that

(P(CU) = CO Z Tvy.0 -+ Z f\u’:'rt,!l,m

+el wer\l

for some I C ¥ and A, > 0 with Ay < {p for all & € ¥\ T. Write

Py = Y wall)zau

+
Q€A L,

we must show that ¢, =0fora g (A'li' UAMNT, o ()= (forallveT
and, setting

() = Z wall)ra.a

+
Q’EAW\F

that |3(Off < [¢] for all £ # 0.
Take vp € T'. Since ||ad(t,9{())" < 1, we must have

o($) ikl < likag | (1.5)
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Put

Coo = {x € AT, | @ # 3 is not orthegonal to v},
and write

5‘9{() = Evn(()-r'm.o + T]'ro(()y-m.a -+ z (EG(C):B{X,U + nc(C)ya.s) + ‘r:’D(C}r

(.tEC'.,.u

where 2o = Lo + ie, and analogously for vg.
Now §pg,7h,,] = 0, becanse o is orthogonal to 39 iff a(hy) = G
Then

[‘P(C)a ih-ru] = 2(_’51u(c)y‘ru.o + Uvo(c)‘cvam)
+ Z (_EG(C)HG,O -+ rfcr(C)l'o:.o)v {15)

[ 3= .

where we used the fact (see, e.g., [21]) that (b, )= 1lforall @ € C,,.
S0 Lemma 1.5 yields

[2(0), iRl = Ao (OF |00+ D JpalC)Pl2a,0l?

AEC

|22 ()|, [* + Z loal O iza ol

oz Cq,

(1.7)

i

-The map f{{) = [x((},hy,] is holomorphic and, by (1.5}, its image is
contained in a hermitian ball of radius |ih, |, By Schwarz's lemma, this
implies

V(eD Qs iR ]I £ it PICP (1.8)
By assumption and (1.7), (1.8} is an equality for { = {p. FThis means, by
Theorem 1.2, that [ is a complex geodesic in that hermitian ball, and
hence, by Proposition 1.3 and (1.6), that
() =¢ and o =0foralla e .

We can repeat this argument for all v € T, Since

(afuap\r=1Jc,,
yel
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to finish the proof it only remains to show that [[2(C)|| < [¢} for all £ 5 0.
Put indeed we have already proved thai ¢ can be expressed as in (1.4}
thus,

vY(eD €] = [l = max{I¢E 13O}

again by Corollary 1.7. In particular, (D) is contained in B. If we
had J@(()| = (6] for some ¢ # 0O, by Theorem 1.2 we would have
B3O = €] for all ¢ € Dj but [l2(Cod|l < |Col by assumption, contradic-
tion, and we are done. |

2. The classical domains

We saw that any non-compact hermitian symmnetric space can be realized
as unit ball it a suitable complex vector space. It turns out that these
damains can be explicitely described: if the space is irreducible, besides
two exceptional domains, they belong to four infinite families, the so-
called classical domains of E. Cartan.

In this section we shall give ad hoc (proofs and) descriptions of com-
plex geodesics through the origin in classical domains, trying to make
Theorem 1.8 less esoteric.

Let M, ,(C) denote the space of px ¢ matrices with complex entries
(q < p), and let || - || denote the usual matrix {operator) norm. Then the
first classical domain B (p,g} C C77 is given by

Bylpig) = (Z € My o(C) || 2] > 1} = (Z € Myo{C) | I, — 272 > O},

where I, € M, 4(C) is the identity matrix, Z* = tZ is the adjoint of Z
and A > 0 means A is positive definite. Ko = 5(U(p) x U(gq)) acts

on By(p q) by
Z— UZV.

Then the complex geodesics in B {p, q) are given by

Proposition 2.1: The complex geodesics o D — By(p,q) with {0} =0
are all the maps of the form

=

U2 PR B
J-U(U Zm)h (2.1)
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where U E'U(p), VeUlg,i<d<gand Z:D — My_g,-4(C}is a
holomorphic map such that Z(0) = 0 and ||Z(¢)|| < €| for all ¢ £ 0.

Proof: 1t is clear that all the maps in (2.1} are complex geodesics. Con-

versely, let ¢ be a complex geodesic, and fix ¢y € D, {; > 0. Up to the
action of Ky, we can assume that

ol = (5 1)

for some 1 £ d < g, where A is a diagonal matrix with ||A| < [Co]. Write
_ [ Zulg) Z52(¢)
#l0 = (Z'zl(C) Zoa(C) )

where Z1({) € My q4(C), Z12{(} € My y-a(C) and so on.
We have

() € Dy == I — ()" 0(() > 0
= I;~ 210} 21:(¢) — Z5(0) 2 () > 0
— te(la = 210 Z1(0) = Z3,(Q) Z1(()) > 0
p d
= ZZ |:hk((;)|2 < d.
k=1lk=1

So the image of the map ¢ — (Z,1((), Z2:(¢}) is contained in the standard
hermitian ball of radius v/d in fC”"; in particular,

P d

SO ek (QFF < dlcl

h=1 k=1

But we have equality in ¢y therefore, by Thecrem 1.2 and Propostition 1.3,
this map is linear, that is Z{ () = (I and Z4, = (.

In the same way one shows that 24 = 0; so it remains to prove that
| Z22 ()| < |¢] for all ¢ € D\ {0}. Since ¢ is a complex geodesic and

Ol = max {[c], 1 222(O1},

we Immediately get [[Z20(C)|| < |¢]- If we had equality in one point, by
Theorem 1.2 Zos should be a complex geodesic in B, (p — d,q — d), and
so we should have || Z22(¢)]| = [¢] for all ¢ € D. But we know that this is
not true in (o, and we are done. d




The second classical domain in the Cartan realization is given by
Bytn) = {Z € M, () 1 12 < 1,42 = ~Z}.
The action of Ky = U{n) on Ba(n} is given by
Z=UZ'W.
Define Jg € Mag24(C) by

e (5 D (5 1)

Then the complex geodesics in Ba(n) are given by

Proposition 2.2: The complex geodesics i D) — Ba(n) with (0) = 0
are all the maps of the form

@O =U (C({f‘ z(()o) v, (2.2)

where U € U(n), 1 < d < [n/2] (the integer part of n/2), and more-
over Z: D -+ My_24n_24(C) is a holomorphic map such that Z{0) = 0,
t7 = —Z and | Z({)]] < |¢] for all { # 0.

Proof: Tt follows arguing exactly as in the proof of Proposition 2.1. O

The third classical domain in the Cartan realization is the Siegel disk
By(n) = {Z € Mo n(C) | 2] < 1,42 = Z}.
The action of K = U(n) on Bz(n) is again given by
Zw— UZ'W.

Then

Proposition 2.3: The complex geodesics w: D — By(n} with ¢{0) =0
are all the maps of the form

—p ¢ 0 ) 2.3
W= (5 4) 2.3
: is & holomor-
where U € U{n), 1 £ d<n,and Z:D — M —2dn—1d{C) Is 2
phic map such that Z(0) =0, 'Z = Z and 12Ol < i¢| for all £ £ 0.

Proof: Again, it follows arguing exactly as in the proof of Proposli:-}
tion 2.1.

M. Abuie
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Finally, the fourth domain in the Cartan realization is given by

Bu(n) = {z € C" | (=,5) +

(z2)* = [(z.5)]* <1},

where (,} is the standard hermitian product of C*. B,(n) is the unit
ball for the norm

1/2
=l = {0+ VEF-1EAR)
The action of Ky = §* x 80(n) on By(n) is given by
s e,
Finally, the complex geodesics are given by

Propaosition 2.4: The complex geodesics o: D~ By(n) with w(d) =0
are all the maps of the form

_ (C+9(())/2
="V | i(c—glc)/2 | {
0

)
i
=

where ¢ € R, U € 80(n) and g: D — D is a holomorphic function with
g(0) = 0.

Proof: 1t is easy to check that all maps of the form (2.4) are complex
geodesics. Conversely, let o be a complex geodesic with »(0) = 0. Up to
an automorphism, we can find ¢; > X > 0 such that

‘P(Cﬂ} = %‘(CU + ’\vi{cﬂ b ’\)! G! LR 0}'
Write
@(() = '(%(9-91(() +02(0)). 31 (21 (C) - @z{C))‘vs(C),---,an{C)),

which is always possible. Then

oy [* + fa]? - 2
(i) = ey > sl
i=3

(2. ?) = @102 + y_ 125,
j=3
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and so

(0, 2)° — (20 PY*

n

ol 2
. 2_ ”2 b1 T Y 128 y
- (iw:l . =5 ) + Zl%’l' - Zﬂ%
Jz

=3

n it
+ Ul + 2l Z kos|* — 2Re { ¢ Z@} -

=3 j=3
Now
(onf o+ leaf) Y ksl 2 2 foron D 85| 2 2Re | e 275 )
i=a i=l J=3
d ) .
n " n }
Yool 2 o]
7=3 =1
hence

(Je1]* = eal?)?
4 {2.5)

< (@, 0) + Ve 9)? = 1w B = [¢%

o) + Jeaf?
F}=

5 +

mfﬂ:{l’?l |2, ILPz

Tn particular, (D), w2(D) C Dj being ¢1(C) = Cos Sc.hwarz’s lemma
yields ¢, {¢) = (. But then (2.5) is an equality, and this may happen

only if
> kst
i=3

i

0}

and we are done. A

M. Abate 17

References

i1

f10]
1]
[12]
(13]

[14]

M. Abate: Orbit structure of non-compact hermitian symmetric
spaces. Rend. Circ. Mat. Palermo 36 (1987), 241-280.

M. Abate: Iteration theory of holomorphic maps on taut
manifolds. Mediterranean Press, Rende, Cosenza, 1089.

M. Abate: The Lindeldf principle and the angular derivative in
strongly convex domains. J. Anal. Math. 54 (1990), 189-228,

M. Abate, G. Patrizio: Unigueness of complex geodesics and char-
acterization of circular domains., Man. Math. 74 {1992), 277-297.
J. Bland, T. Duchamp: Moduli for pointed convex domains. Invent.
Math. 104 {1901}, 61-112.

B.E. Blanl, D. Fan, D. Klein, S.G. IKrantz, D, Ma, M.-Y. Pang: The
Kobayashi metric of 2 complex ellipsoid in C2. Preprint, 1991.

G. Gentili: On non-uniqueness of complex geodesics in convex bound-
ed domains. Attl Accad. Naz. Lincet Rend. Cl. Sci. Fis. Mat.
Natur. 79 (1985), 00-97.

G. Gentil: Oa complex geodesics of balanced convex domains. Ann.
Mat. Pura Appl. 144 (1986), 113-130.

G. Gentili: Regular complex geodesics for the domain D, = {(=\,...,
zn) € C" | |saf+ -+ |za| € 1}. In Complex Analysis H, Lect.
Notes in Math. 1277, Springer, Berlin, 1988, pp. 35-45.
Harish-Chandra: Representations of semisimple Lie groups V1. Amer,
J. Math. 78 (1956), 564-628.

5. Helgason: Differential geometry, Lie groups and symmetric
spaces. Academic Press, New York, 1978.

R. Hermann: Geomelric aspects of potential theory in symmetric
spaces J[. Math. Ann. 153 {19641), 384-394.

M. Jarnicki, P. Pflug, R. Zeinstra: Geodesics for convex complex
ellipsvids. Preprint, 1992,

5. Kobayashi: Hyperbolic manifolds and holomorphic map-
pings. Delcker, New Yorl, 1970.

A. Woranyi, J.A. Woll: Realization of hermitian symmetric spaces
as generalized half planes. Ann. Math. 81 (1965), 265-288.

L. Lempert: La métrique de Kobayashi et la représentation des do-
maines sur Ja boule. Bull. Soc. Math. France 109 (1981), 427-474.



18

{17] L. Lempert: Intrinsic distances and holomorphic retracts. In Com-
plex Analysis and Applications "81, Varna, Bulgarian Academy
of Sciences, Sofia, 1934, pp. 341-364.

[18] L. Lempert: Holomorphic invariants, normal forms, and the moduli
space of convex domains. Ann. Math. 128 (1988), 43~78.

[19] X.W. Leung, G. Patrizio, P.AL Wong: Isometries of intrinsic metrics
on strictly convex domains. Math. Z. 196 (1987), 343-353.

[20] O. Loos: Bounded symmetric domains and Jordan pairs. Lec-
ture MNates of the University of California at lrvine, 1977.

[21] C.C. Moore: Compactification of symmetric spaces I the Cartan
domains. Amer. J. Math. 86 (1964), 358-378.

[22] G. Patrizio: A characterization of complex manifolds biholomorphic
to a circular domain. Math. Z. 189 {1985), 343-363.

[23] G. Patrizio: Disques extremaux de Kobayashi et équation de Monge-
Ampére complexe. C.R. Acad. Sci. Paris 305 (1987), 721-724.

[24] E.A. Poletskit: The Euler-Lagrange equations for extremal holomor-
phic mappings of the unit disk, Mich. Math. 1. 30 (1983), 317-333.

[25] H.L. Royden, P.M. Wong: Carathéodory and Robayashi metrics on
cenvex domains. Preprint, 1983.

[26} E. Vesentini: Variations on a theme of Carathéodory. Ann. Sc.
Norm. Sup. Pisa 6 (1979), 39-G8.

[27] E. Vesentini: Complex geodesics.  Compos. Math. 44 (1981),
375-304.

{28] E. Vesentini: Complex geodesics and holemorphic maps. Symp.
Math. 26 {1982), 211-230.

[20] J.A. Wolf: Fine structures of hermitian symmetric spaces. In Sym-
metric Spaces, Dekker, New York, 1972, pp. 271-357.

Ricevuto il 6 lupglio 1992,

N Universiid degli Studi di Dologna
e~ e Digartimente di Matcmatica

SEMIMARI DI GEOMETRIA 1991 — 1993

Non-Abelian cohomology
and field theory

AKI.RA ASADA Department of Mathematics, Faculty of Science, Sinsyn Uni-
versity, Matumoto, 390, Japan

1. INTRODUCTION

This article deals with the wrinity of topological field theory, Chern-Simons field
theory and U{n)-target sigma-models,

Roughly speaking, this is a problem to clasifly the relations between Chern
classes, Chern-Simons classes and pull-back of cohomolegy generators of
Uy by U(ny-valued maps ([11]). But since Chern-Simens classes come
from the non-integrity of Chern-Simons forms, we need to consider fractional
Chern classes which can not be expressed as characteristic classes of
U(Tz)-buqdles {cf. [143, [16]). So we need some extended objects, namely
Z-d_smensmnai non-abelian (N A) de Rham cocycles (with respect to U(m)) ,
whu‘:p are defined by using non-abelian cohomology. Oa the other hand, to
clarify the relations between sigma-models and other objects, it is convenient

This paper 15 in final form and will not appesr elsewhere.




