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Abstract. We shall describe a canonical procedure to associate to any (germ of) holomorphic
self-map F of Cn fixing the origin so that dFO is invertible and non-diagonalizable an n-dimensional
complex manifold M , a holomorphic map π:M → Cn, a point e ∈M and a (germ of) holomorphic
self-map F̃ of M such that: π restricted to M \ π−1(O) is a biholomorphism between M \ π−1(O)
and Cn \ {O}; π ◦ F̃ = F ◦ π; and e is a fixed point of F̃ such that dF̃e is diagonalizable. Further-
more, we shall use this construction to describe the local dynamics of such an F nearby the origin
when sp(dFO) = {1}.

0. Introduction
In passing from one to several variables, possibly the first new phenomenon one has to deal with is the
existence of non-diagonalizable linear maps. Roughly speaking, one can think of them as some sort of
singularity in the space of all linear maps; indeed, a generic linear endomorphism is diagonalizable. It would
be interesting to have a device to “resolve” the singularity, similarly to what happens in algebraic geometry
for singularities of complex spaces.

In this paper we shall describe exactly such a device, in a more general holomorphic setting. Let
F ∈ End(Cn, O) be a (germ of) holomorphic self-map of Cn keeping the origin fixed and such that dFO is
invertible and non-diagonalizable. We shall build in a canonical way (depending only on the block structure
of the Jordan form of dFO) a new holomorphic map F̃ semi-conjugate to F (and actually conjugate to F
outside the origin) with a canonical fixed point e such that dF̃e is diagonalizable; the price to pay is that we
have to change the base manifold. We shall in fact prove the following result (see Theorem 2.4):

Theorem 0.1: (Diagonalization Theorem) Let F ∈ End(Cn, O) be such that dFO is invertible and non-
diagonalizable. Then there exist a complex n-dimensional manifold M , a holomorphic projection π: M → Cn,
a canonical point e ∈M and a (germ at π−1(O) of) holomorphic self-map F̃ :M →M such that:

(i) π restricted to M \ π−1(O) is a biholomorphism between M \ π−1(O) and Cn \ {O};
(ii) π ◦ F̃ = F ◦ π;
(iii) e is a fixed point of F̃ , and dF̃e is diagonalizable.

More precisely, if the Jordan canonical form of dFO contains ρ ≥ 1 blocks of length µ1 ≥ µ2 ≥ · · · ≥ µρ ≥ 1
corresponding respectively to eigenvalues λ1, λ2, . . . , λρ ∈ C, then dF̃e has eigenvalues λ̃1, 1, λ2/λ1, . . . , λρ/λ1

of multiplicity respectively 1, µ1 − 1, µ2, . . . , µρ, where λ̃1 = λ1 if µ1 > µ2, and λ̃1 = λ2
1/λ2 if µ1 = µ2.

One subtle point must be stressed here. If the only aim is to diagonalize the differential, one can choose
among several different constructions; but most of them are useless for the dynamical applications we have in
mind. For instance, the standard way to resolve singularities in algebraic geometry is by blowing up points.
One could do the same here: M could be obtained by Cn blowing up a suitable sequence of points, and then
there is a unique way to lift F to a self-map F̃ of M enjoying some of the properties we are looking for.
Unfortunately, this naive approach is too rough: the manifold M constructed in this way is so large that
many properties of the original map F will be hidden inside the singular divisor π−1(O).

To give an idea why this is the case (see Remark 3.3 for a more precise explanation), let us discuss what
is known about the local dynamics of F nearby the fixed point O. In the hyperbolic case (that is, when dFO
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has no eigenvalues of modulus one) the stable manifold theorem (see, e.g., [Wu] for the statement in the
complex case; see also [S] and [R1, 2] for the attracting case) describes completely the situation: there are two
local F -invariant manifolds, the stable one W s and the unstable one Wu, intersecting transversally at the
origin, such that (F |W s)k → O and (F |W u)−k → O as k → +∞, uniformly on compact sets. More generally,
the local dynamics is topologically conjugated to the dynamics induced by the differential dFO, with W s

corresponding to the direct sum of the generalized eigenspaces associated to eigenvalues with modulus less
than one, and Wu corresponding to the direct sum of the generalized eigenspaces associated to eigenvalues
with modulus greater than one.

In the non-hyperbolic case, the theory at present is far less complete. One can recover a good gen-
eralization of the classical one-variable Fatou-Leau theorem in the semi-attractive case, when dFO has 1
as eigenvalue of multiplicity one, and the others eigenvalues have absolute value less than 1. In this case
(studied first by Fatou [F], and later by Ueda [U1, 2] and Hakim [H1]) either F admits a holomorphic curve
of fixed points passing through the origin or there exists a basin of attraction to the origin, formed by k− 1
petals, where k ≥ 2 is the multiplicity of the origin as fixed point of F ; furthermore, Nishimura [N] has a
description of the dynamics when there is a curve of fixed points.

Another situation that has been studied is when dFO = id, that is when F is tangent to the identity.
In this case Hakim [H2, 3] (see also Weickert [W]) has proved that for F generic there exists an F -invariant
stable (i.e., attracted to the origin) holomorphic curve with the origin in its boundary; furthermore, there
are estimates on the rate of approach of stable orbits to the origin (see Section 3 for a precise statement of
Hakim’s results). Notice that, in general, it is not possible to extend such a stable curve holomorphically
through the origin. It should also be mentioned that Rivi [Ri] combined Hakim’s results on maps tangent
to the identity with results on the semiattractive case to obtain a description of the dynamics when there is
a dFO-invariant decomposition Cn = V1 ⊕ V2, with dFO|V1 = id and sp(dFO|V2) ⊂ {|λ| < 1}.

One feature that Hakim’s and Weickert’s works made clear is that one has to study orbits converging
to the origin tangentially to a given direction v ∈ Cn. It is easy to see that such a v must be an eigenvector
of dFO. Of course, not all the eigenvectors are tangent to an orbit; but nevertheless this observation points
out that, from a dynamical point of view, the eigenvectors of dFO should be treated differently from the
non-eigenvectors.

Now we can go back to our discussion of the manifold M in Theorem 0.1. Blowing up points one deals
with all the tangent directions in the same way; and the previous discussion suggests that this should not be
the case. The correct replacement is blowing up submanifolds; in this way we are able to keep track of the
different status of the different tangent directions — and we shall then be able to recover easily informations
about the local dynamics of F from informations about the dynamics of F̃ (see, e.g., Corollary 3.2).

In Section 1 we describe the canonical procedure for building the manifold M . It depends only on the
Jordan block structure of the differential dFO, and is obtained by blowing up a sequence of at most µ1 + 1
submanifolds, where µ1 is the dimension of the largest Jordan block in dFO. In Section 2 we describe how
to lift the map F to the blow-ups, and we give the proof of Theorem 0.1. It should be remarked that the
construction is completely explicit; for instance, it is possible to compute the local power series expansion of
the lifted map F̃ in terms of the local power series expansion of F , and this is essential for the applications.

In Section 3 we apply the Diagonalization Theorem to dynamics. Since the eigenvalues of dF̃e are
quotients of the eigenvalues of dFO, this is really meaningful only when all the eigenvalues of dFO have
modulus one. We shall concentrate on the case sp(dFO) = {1}, because then F̃ is tangent to the identity.
It turns out that, for generic F , one and exactly one of the F̃ -stable holomorphic curves whose existence
is guaranteed by Hakim’s results is contained in M \ π−1(O); its projection under π is then an F -stable
holomorphic curve, with the origin in its boundary (Corollary 3.2).

Thus we can apply Hakim’s theory to generic maps F whose differential is non-diagonalizable and such
that sp(dFO) = {1}. Actually, our technique is flexible enough to be used even for some classes of non-generic
maps (see Section 3 for the definition of “generic” in this context). For instance, we have fairly complete
results in the bi-dimensional case (Corollary 3.3), showing among other things that the dynamics might
depend strongly on the third degree terms of the map F even when the quadratic part is not identically
zero. Furthermore, we get yet another version of the Fatou-Bieberbach phenomenon (Remark 3.7).

A priori, one might suspect that other F̃ -stable holomorphic curves might give rise at least to some
other F -orbits converging to the origin, if not to F -stable holomorphic curves. In the last section of this
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paper we shall show that, under some mild assumption on the rate of convergence to zero of the orbit, if
dFO is the canonical Jordan block Jn of order n associated to 1 then this is not the case: roughly speaking,
then, for such maps the stable dynamics nearby the origin is described by Corollary 3.2.

I would like to end this introduction quoting a few lines from [F, p. 135–137]: “Ce cas [that is, n = 2 and
sp(dFO) = {1}], très important au point de vue des applications aux équations de la dynamique, exigerait de
longues et difficiles recherches pour être élucidé complètement. (...) Prenons par example (...) le cas limite{x1 = x + αy,

y1 = y + a′x2,

substitution birationnelle que nous étudierons plus en detail dans la second partie de ce Mémoire”. Unfor-
tunately, the promised second part never appeared; but now, after seventy-five years, we are at last able to
describe the dynamics of Fatou’s example.

1. The blow-up sequence

As described in the introduction, to diagonalize a non-diagonalizable dynamical system we shall replace Cn

by a suitable complex manifold obtained blowing-up a specific sequence of submanifolds, depending on the
Jordan block structure of the differential of the map generating the dynamical system. In this section we
introduce the general machinery needed.

First of all we fix a number of notations. Given 0 ≤ r < n, a splitting P of weight r of n is a subdivision
of {1, . . . , n} as a disjoint union {1, . . . , n} = P ′ ∪ P ′′, where cardP ′ = r e cardP ′′ = n − r. The standard
splitting of weight r is {1, . . . , r}∪{r+1, . . . , n}. If z = (z1, . . . , zn) ∈ Cn and P is a splitting of weight r > 0
with P ′ = {ii, . . . , ir} and P ′′ = {ir+1, . . . , in} (where i1 < · · · < ir and ir+1 < · · · < in), we shall write
z′ = (zi1 , . . . , zir

) and z′′ = (zir+1 , . . . , zin
); if r = 0 we set z′′ = z, and z′ is empty. Finally, if V is any

vector space and v ∈ V \ {O}, we denote by [v] the projection of v in P(V ).
Let M be a complex manifold of dimension n ≥ 2, and X ⊂ M a closed complex submanifold of

dimension r ≥ 0. Let NX/M denote the normal bundle of X in M , and let EX = P(NX/M ) be the projective
normal bundle, whose fiber over p ∈ X is Ep = P(TpM/TpX). The blow-up of M along X is the set

M̃X = (M \X) ∪ EX ,

endowed with the manifold structure we shall presently describe, together with the projection σ: M̃X →M
given by σ|M\X = idM\X and σ|Ep

≡ {p} for p ∈ X. The set EX = σ−1(X) is the exceptional divisor of the
blow-up.

A chart ϕ = (z1, . . . , zn):V → Cn is adapted to X if there is a splitting P of weight r = dimX such that
V ∩X = {z′′ = 0}. Choose a chart (V, ϕ) adapted to X, and for j ∈ P ′′ and q ∈ V ∩X set Xj = {zj = 0} ⊂ V ,
Lj,q = P

(
Ker(dzj)q/TqX

)
⊂ Eq, Lj =

⋃
q∈V ∩X Lj,q, EV ∩X = σ−1(V ∩X) and Vj = (V \Xj)∪ (EV ∩X \Lj).

Define χj :Vj → Cn by

χj(q)h =


ϕ(q)h if h ∈ P ′,
zh(q)/zj(q) if h ∈ P ′′ \ {j},
zj(q) if h = j,

if q ∈ V \Xj , and by

χj([v])h =

 ϕ
(
σ([v])

)
h

if h ∈ P ′,
d(zh)σ([v])(v)/d(zj)σ([v])(v) if h ∈ P ′′ \ {j},
0 if h = j,

if [v] ∈ EV ∩X \Lj . Then it is not difficult to check that the charts (Vj , χj), together with an atlas of M \X,
endow M̃X with a structure of n-dimensional complex manifold, as claimed, such that the projection σ is
holomorphic everywhere. For future reference, we record here that

ϕ ◦ σ ◦ χ−1
j (w)h =

{
wh if h ∈ P ′ ∪ {j},
wjwh if h ∈ P ′′ \ {j}. (1.1)
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The fiber Ep of the exceptional divisor over a point p ∈ X is a projective space; so the choice of an
adapted chart yields an explicit isomorphism with Pn−r−1(C) that we shall denote by ιp,ϕ:Ep → Pn−r−1(C).
Finally, if Y ⊆M is a submanifold of M , then the proper transform of Y is Ỹ = σ−1(Y \X) ⊂ M̃X .

To describe the sequence of blow-ups we need some more notations. Given ρ ≥ 1, a ρ-partition of n is
a set M = {µ1, . . . , µρ} ⊂ N with µ1 ≥ · · · ≥ µρ ≥ 1 and µ1 + · · · + µρ = n. The length `(M) of M is µ1

if µ2 < µ1, and µ1 + 1 if µ2 = µ1.
To a ρ-partition M we can associate several objects. First of all, we define ν1, . . . , νρ ∈ N by setting

ν1 = 0 and νj = νj−1 + µj−1 for j = 2, . . . , ρ. Then we define sets P ′kl ⊂ {1, . . . , n} for 0 ≤ k ≤ µ1 − 1 and
1 ≤ l ≤ ρ by setting

P ′kl =
{

∅ if k = 0,
{νl + 1, . . . , νl + min(k, µl)} if 1 ≤ k ≤ µ1 − 1.

If µ2 = µ1, we also define P ′µ1,l for 1 ≤ l ≤ ρ by

P ′µ1,l =
{
{νl + 1, . . . , νl + µl} if l 6= 2,
{ν2 + 1, . . . , ν2 + µ2 − 1} if l = 2;

we also set P ′µ1+1,1 = {1, . . . , µ1, ν2 + µ2}.
Then we get `(M) splittings Pk of n by setting P ′k =

⋃ρ
l=1 Pkl and P ′′k = {1, . . . , n} \ P ′k. Furthermore,

we also get a sequence of linear subspaces ∅ = Y 0 ⊂ Y 1 ⊂ · · · ⊂ Y `(M)−1 ⊂ Pn−1(C) by letting Y k to be
the subspace generated by {[eh] | h ∈ P ′k}, where {e1, . . . , en} is the canonical basis of Cn.

We are now ready to associate a sequence of `(M) blow-ups to any ρ-partitionM of n. Set M0 = Cn,
χ0 = idCn , e0 = O and X0 = {O}. We start by blowing up the origin, taking M1 = M̃0

X0 and
π1 = σ1:M1 → M0. Since M0 = Cn has a canonical chart adapted to X0 (that is, centered at the
origin), the exceptional divisor E1 = π−1

1 (X0) is canonically isomorphic to Pn−1(C). This allows us to define
a distinguished point e1 ∈ E1, corresponding to [e1] ∈ Pn−1(C), and also distinguished linear subspaces
Y k ⊂ E1 for k = 1, . . . , `(M) − 1, corresponding to the previously defined linear subspaces of Pn−1(C)
associated to M.

Now put X1 = Y 1 and set M2 = M̃1
X1 . Let X2 ⊂M2 be the proper transform of Y 2, and set M3 = M̃2

X2 .
Next, let X3 ⊂M3 be the proper transform (with respect to σ3:M3 →M2) of the proper transform (with re-
spect to σ2:M2 →M1) of Y 3, and put M4 = M̃3

X3 . Proceeding in this way, we define for k = 2, . . . , `(M)−1
the manifold Mk+1 as the blow-up of Mk along the iterated proper transform Xk of Y k; we denote by
σk+1: Mk+1 → Mk the associated projection, and by Ek+1 = σ−1

k+1(X
k) ⊂ Mk+1 the exceptional divisor.

For k = 1, . . . , `(M) we also put πk = σ1 ◦ · · · ◦ σk:Mk → M0; the set π−1
k (X0) will be called the singular

divisor of Mk.
At each stage of this construction there are canonical charts adapted to the submanifolds involved:

Lemma 1.1: For 1 ≤ k ≤ `(M) we can find a distinguished point ek ∈ Mk and a canonical chart (Vk, χk)
centered in ek such that:

Vk ∩Xk = χ−1
k

{w1 = 0} ∩
⋂

h∈P′′
k

{wh = 0}

 ; (1.2)

Vk ∩ π−1
k (X0) = χ−1

k

 ⋃
h∈P′

k1

{wh = 0}

 ⊃ Vk ∩Xk; (1.3)

and such that for h = k + 1, . . . , `(M)− 1 the intersection of Vk with the iterated proper transform of Y h is

χ−1
k

{w1 = 0} ∩
⋂

h∈P′′
h

{wh = 0}

 .

Furthermore, χ0 ◦ σ1 ◦ χ−1
1 (w) = (w1, w1w2, . . . , w1wn), χµ1 ◦ σµ1+1 ◦ χ−1

µ1+1(w) = (w1wν2+µ2 , w2, . . . , wn),
and for 2 ≤ k ≤ µ1

χk−1 ◦ σk ◦ χ−1
k (w)h =

{
wh if h ∈ (P ′k−1 \ {1}) ∪ {k},
wkwh if h ∈ {1} ∪ (P ′′k−1 \ {k}).

(1.4)
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Proof : For k = 1, the existence of a canonical chart adapted to X0 yields a canonical chart (V1, χ1) centered
at e1 and adapted to X1; in turn this yields a canonical basis {∂/∂w1, . . . , ∂/∂wn} of Te1M

1. Furthermore,
it is easy to check that

V1 ∩ E1 = χ−1
1 ({w1 = 0}) = V1 ∩ π−1

1 (X0) ⊃ V1 ∩X1 = χ−1
1

{w1 = 0} ∩
⋂

h∈P′′1

{wh = 0}

 ,

and that
χ0 ◦ σ1 ◦ χ−1

1 (w) = (w1, w1w2, . . . , w1wn).

So the lemma is proved for k = 1.
Assume, by induction, that the lemma holds for k−1. In particular, we have a distinguished point ek−1

and a canonical chart (Vk−1, χk−1) centered at ek−1 and adapted to Xk−1. We thus have a canonical basis
{∂/∂w1, . . . , ∂/∂wn} of Tek−1M

k−1 such that {∂/∂wh | h ∈ P ′k−1 \ {1}} spans Tek−1X
k−1. Put

ek =
[

∂

∂wk
+ Tek−1X

k−1

]
∈ σ−1

k (ek−1) ,

(or ek =
[

∂
∂wν2+µ2

+ Teµ1
Xµ1

]
∈ σ−1

µ1
(eµ1) if k = µ1 + 1), and let (Vk, χk) be the canonical chart centered

in ek constructed, as before, via (Vk−1, χk−1). Then it is not too difficult to check using the inductive
hypothesis that (Vk, χk) is as desired. ¤

We end this section by remarking that it is easy to prove by induction that if we fix 1 ≤ k ≤ `(M) and
write z = χ0 ◦ πk ◦ χ−1

k (w) then

zj =



w1

j∏
h=2

(wh)2
k∏

h=j+1

wh if j ∈ P ′k1,

w1

j−νl∏
h=2

(wh)2
(

k∏
h=j−νl+1

wh

)
wj if j ∈ P ′kl, 2 ≤ l ≤ ρ;

w1

k∏
h=2

(wh)2 wj if j ∈ P ′′k ;

if 1 ≤ k ≤ µ1;

zj =



w1

j∏
h=2

(wh)2
(

µ1∏
h=j+1

wh

)
wν2+µ2 if j ∈ P ′µ1,1,

w1

j−νl∏
h=2

(wh)2
(

µ1∏
h=j−νl+1

wh

)
wjwν2+µ2 if j ∈ P ′µ1,l, 2 ≤ l ≤ ρ;

w1

µ1∏
h=2

(wh)2 (wµ2+µ2)
2 if j ∈ P ′′µ1

;

if k = µ1 + 1.

(1.5)

Furthermore, if z1, . . . , zk 6= 0 then

wj =


(z1)2/zk if j = 1,
zj/zj−1 if j ∈ P ′k1 \ {1},
zj/zj−νl

if j ∈ P ′kl, 2 ≤ l ≤ ρ,
zj/zk if j ∈ P ′′k ;

if 1 ≤ k ≤ µ1;

wj =


(z1)2/zν2+µ2 if j = 1,
zj/zj−1 if j ∈ (P ′µ1,1 \ {1}),
zj/zj−νl

if j ∈ P ′µ1,l, 2 ≤ l ≤ ρ,
zj/zµ1 if j ∈ P ′′µ1

.

if k = µ1 + 1.

(1.6)
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2. The diagonalization theorem
We shall denote by End(Cn, O) the set of germs of holomorphic self-maps of Cn sending the origin O to
itself; more generally, if X is a closed set of a complex manifold M , we shall denote by End(M, X) the set
of germs at X of holomorphic self-maps of M sending X into itself. Every germ F ∈ End(Cn, O) has a
homogeneous expansion of the form

F (z) =
∞∑

j=1

Pj(z),

where z = (z1, . . . , zn) ∈ Cn, and the Pj ’s are n-uples of homogeneous polynomials of degree j in z1, . . . , zn.
Let M be a complex manifold of dimension n, and X a closed submanifold of dimension r ≥ 0. We are

interested to see when a germ F ∈ End(M, X) can be lifted to the blow-up M̃X as a germ F̃ ∈ End(MX , EX).
Take p ∈ X, and choose charts (V, ϕ) and (Ṽ , ϕ̃) adapted to X so that p ∈ V and F (p) ∈ Ṽ . In a
neighbourhood of p we can write the homogeneous expansion of G = ϕ̃ ◦ F ◦ ϕ−1 as

G(z) =
∑
l≥0

Pl,z′(z′′) ,

where Pl,z′ is a n-uple of l-homogeneous polynomials with coefficients holomorphic in z′. The condition
F (X) ⊆ X then translates to

(P0,z′)′′ ≡ 0 .

The order of F at p along X is

νX(F, p) = min{l | (Pl,ϕ(p)′)′′ 6≡ 0} ≥ 1 ;

it is easily checked that νX(F, p) does not depend on the adapted charts chosen. The order of F along X is
then given by

νX(F ) = min{νX(F, p) | p ∈ X} .

Clearly the set {p ∈ X | νX(F, p) = νX(F )} is open in X.
We shall say that F is non-degenerate at p along X if

(i) F−1(p) ⊆ X,
(ii) νX(F, p) = νX(F ), and
(iii)

(
Pl0,ϕ(p)′(v)

)′′ = 0 iff v = O ∈ Cn−r, where l0 = νX(F ).

If F is non-degenerate along X at all points of X we shall say that F is non-degenerate along X.

Proposition 2.1: Let M be a complex manifold of dimension n, and X ⊂M a closed submanifold of dimen-
sion r ≥ 0. Let F ∈ End(M, X) be non-degenerate along X. Then there exists a unique F̃ ∈ End(M̃X , EX)
such that F ◦ σ = σ ◦ F̃ . Furthermore, if p ∈ X and (V, ϕ), (Ṽ , ϕ̃) are charts adapted to X with p ∈ V
and F (p) ∈ Ṽ , then

F̃
(
[v]

)
= (ιF (p),ϕ̃)−1

([
Pl0,ϕ(p)′

(
ιp,ϕ([v])

)′′]) (2.1)

for all [v] ∈ Ep, where l0 = νX(F ).

Proof : Since F−1(X) ⊆ X, if q does not belong to X we can safely set F̃ (q) = F (q); we are left to define F̃
on the exceptional divisor.

Choose p ∈ X, and the charts as in the statement of the theorem; without loss of generality, we can
assume that for both charts the associated splitting is the standard one. For [v] ∈ Ep choose r + 1 ≤ j ≤ n

so that [v] ∈ Vj ; if F̃ exists, we must have

F ◦ σ ◦ χ−1
j = σ ◦ F̃ ◦ χ−1

j .

If [v] = (ιp,ϕ)−1[vr+1 : . . . : vn], we have

[v] = lim
ζ→0

χ−1
j

(
ϕ(p)′,

vr+1

vj
, . . . , ζ, . . . ,

vn

vj

)
,
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and so, setting again G = ϕ̃ ◦ F ◦ ϕ−1,

F̃ ([v]) = lim
ζ→0

σ−1

(
ϕ̃−1

(
G

(
ϕ(p)′,

ζ

vj
v

)))
,

where with a slight abuse of notation we have put v = (vr+1, . . . , vn) ∈ Cn−r.
Now, given a sequence {qk} ⊂M \X converging to q ∈ X, the sequence {σ−1(qk)} converges in M̃ \X

iff {[ϕ̃(qk)′′]} converges in Pn−r−1(C), and then

lim
k→∞

σ−1(qk) = ι−1
q,ϕ̃

(
lim

k→∞
[ϕ̃(qk)′′]

)
.

In our case we have

G

(
ϕ(p)′,

ζ

vj
v

)′′
=

∑
l≥l0

Pl,ϕ(p)′

(
ζ

vj
v

)′′
=

(
ζ

vj

)l0 (
Pl0,ϕ(p)′(v)′′ + ζQ(ζ)

)
,

for a suitable holomorphic map Q. Therefore [G(ϕ(p)′, ζv/vj)′′] → [Pl0,ϕ(p)′(v)′′], and thus if F̃ exists it is
given by (2.1) on the exceptional divisor.

To finish the proof we must show that an F̃ defined by (2.1) on the exceptional divisor and by F
elsewhere is holomorphic. Take [v] ∈ Ep, and choose r + 1 ≤ h, k ≤ n so that [v] ∈ Vh and F̃ ([v]) ∈ Ṽk; we
must show that χk ◦ F̃ ◦ χ−1

h is holomorphic. We know that

G ◦ (ϕ ◦ σ ◦ χ−1
h ) = (ϕ ◦ σ ◦ χ−1

k ) ◦ (χk ◦ F̃ ◦ χ−1
h ) ;

so putting χk ◦ F̃ ◦ χ−1
h = (f̃1, . . . , f̃n) and recalling (1.1) we must have

G(w′, whwr+1, . . . , wh, . . . , whwn) =
(
f̃1(w), . . . , f̃r(w), f̃k(w)f̃r+1(w), . . . , f̃k(w), . . . , f̃k(w)f̃n(w)

)
.

Writing G = (g1, . . . , gn) we find that if wh 6= 0 then

f̃i(w) =


gi(w′, whwr+1, . . . , wh, . . . , whwn) if 1 ≤ i ≤ r or i = k,
gi(w′, whwr+1, . . . , wh, . . . , whwn)
gk(w′, whwr+1, . . . , wh, . . . , whwn)

if r + 1 ≤ i 6= k ≤ n. (2.2)

Since the gi’s are holomorphic and {wh = 0} has codimension 1 in χh(Vh), to end the proof it suffices to
show that the quotients in (2.2) have a limit when w → χh([v]).

Write again ιp,ϕ([v]) = [vr+1 : . . . : vn] and v = (vr+1, . . . , vn), and assume then that w → χh([v]). This
means that w′ → ϕ(p)′, wh → 0 and (wr+1, . . . , 1, . . . , wn)→ v−1

h v. Now,

G(w′, whwr+1, . . . , wh, . . . , whwn)′′ =
∑
l≥l0

(
wh

vh

)l

Pl,w′(wr+1vh, . . . , vh, . . . , wnvh)′′ .

Since F̃ ([v]) ∈ Ṽk we have Pl0,ϕ(p)′(v)k 6= 0; therefore

gi(w′, whwr+1, . . . , wh, . . . , whwn)
gk(w′, whwr+1, . . . , wh, . . . , whwn)

→ Pl0,ϕ(p)′(v)i

Pl0,ϕ(p)′(v)k
,

and we are done. ¤
Now, our construction involves iterated blow-ups; thus we are interested to know when the map F̃ is

still non-degenerate along suitable submanifolds of M̃X . We shall limit ourselves to two special cases, which
are enough for our aims.
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Proposition 2.2: Let M be a complex manifold of dimension n, and X ⊂ M a closed submanifold of
dimension r ≥ 0. Let F ∈ End(M, X) be non-degenerate along X, and F̃ ∈ End(M̃X , EX) its lifting.
Let Y ⊆ M be a submanifold of M of dimension r + s (with s ≥ 1), and Ỹ ⊆ M̃ its proper transform.
Assume that

(i) Y contains properly X;
(ii) F (Y ) ⊆ Y and F−1(Y ) ⊆ Y ;
(iii) dFq is invertible for all q ∈ Y .

Then F̃ is non-degenerate along Ỹ , and dF̃q̃ is invertible for all q̃ ∈ Ỹ .

Proof : First of all, notice that if p ∈ X then Ỹ ∩ Ep = P(TpY/TpX), and that F̃ |Ep is induced by dFp.
Since, by construction, F̃ (Ỹ ) ⊆ Ỹ and F̃−1(Ỹ \ EX) ⊆ Ỹ \ EX , it suffices to prove that dF̃[v] is invertible
for all [v] ∈ Ỹ ∩ EX .

Fix p ∈ X and [v] ∈ Ỹ ∩Ep, and choose two charts (V, ϕ) and (Ṽ , ϕ̃), centered in p, respectively in F (p),
such that V ∩ X = {zr+1 = · · · = zn = 0}, V ∩ Y = {zr+s+1 = · · · = zn = 0}, and analogously for Ṽ . In
particular,

ιp,ϕ(Ỹ ∩ Ep) = ιF (p),ϕ̃(Ỹ ∩ EF (p)) = {vr+s+1 = · · · = vn = 0} ,

and we can also assume that ιp,ϕ([v]) = ιF (p),ϕ̃

(
F̃ ([v])

)
= [1 : 0 : · · · : 0]. Then the charts (Vr+1, χr+1) and

(Ṽr+1, χ̃r+1) are centered in [v], respectively in F̃ ([v]), and adapted to Ỹ .
Set G = ϕ̃ ◦F ◦ϕ−1 = (g1, . . . , gn) and G̃ = χ̃r+1 ◦ F̃ ◦χ−1

r+1 = (f̃1, . . . , f̃n); the relation between the gi’s
and the f̃j ’s is given by (2.2). Since F (X) ⊆ X and F (Y ) ⊆ Y , the jacobian matrix of G at the origin is of
the form

A =

∣∣∣∣∣∣∣∣∣∣
A ∗

B ∗
O

O C

∣∣∣∣∣∣∣∣∣∣
,

with A ∈ Mr,r(C), B ∈ Ms,s(C) and C ∈ Mn−r−s,n−r−s(C). Since, by assumption, dFp is invertible, we
have

det(A) = det(A) det(B) det(C) 6= 0 .

Finally, F̃ ([v]) ∈ Ṽr+1 translates in

λ =
∂gr+1

∂zr+1
(O) 6= 0 .

Our aim is to compute ∂f̃i/∂wj at w = O. This is easy when 1 ≤ i ≤ r + 1; in fact, (2.2) with h = k = r + 1
yields

∂f̃i

∂wj
(O) =


∂gi

∂zj
(O) for 1 ≤ i ≤ r + 1, 1 ≤ j ≤ r + 1,

0 for 1 ≤ i ≤ r + 1, r + 2 ≤ j ≤ n.

In particular,
∂f̃r+1

∂wj
(O) =

{
0 if j 6= r + 1,
λ 6= 0 if j = r + 1.

Now set g̃i(w) = gi(w′, wr+1, wr+1wr+2, . . . , wr+1wn), and write again

G(z) =
∑
l≥0

Pl,z′(z′′) ,

recalling that (P0,z′)′′ ≡ O. For r + 2 ≤ i ≤ n we have

∂f̃i

∂wj
(O) = lim

w→O

1
g̃r+1(w)

[
∂g̃i

∂wj
(w)− g̃i(w)

g̃r+1(w)
∂g̃r+1

∂wj
(w)

]
. (2.3)
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Since
g̃i(w) =

∑
l≥0

(wr+1)lPl,w′(1, wr+2, . . . , wn)i ,

(2.3) yields

∂f̃i

∂wj
(O) =


1
λ

[
∂2gi

∂zj∂zr+1
(O)− 1

λ

∂2gr+1

∂zj∂zr+1
(O)

∂gi

∂zr+1
(O)

]
for r + 2 ≤ i ≤ n and 1 ≤ j ≤ r + 1,

1
λ

[
∂gi

∂zj
(O)− 1

λ

∂gr+1

∂zj
(O)

∂gi

∂zr+1
(O)

]
for r + 2 ≤ i, j ≤ n.

In particular, we find

∂f̃i

∂wj
(O) =

1
λ

∂gi

∂zj
(O) for r + s + 1 ≤ i ≤ n, r + 2 ≤ j ≤ n.

Summing up, we have proved that the Jacobian matrix of G̃ at the origin is

Ã =

∣∣∣∣∣∣∣∣∣∣∣
A ∗ O

O λ O

B̃ ∗
∗ ∗

O 1
λC

∣∣∣∣∣∣∣∣∣∣∣
, (2.4)

where B̃ ∈ Ms−1,s−1(C). Now, if we subtract to the j-th column of B (for j = 2, . . . , s) the first column
of B multiplied by λ−1∂gr+1/∂zr+j(O) we get ∣∣∣∣∣ λ O

∗ λB̃

∣∣∣∣∣ .

Since these elementary operations do not change the determinant, we obtain det(B) = λs det(B̃). Therefore

det(Ã) =
1

λn−r−1
det(A) 6= 0 ,

and we are done. ¤
A similar argument yields:

Proposition 2.3: Let M be a complex manifold of dimension n, and X ⊂ M a closed submanifold of
dimension r ≥ 0. Let F ∈ End(M, X) be non-degenerate along X, and F̃ ∈ End(M̃X , EX) its lifting. Take
p ∈ X and a linear subspace L ⊆ Ep of dimension s− 1 (with s ≥ 1). Assume that

(i) F̃ (L) ⊆ L, and
(ii) dFp is invertible.

Then F̃ is non-degenerate along L, and dF̃[v] is invertible for all [v] ∈ L.

Proof : Condition (i) implies that p is a fixed point of F , and condition (ii) implies that νX(F ) = 1. In
particular, F̃ |Ep is induced by the differential of F at p; thus F̃ |L is injective, and the invertibility of dF̃[v]

for all [v] ∈ L will imply that F̃ is non-degenerate along L.
Fix [v] ∈ L, and choose two charts (V, ϕ), (Ṽ , ϕ̃) centered in p adapted to X such that

ιp,ϕ([v]) = ιp,ϕ̃

(
F̃ ([v])

)
= [1 : 0 : . . . : 0]

and
ιp,ϕ(L) = ιp,ϕ̃(L) = {vr+s+1 = · · · = vn = 0} .

Then the charts (Vr+1, χr+1) and (Ṽr+1, χ̃r+1) are centered in [v], respectively in F̃ ([v]), and adapted to L.
The proof then goes on as in the previous proposition. ¤
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We are finally ready to prove the main result of this paper:

Theorem 2.4: (Diagonalization Theorem) Let F ∈ End(Cn, O) be such that dFO is invertible and non-
diagonalizable. Assume that dFO is in Jordan canonical form, with ρ ≥ 1 blocks of lenghts µ1 ≥ · · · ≥ µρ ≥ 1
associated respectively to the eigenvalues λ1, . . . , λρ ∈ C. SetM = {µ1, . . . , µρ}, and let (M0, . . . , M `(M)) be

the sequence of blow-ups associated toM. Then for 1 ≤ k ≤ `(M) there exists a unique F̃k ∈ End(Mk, Ek)
such that F ◦ πk = πk ◦ F̃k, and we have F̃k(ek) = ek. Furthermore, d(F̃`(M))e`(M) is diagonalizable, with

eigenvalues λ̃1, 1, λ2/λ1, . . . , λρ/λ1 of multiplicity 1, µ1−1, µ2, . . . , µρ respectively, where λ̃1 = λ1 if µ1 > µ2,

and λ̃1 = λ2
1/λ2 if µ1 = µ2. More precisely, writing χ`(M) ◦ F̃`(M) ◦χ−1

`(M) = (f̃1, . . . , f̃n), and denoting by aj
11

the coefficient of (z1)2 in the power series expansion of fj , if µ1 > µ2 we have

f̃j(w) =



w1

(
λ1 − aµ1

11w1 + 2w2 + O(‖w‖2)
)

if j = 1,

wj

(
1− 1

λ1
wj + 1

λ1
wj+1 + O(‖w‖2)

)
if 2 ≤ j ≤ µ1 − 1,

wµ1

(
1 + a

µ1
11
λ1

w1 − 1
λ1

wµ1 + O(‖w‖2)
)

if j = µ1,
λl

λ1
wj − λl

λ2
1
wj−νl+1wj + 1

λ1
wj−νl+1wj+1 + O(‖w‖3) if j ∈ P ′µ1,l \ {νl + µl}, 2 ≤ l ≤ ρ,

λl

λ1
wj − λl

λ2
1
wµl+1wj + O(‖w‖3) if j = νl + µl, µl < µ1 − 1,

λl

λ1
wj + aj

11
λ1

w1wµ1 − λl

λ2
1
wµ1wj + O(‖w‖3) if j = νl + µl, µl = µ1 − 1,

whereas if µ1 = µ2 we have

f̃j(w) =



w1

(λ2
1

λ2
− λ2

1
λ2

2
aν2+µ2
11 w1 + 2λ1

λ2
w2 + O(‖w‖2)

)
if j = 1,

wj

(
1− 1

λ1
wj + 1

λ1
wj+1 + O(‖w‖2)

)
if 2 ≤ j ≤ µ1 − 1,

wµ1

(
1− 1

λ1
wµ1 + O(‖w‖2)

)
if j = µ1,

λl

λ1
wj − λl

λ2
1
wj−νl+1wj + 1

λ1
wj−νl+1wj+1 + O(‖w‖3) if j ∈ P ′µ1,l \ {νl + µl}, 2 ≤ l ≤ ρ,

wµ2+ν2

(
λ2
λ1

+ a
ν2+µ2
11
λ1

w1 + O(‖w‖2)
)

if j = ν2 + µ2,
λl

λ1
wj + O(‖w‖3) if j = νl + µl, µl < µ1,

λl

λ1
wj + aj

11
λ1

w1wν2+µ2 + O(‖w‖3) if j = νl + µl, µl = µ1, 3 ≤ l ≤ ρ.

Proof : Proposition 2.1 yields the existence of F̃1; since F̃1|E1 is induced by the differential of F at the origin,
we see that e1 is a fixed point of F̃1, and more generally that F̃1(Y k) = Y k for k = 1, . . . , µ1.

By Proposition 2.3, d(F̃1)[v] is invertible for all [v] ∈ Y µ1 . In particular, F̃1 is non-degenerate along X1,
and so Proposition 2.1 yields F̃2. Since dF̃1 is invertible along Y 2, we can invoke Proposition 2.2 to prove
that dF̃2 is non-degenerate along X2, and thus we get F̃3. Furthermore, being dF̃2 invertible along X2, it is
invertible along the proper transform of Y 3 too, because outside of E2 ⊂ X2 it is given by dF̃1. Then we
can again invoke Proposition 2.2 to prove that F̃3 is non-degenerate along X3, and Proposition 2.1 yields F̃4.
Repeating this procedure we clearly get F̃k for all k.

To show that ek is a fixed point of F̃k it suffices to notice that for k = 2, . . . , µ1 we have

F̃1([∂/∂wk]) = [λ1(∂/∂wk) + (∂/∂wk−1)],

and [∂/∂wk−1] ∈ Y k−1; analogously, if µ2 = µ1 then F̃1([∂/∂wν2+µ2)] = [λ2(∂/∂wν2+µ2) + (∂/∂wν2+µ2−1)]
and [∂/∂wν2+µ2−1] ∈ Y µ1 .

We are left to prove that d(F̃`(M))e`(M) is diagonalizable. From F ◦π`(M) = π`(M) ◦ F̃`(M) we easily get

F ◦ (χ0 ◦ π`(M) ◦ χ−1
`(M)) = (χ0 ◦ π`(M) ◦ χ−1

`(M)) ◦ F̃ . (2.5)

Since we know that, writing F = (f1, . . . , fn),

fj(z) =


λlzj + zj+1 +

n∑
h,k=1

aj
hkzhzk + O(‖z‖3) if νl + 1 ≤ j < νl + µl,

λlzj +
n∑

h,k=1

aj
hkzhzk + O(‖z‖3) if j = νl + µl,

for 1 ≤ l ≤ ρ, it is not difficult to check, using (1.5) and (1.6), that the f̃j ’s have the claimed form, and we
are done. ¤
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3. Parabolic curves

From now on we shall assume that sp(dFO) = {1}; in particular, the Diagonalization Theorem 2.4 yields
a map tangent to the identity. This allows us to bring into play Hakim’s theory, that we shall now briefly
summarize.

Set ∆ = {ζ ∈ C | |ζ − 1| < 1}. A holomorphic curve at the origin is a holomorphic injective
map ϕ: ∆→ Cn \ {O} such that ϕ extends continuosly to 0 ∈ ∂∆ with ϕ(0) = O.

Now take F ∈ End(Cn, O). We shall say that a holomorphic curve at the origin ϕ, or its image D = ϕ(∆),
is F -invariant if F

(
ϕ(∆)

)
⊆ ϕ(∆); that it is stable if it is F -invariant and (F |D)k → O uniformly on compact

subsets of D. A parabolic curve is, by definition, a stable holomorphic curve at the origin. Finally, we shall
say that ϕ is tangent to v ∈ Pn−1(C) if [ϕ(ζ)]→ v as ζ → 0.

Now let P2: Cn → Cn be a Cn-valued quadratic form. A characteristic direction of P2 is a v ∈ Cn \ {O}
such that P2(v) = λv. If λ = 0 then v is degenerate; otherwise it is a non-degenerate characteristic direction.

Then (the part we shall need of) Hakim’s results can be summarized as follows:

Theorem 3.1: (Hakim [H2, 3]) Let F ∈ End(Cn, O) be such that dFO = id. Let P2: Cn → Cn be the
quadratic part of the homogeneous expansion of F . If zo ∈ Cn, set zk = F k(zo), and denote by [zk] its
image in Pn−1(C) when zk 6= O. Then:

(i) if zk → O and [zk]→ [v] then v is a characteristic direction of P2;

(ii) if v is a non-degenerate characteristic direction of P2, then F admits a parabolic curve tangent to [v];
(iii) if v is a non-degenerate characteristic direction of P2 with P2(v) = λv and D ⊂ Cn is the parabolic

curve given by part (ii), then for every zo ∈ D and 1 ≤ j ≤ n we have

zk
j = − vj

λk
+ o

(
1
k

)
.

Putting together Theorems 2.4 and 3.1 we are able to prove the existence of a parabolic curve for generic
non-diagonalizable maps F ∈ End(Cn, O) such that sp(dFO) = {1}. In this context, “generic” means aµ1

11 6= 0
and µ2 < µ1.

Corollary 3.2: Let F ∈ End(Cn, O) be such that dFO is non-diagonalizable and sp(dFO) = {1}. Assume
without loss of generality that dFO is in Jordan canonical form, and let M be the ρ-partition of n induced
by the block structure of dFO. Assume moreover that `(M) = µ1 and that aµ1

11 6= 0, where we are using the
notations introduced in the previous sections. Then F admits a parabolic curve ϕ tangent to e1. Furthermore,
if zo ∈ ϕ(∆) and zk = F k(zo), then

zk
j =


(−1)µ1+j−1 2µ1−1

a
µ1
11

(
2µ1−2
µ1−1

) (µ1+j−2)!
kµ1+j−1 + o

(
1

kµ1+j−1

)
, if 1 ≤ j ≤ µ1,

o
(

1
kµ1+j−νl

)
, if 1 ≤ j − νl ≤ µl < µ1 − 1,

(−1)µ1+j−νl
a

µl+νl
11 (2µ1−1)(µl+j−νl)

a
µ1
11

(
2µ1−2
µ1−1

) (µ1+j−νl−2)!

kµ1+j−νl
+ o

(
1

kµ1+j−νl

)
, if 1 ≤ j − νl ≤ µl = µ1 − 1.

(3.1)

Proof : The idea is to apply Theorem 3.1 to the lifting F̃µ1 of F , and then use πµ1 to project the result
down to F . Not all the characteristic directions of the quadratic part of F̃µ1 at eµ1 are allowable, though.
Since we are working in Mµ1 , characteristic directions tangent to π−1

µ1
(X0) should be excluded, because the

F̃µ1-parabolic curve provided by Theorem 3.1.(ii) could be contained in the singular divisor, and thus it
would be killed by πµ1 . Now, (1.3) says that π−1

µ1
(X0) is given by {w1 = 0} ∪ · · · ∪ {wµ1 = 0}; therefore we

must look for characteristic directions v with v1, . . . , vµ1 6= 0. Characteristic directions not tangent to the
singular divisor π−1

k (X0) will be called allowable.
The explicit form of F̃µ1 given in Theorem 2.4 shows that an allowable characteristic direction v for F̃µ1
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at eµ1 must satisfy 

−aµ1
11v1 + 2v2 = λ, for j = 1,

−vj + vj+1 = λ, for 2 ≤ j ≤ µ1 − 1,
aµ1
11v1 − vµ1 = λ, for j = µ1,

(−vj + vj+1)vj−νl+1 = λvj , for j ∈ P ′µ1,l \ {νl + µl}, 2 ≤ l ≤ ρ,
−vµl+1vj = λvj , for j = νl + µl, µl < µ1 − 1,
aj
11v1vµ1 − vµ1vj = λvj , for j = νl + µl, µl = µ1 − 1.

The unique non-degenerate (i.e., with λ 6= 0) solution of this system is

vj =


1

a
µ1
11

(2µ1 − 1)λ, for j = 1,
(µ1 + j − 2)λ, for 2 ≤ j ≤ µ1,
0, for j = νl + h, 1 ≤ h ≤ µl, µl < µ1 − 1,
a

νl+µl
11
a

µ1
11

(µl + h)λ, for j = νl + h, 1 ≤ h ≤ µl, µl = µ1 − 1.

This is an allowable solution; therefore Theorem 3.1.(ii) yields a F̃µ1-stable holomorphic curve ϕ̃ at the
origin tangent to v. Since v is not tangent to π−1

µ1
(X0), which is invariant under F̃µ1 , the image of the

curve is contained in Mµ1 \ π−1
µ1

(X0), which is exactly the subset of Mµ1 where πµ1 is a biholomorphism
with Cn \ {O}. Therefore the holomorphic curve ϕ = πµ1 ◦ ϕ̃ is a parabolic curve at the origin for F in Cn,
and (3.1) follows from Theorem 3.1.(iii) and (1.6). ¤

Remark 3.1: Let χ ∈ Aut(Cn, O) be a (germ of) biholomorphism of Cn keeping the origin fixed and
such that the differential of F̂ = χ−1 ◦ F ◦ χ is still in Jordan form; then âµ1

11 = α aµ1
11 for a suitable α 6= 0,

and thus F is generic iff F̂ is.

Remark 3.2: If ρ = 1 and aµ1
11 = 0 but aµ1−1

11 6= 0, it turns out that d(F̃µ1−1)eµ1−1 is already diagonal-
izable, and an argument similar to the one used in the previous proof yields a parabolic curve for F in this
case too. On the other hand, if ρ ≥ 2 and µ2 = µ1 then F̃µ1+1 has no allowable non-degenerate characteristic
directions at eµ1+1.

Remark 3.3: We are finally able to explain why diagonalizing simply by blowing-up points does not work.
Indeed, it turns out that in that case the lifted map would have no allowable characteristic directions; all
the relevant dynamics would be inside the singular divisor, and so one would not easily detect the parabolic
curve whose existence is proved in Corollary 3.2.

When n = 2 (and thus ρ = 1 and µ1 = 2), we are also able to study the non-generic case a2
11 = 0,

obtaining interesting results. For instance, we shall see that (for the first time, as far as I know) a coefficient
of the cubic part of F enters directly into play even when the quadratic part of F is not zero.

So, assume n = 2 and a2
11 = 0, and write

f1(z) = z1 + z2 + a1
11(z1)2 + 2a1

12z1z2 + a1
22(z2)2 + · · · ,

f2(z) = z2 + 2a2
12z1z2 + a2

22(z2)2 + a2
111(z1)3 + · · · .

We shall describe our results in terms of the following quantities:

ε = a1
11 + a2

12, and η = (a1
11 − a2

12)
2 + 2a2

111;

they are projective invariants of F under change of coordinates. More precisely, let again χ ∈ Aut(Cn, O) be
a (germ of) biholomorphism of Cn keeping the origin fixed and such that the differential of F̂ = χ−1 ◦F ◦ χ
is still in Jordan form; then â2

11 = 0, ε̂ = αε and η̂ = α2η for a suitable α 6= 0.
Then:
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Corollary 3.3: Let F ∈ End(C2, O) be such that dFO is non-diagonalizable and sp(dFO) = {1}. Assume
that dFO is in Jordan canonical form, and that F is non-generic, that is a2

11 = 0. Assume moreover that
(ε, η) 6= (0, 0), where ε and η are the invariants just defined. Then:

(i) if η 6= 0, ε2, then F admits two distinct parabolic curves at the origin;
(ii) if η = ε2 6= 0, or η = 0 6= ε2, then F admits one parabolic curve at the origin.

In both cases, the parabolic curves are tangent to e1. Furthermore, if zo belongs to the image of one of the
curves and zk = F k(zo), then zk

1 = c1/k + o(1/k) and zk
2 = c2/k2 + o(1/k2) for suitable c1 6= 0 and c2 ∈ C.

Proof : The point is that one blow-up is enough to diagonalize such a map; in fact, in this case the local
expansion of F̃1 nearby e1 is given by

f̃j(w) =
{

w1 + a1
11(w1)2 + w1w2 + O(‖w‖3), if j = 1,

w2 + a2
111(w1)2 + (2a2

12 − a1
11)w1w2 − (w2)2 + O(‖w‖3), if j = 2.

A direction [v] ∈ P1(C) is allowable iff v1 6= 0; therefore we can assume v1 = 1, and finding the allowable
characteristic directions boils down to solving a quadratic equation whose discriminant is η. The allowable
characteristic directions then are multiple of

v± =
(

1,
a2
12 − a1

11 ±
√

η

2

)
,

and v± is degenerate iff ε ± √η = 0. Theorem 3.1 thus yields the assertion, exactly as in the previous
corollary. ¤

Remark 3.4: If ε = η = 0 several things might happen; we can even have more than two stable
holomorphic curves at the origin. See [A] and [CD] for examples.

Remark 3.5: A Cn-valued quadratic form P2 on Cn induces on the projective space a holomorphic map
P̂2: Pn−1(C) \ Z → Pn−1(C), where Z is the image in Pn−1(C) of the cone P−1

2 (O) \ {O} ⊂ Cn. If v ∈ Cn

is a non-degenerate characteristic direction for P2, then its image [v] ∈ Pn−1(C) is a fixed point of P̂2. In
particular, we may then consider the linear map

A[v] = d(P̂2)[v] − id:T[v]

(
Pn−1(C)

)
→ T[v]

(
Pn−1(C)

)
.

It turns out that this is the same matrix introduced by Hakim [H2, 3]. She proved that, under the hypotheses
of Theorem 3.1, if A[v] has d ≥ 0 eigenvalues with positive real part then the map actually admits a parabolic
holomorphic (d + 1)-manifold at the origin. In the case n = 2, a2

11 = 0 and (ε, η) 6= (0, 0), we have

A[v±] = ∓ 2
√

η

ε±√η
.

In particular, A[v] = −1 when η = ε2 6= 0 (where, choosing ε as principal determination of
√

η, the non-
degenerate characteristic direction is v+), A[v] = 0 when η = 0 6= ε, and Re A[v±] > 0 iff

Re
(

ε

±√η

)
< −1,

when η 6= 0, ε2. In particular, if |Re(ε/
√

η)| > 1 then the map F admits a parabolic basin of attraction for
the origin.

Remark 3.6: It is not difficult to compute the matrix A[v] for the allowable characteristic direction
described in the proof of Corollary 3.2; it is not so easy to compute the sign of the real part of the eigenvalues,
though. For n ≤ 20 we checked that the matrix A[v] has no eigenvalue with positive real part, and we suspect
that this is true for all n.
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Remark 3.7: Hakim [H3] proved that when F̃ ∈ End(Cn, O) is a global automorphism of Cn with
dF̃O = id, and v is a non-degenerate characteristic direction, then the set Ωv of orbits zk → O such that
[zk] → [v] is an F̃ -stable biholomorphic image of Cd+1, where d ≥ 0 is the number of eigenvalues of A[v]

with positive real part (assuming, for simplicity, that A[v] has no purely imaginary eigenvalues). This is still
true in our situation. Indeed, if our map F is a global automorphism of Cn, then its lifting F̃ is a global
automorphism of Mµ1 \ π−1

µ1
(X0), which is biholomorphic to Cn \ {O}. Furthermore, if v is an allowable

characteristic direction, then Ωv cannot intersect the singular divisor, because the latter is F̃ -invariant
whereas v is not tangent to it. This means that we can apply Hakim’s result to F̃ , and projecting down
via πµ1 we get an F -stable (d + 1)-manifold biholomorphic to Cd+1. In particular, then, Remark 3.5 yields
yet another instance of the Fatou-Bieberbach phenomenon in C2.

4. Regular orbits
In the previous section we have shown that allowable (i.e., not tangent to the singular divisor) characteristic
directions of the lifting of a map F give rise to parabolic curves. A priori, other characteristic directions
might also give rise to parabolic curves, or possibly to F -orbits converging to the origin. The aim of this
section is to show that this cannot happen, at least in the case ρ = 1, when dFO is the Jordan n×n block Jn

associated to the eigenvalue 1.
To state more precisely our result, we need some definitions. Let {zk} ⊂ Cn \ {O} be a sequence

converging to the origin. We shall say that {zk} is 0-regular if {[zk]} converges to some [v] ∈ Pn−1(C);
this is equivalent to saying that π−1

1 (zk) converges to some [v] ∈ E1. We shall say that {zk} is 1-regular
if either [v] 6= e1 (and we shall specify this case saying that it is 1-regular of first kind) or [v] = e1

and {χ1 ◦ π−1
1 (zk)} is 0-regular (and then {zk} is 1-regular of second kind). Now we proceed by induction.

Let {zk} be (r− 1)-regular. If it is (r− 1)-regular of first kind, we shall also say that it is r-regular (of first
kind). If it is (r−1)-regular of second kind, then π−1

r (zk) converges to some [v] ∈ Er. We shall say that {zk}
is r-regular if either [v] 6= er (and we shall again say r-regular of first kind) or [v] = er and {χr ◦ π−1

r (zk)}
is 0-regular (and then {zk} is r-regular of second kind). We stress that we impose no conditions if [v] 6= er;
so for most sequences r-regularity is equivalent to 0-regularity.

Despite its apparent complexity, the condition of r-regularity is fairly natural; it is just a way to say
that the different components of the sequence go to zero at comparable rates. For instance, if for j = 1, . . . , n
there are aj ∈ C∗ and δj > 0 such that

zk
j =

aj

kδj
+ o

(
1

kδj

)
,

then {zk} is r-regular for every r; and it is easy to provide examples of much more general r-regular sequences.
Now let F ∈ End(Cn, O) be such that dFO = Jn. Assume that F is generic, that is an

11 6= 0, and
let F̃ be its lifting. We shall say that an F -orbit is regular if it converges to the origin and it is n-regular.
A quick look to (1.5) and (1.6) shows that orbits obtained pushing down 0-regular orbits of F̃ tangent to
allowable characteristic directions are regular; such orbits are called standard, and are the ones described in
Corollary 3.2. Using this terminology, our aim is to prove that every regular orbit is standard. To do so, we
need a lemma:

Lemma 4.1: Let {wk} ⊂ C∗ be a sequence converging to 0. Assume there is another sequence {uk} ⊂ C
such that uk/wk → c ∈ C and

wk+1 = wk(1 + uk) + o
(
(wk)2

)
.

Then 1/(kwk)→ −c. In particular, if c 6= 0 we have

wk = − 1
ck

+ o

(
1
k

)
.

Proof : Set εk = wk+1 − wk − ukwk, so that εk/(wk)2 → 0. We then have

1
wh+1

=
1

wh
− uh

wh
+

(uh)2/wh + (uh − 1)εh/(wh)2

1 + uh + εh/wh
.
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Summing this equality for h = 0, . . . , k − 1 and dividing by k we find

1
kwk

=
1

kw0
− 1

k

k−1∑
h=0

uh

wh
+

1
k

k−1∑
h=0

(uh)2/wh + (uh − 1)εh/(wh)2

1 + uh + εh/wh
,

and the assertion follows from the convergence of the averages of a converging sequence. ¤
Then:

Theorem 4.2: Let F ∈ End(Cn, O) be such that dFO = Jn. Assume that F is generic. Then every regular
orbit of F is standard.

Proof : Up to a linear change of coordinates we can assume an
11 = 1. Let {zk = F k(zo)} be a regular orbit;

we first of all want to prove, by induction, that π−1
r (zk)→ er for r = 1, . . . , n.

First of all, 0-regularity yields [zk] → [v] ∈ Pn−1(C). But then v must be an eigenvector of dFO;
therefore [v] = e1, and thus π−1

1 (zk)→ e1. Exactly the same argument shows that π−1
2 (zk)→ e2.

Now assume that π−1
r (zk) → er for some 2 ≤ r ≤ n − 1, and put wk = χr ◦ π−1

r (zk). The 0-regularity
of {wk} implies that [wk] → [v] ∈ Pn−1(C); again, v must be (canonically identified to) an eigenvector
of d(F̃r)er

. Now, a computation using (1.5) and (1.6) shows that for 1 < r < n we have

w1
j =


w1

(
1− ar

11w1 + 2w2 − wr+1 + O(‖w|2)
)

if j = 1,
wj

(
1− wj + wj+1 + O(‖w|2)

)
if 1 < j < r,

wr

(
1 + ar

11w1 − wr + wr+1 + O(‖w|2)
)

if j = r,
aj
11w1 + wj + wj+1 + 2aj

12w1w2 − (ar
11w1 + wr+1)(a

j
11w1 + wj + wj+1) + O(‖w|3) if r < j < n,

an
11w1 + wn + 2an

12w1w2 − (ar
11w1 + wr+1)(an

11w1 + wn) + O(‖w|3) if j = n.
(4.1)

In particolar, d(F̃r)er
is represented by the matrix∣∣∣∣∣∣∣∣∣∣∣∣∣

Ir O

ar+1
11
... O Jn−r

an
11

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Therefore v = (0, v2, . . . , vr+1, 0, . . . , 0); to prove that π−1
r+1(z

k)→ er+1 it suffices to show that vr+1 6= 0.
Assume, by contradiction, vr+1 = 0, and let j0 = max{2 ≤ j ≤ r | vj 6= 0}. We know that

wk
j /wk

j0
→ vj/vj0 for all j; in particular, wk

j = O(wk
j0

) if vj 6= 0, and wk
j = o(wk

j0
) if vj = 0. Then (4.1) yields

wk+1
j0

= wk
j0(1− wk

j0) + o
(
(wk

j0)
2
)

;

hence using Lemma 4.1 we find

wk
j0 =

1
k

+ o

(
1
k

)
,

and so

wk
j =

vj/vj0

k
+ o

(
1
k

)
(4.2)

for all j = 1, . . . , n.
We now claim that vj/vj0 = j0−j +1 for all j = 2, . . . , j0. We argue by induction on j0−j. Take j < j0

and assume that vj+1/vj0 = j0 − j. Noticing that wk
j 6= 0 for all k and 1 ≤ j ≤ r (because π−1

r (zk) does not
belong to the singular divisor), we can write

wk+1
j

wk
j

= 1− wk
j + wk

j+1 + O
(
(wk

j+1)
2
)

.
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If vj = 0 we would get

wk+1
j

wk
j

= 1 +
j0 − j

k
+ o

(
1
k

)
,

which is impossible because the infinite product
∏

k(wk+1
j /wk

j ) is converging to zero. Therefore vj 6= 0; but
then applying Lemma 4.1 to

wk+1
j = wk

j (1− wk
j + wk

j+1) + o
(
(wk

j )2
)

and recalling (4.2) we get vj/vj0 = j0 − j + 1, as claimed.
In particular we then have v2/vj0 = j0 − 1, and so

wk+1
1

wk
1

= 1 +
2(j0 − 1)

k
+ o

(
1
k

)
,

which is impossible. The contradiction arises because we assumed vr+1 = 0; therefore we must have vr+1 6= 0,
as claimed.

Summing up, we have in particular proved that π−1
n (zk)→ en; set wk = χn ◦ π−1

n (zk). Notice that, by
construction, wk

j 6= 0 for all k and j. By 0-regularity, [wk] → [v] ∈ Pn−1(C); Theorem 3.1 then says that v

must be a characteristic direction of F̃n at en, that is a solution of


−v2

1 + 2v1v2 = λv1 ,

−v2
j + vjvj+1 = λvj for j = 2, . . . , n− 1,

v1vn − v2
n = λvn.

To end the proof we must show that v is allowable, that is that vj 6= 0 for j = 1, . . . , n.
Assume, by contradiction, that there is a j0 such that vj0 6= 0 but vj0+1 = 0 (where here by vn+1 we

mean v1). Then it is easy to prove that vj/vj0 ∈ N for all j = 1, . . . , n; in particular, vj/vj0 is always
non-negative. Now we have

wk+1
j0

= wk
j0(1− wk

j0) + o
(
(wk

j0)
2
)

;

therefore Lemma 4.1 yields wk
j0

= 1/k + o(1/k). Recalling (4.2) we then get wk
j = cj/k + o(1/k) with cj ≥ 0

for all j = 1, . . . , n. But then arguing exactly as in the first part of the proof we show that vj0−1, . . . , v1 6= 0;
and then we get vn 6= 0, and going up we finally arrive to prove vj0+1 6= 0, contradiction. ¤
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