Index Theorems for Holomorphic Maps and
Foliations

MARCO ABATE, FILIPPO BRACCI ¢ FRANCESCA TOVENA

ABSTRACT. We describe a general construction providing in-
dex theorems localizing the Chern classes of the normal bundle
of a subvariety inside a complex manifold. As particular in-
stances of our construction we recover both Lehmann-Suwa’s
generalization of the classical Camacho-Sad index theorem for
holomorphic foliations and our index theorem for holomor-
phic maps with positive dimensional fixed point set. Further-
more, we also obtain generalizations of recent index theorems of
Camacho-Movasati-Sad and Camacho-Lehmann for holomor-
phic foliations transversal to a subvariety.

1. INTRODUCTION

In 1982, C. Camacho and P. Sad [11] proved the existence of separatrices for
singular holomorphic foliations in dimension 2. One of the main tools in their
proof was the following index theorem:

Theorem 1.1 (Camacho-Sad). Lez S be a compact Riemann surface embedded
in a smooth complex surface M. Let F be a one-dimensional singular holomorphic
foliation defined in a neighbourhood of S and such that S is a leaf of 'F, that is such
that 'F is tangent to S. Then it is possible to associate to any singular point q € S of 'F
a complex number 14 (F,S) € C, the index of the foliation along S at q, depending
only on the local behavior of F near q, such that

S W(FS) =J c1(Ns),
4<Sing(F) $

where ¢\ (Ns) is the first Chern class of the normal bundle Ns of S in M.

2999
Indiana University Mathematics Journal (©), Vol. 57, No. 7 (2008)



3000 M. ABATE, F. BRACCI, F. TOVENA

The index 14 (F,S) can be explicitely computed using a local vector field gen-
erating ‘F in a neighbourhood of g (see Example 7.23).

Thus Theorem 1.1 gives a quantitative connection between the way S sits
in M (the integral of the first Chern class of N is equal to the self-intersection
number S - S of §) and the behavior of singular foliations tangent to S.

Due to its importance (see, e.g., [22] and [9] for applications), in the next
twenty years this theorem has been generalized in several ways; see, e.g., Lins Neto
[22], Suwa [27], Lehmann [19], Lehmann-Suwa [20], [21], and references therein
(see also [6], [7], where also the ambient space M is allowed to be singular). In

particular, using Cech-de Rham cohomology, Lehmann and Suwa (see [28] for
a systematic exposition) proved what we are going to consider as a model index
theorem: if the possibly singular holomorphic foliation F of dimension ¥ is tan-
gent to a possibly singular (but not too wild: see Definition 6.3 and Example 6.4)
subvariety S of dimension d in the ambient manifold M, then the Chern classes of
the normal bundle Ng of degree higher than d — ¥ can be localized at the singular-
ities — that is, obtained as sum of local residues depending only on the behavior
of § and F nearby the singularities (of S and of F in §). We explicitely remark
that one of the main ingredients in their proof is the construction of a partial
holomorphic connection on the the normal bundle N outside a suitable analytic
subset of S (where “partial” here means that we are differentiating only along some
tangent directions, the ones contained in F).

The results obtained in those papers are apparently strictly inside the theory
of holomorphic foliations; the arguments used needed the existence of the foli-
ation F in a neighbourhood of the subvariety S, and the tangency of F to S.
Recently, however, a number of results have appeared strongly suggesting that
these might be unnecessary limitations: the tangency of ‘F to S might be replaced
by hypotheses on the embedding of S into the ambient space M ([10], [12], [13]),
and, perhaps more strikingly, the foliation can be replaced by a holomorphic self-
map of the ambient manifold fixing pointwise the subvariety S ([1], [8], [2]).
Furthermore, there was the tantalizing fact that the statements of all these new in-
dex theorems were clearly similar, and yet they all needed slightly different proofs;
none of them was consequence of any of the others.

The main goal of this paper is to show how it is possible to recover all these
index theorems (and a couple of new ones) using a universal construction hav-
ing a priori nothing to do with either foliations or self-maps. More precisely, we
shall reduce the proof of such an index theorem to the construction of an Ogo-
morphism ¢: F — A satisfying a splitting condition (see Theorem 5.9.(ii) for
the exact condition), where: S is the complement in S of the singular points of S
and of the singular points of the object (foliation or self-map) we are interested
in; F is the sheaf of germs of holomorphic sections of a suitable sub-bundle of
the tangent bundle TS%; and A is an universal Ogo-locally free sheaf depending
only on the embedding of S° into the ambient space M. The details of the con-
struction of ¢ will of course depend on the particular situation we are dealing
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with (foliation or self-map, tangential or transversal); but as soon as such a ¢ ex-
ists then an index theorem analogous to Lehmann-Suwa’s model one follows (see
Theorem 6.8). We shall also show (in Sections 7 and 8) how to construct such a
in several cases, and we shall be able to recover all the index theorems of this kind
known up to now (for M smooth), together with two new ones: the first one (The-
orem 7.21) on foliations transverse to S generalizes both Camacho-Movasati-Sad’s
([13]) and Camacho-Lehmann’s ([10], [12]) results, while the second one (The-
orem 8.10) extends the results of [2]. We also explicitely compute the index at
isolated singularities in a simple but important case using a Grothendieck residue;
see Remark 6.10 and Example 7.23.

Very briefly, the reason why the existence of a morphism ¢: F — A implies
an index theorem can be explained as follows. The sheaf A comes provided with
an important additional structure: an universal holomorphic 6;-connection (see
Sections 4 and 5 for precise definitions) on the normal bundle Ngo of S° in M.
Then, following ideas due to Atiyah [4], we shall be able to prove that the existence
of such a morphism ¢ is equivalent to the existence of a partial holomorphic con-
nection on N0 along F. Having this, an argument essentially due to Baum and
Bott ([5]; see Theorem 6.1) yields the vanishing on S of suitable Chern classes
of Nso; and then a general cohomological argument (developed by Lehmann and
Suwa [19], [28]) allows one to infer from this vanishing the localization at the
singularities of the corresponding Chern classes — that is, an index theorem.

Let us finally describe the plan of the paper. In Sections 2 and 3 we collect
a number of definitions and properties concerning infinitesimal neighbourhoods
of subvarieties that we shall need in the rest of the paper, and we describe the
conditions we shall impose on the embedding of the subvariety into the ambient
manifold to deal with the transversal cases (we also refer to [3] for more details on
these conditions). In Sections 4 and 5 we introduce the sheaf A and its additional
structures, while in Section 6 we prove the vanishing Theorem 6.1 and our general
index Theorem 6.8. In Section 7 we show how to build the morphism ¢ for
holomorphic foliations (and, in particular, we get the new Theorem 7.21), and
finally in Section 8 we do the same for holomorphic self-maps (and, in particular,
we get the new Theorem 8.10).

Acknowledgments. We would like to thank Francesco Russo for pointing
out reference [25], Jorge V. Pereira and Tatsuo Suwa for some useful conversations,
and the Departments of Mathematics of Jagellonian University, Krakéw, and of
University of Michigan, Ann Arbor, for the warm hospitality offered to the first
and third author during the preparation of this paper.

2. SPLITTING SUBMANIFOLDS

Let us begin by recalling a few general facts on sequences of sheaves. We say that
an exact sequence of sheaves (of abelian groups, rings, modules. . .)

O-R-LSEL T-0
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on avariety S splits if there is a morphism 0 : T — § of sheaves (of abelian groups,
rings, modules. ..) such that p o 0 = id. Any such morphism is called a splitting
morphism. A morphism of sheaves of abelian groups T: § — R such that Tot = id
is called a left splitting morphism.

The following facts are well known, and easy to prove:

Lemma 2.1. Let
(2.1) O-R-LsET-0

be an exact sequence of sheaves of abelian groups over a variety S. Then:
() the sequence (2.1) splits if and only if there exists a left splitting morphism
T: S—-R;
(i) 4f (2.1) splits, for any splitting morphism o : T — S there exists a unique left
splitting morphism T: S — R such that T o 0 = O and

loT+0op=id;

(ii) 4f (2.1) splits, then there is a 1-t0-1 correspondence between splitting morphisms
and elements of H(S,Hom(T ,R)). More precisely, if 0o: T — S is a split-
ting morphism, all the other splitting morphisms are of the form oo — t o @
with @ € H°(S,Hom(T,R)), while if To: T — S is a left splitting mor-
phism, all others left splitting morphisms are of the form To + @ o p with
@ € H°(S,Hom(T,R)).

Following Grothendieck and Atiyah, we can give a useful cohomological char-
acterization of splitting for sequences of locally free Og-modules. Let

(2.2) O-F -F-EF"-0

be an exact sequence of sheaves of locally free Os-modules. Applying the functor
Hom(Z", -) to this sequence we get the exact sequence

(2.3) O - Hom(E",E") - Hom(E",E) - Hom(E",E") - O.
Let 6: H*(S,Hom(Z",E")) — H'(S,Hom(ZE",E")) be the connecting homo-

morphism in the long exact cohomology sequence of (2.3). Then we can associate
to the exact sequence (2.2) the cohomology class

S(idzr) € H'(S,Hom(E",E")).
We get a 1-to-1 correspondence between the group H! (S, Hom(Z"', £’)) and

isomorphism classes of exact sequences of locally free Og-modules starting with Z’
and ending with Z"”. Indeed, we have (see [4], Proposition 1.2):
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Proposition 2.2. Ler S be a complex manifold. Then two exact sequences of
locally free Os-modules are isomorphic if and only if they correspond to the same coho-
mology class. In particular, an exact sequence (2.2) of locally free Os-modules splits if
and only if it corresponds to the zero cohomology class.

Let us now introduce the sheaves (and sequences of sheaves) we are interested
in. Let M be a complex manifold of dimension n, and let S be a reduced, globally
irreducible subvariety of M of codimension m > 1. We denote: by Oy the sheaf
of germs of holomorphic functions on M; by 7s the subsheaf of Oy of germs
vanishing on §; and by Os the quotient sheaf O /75 of germs of holomorphic
functions on S. Furthermore, let Ty denote the sheaf of germs of holomorphic
sections of the holomorphic tangent bundle TM of M, and Qu the sheaf of germs
of holomorphic 1-forms on M. Finally, we shall denote by T s the sheaf of germs
of holomorphic sections along S of the restriction TM |5 of TM to S, and by Qu s
the sheaf of germs of holomorphic sections along S of T*M]s. It is easy to check
that TM,S =Ty ®0yOs and Qum,s = Qm ®0,,0s.

For k = 1 we shall denote by f — [f]k the canonical projection of Oy
onto Oy / ’Jgf. The cotangent sheaf’ Qg of S is defined by

Qs = Qu,s/d2(15/15),

where d; : OM/’Jf — Qu,s is given by da[ f 12 = df ® [11];. In particular, we have
the conormal sequence of sheaves of ©Og-modules associated to S:

d
I/72 2 Qs L Qs — 0.

Applying the functor Homp, (-, Os) to the conormal sequence we get the normal
sequence of sheaves of Og-modules associated to S:

0O—-Ts— TM,Sﬁ’ N,

where Ts = Homo, (Qg, Os) is the tangent sheaf of S, p, is the morphism dual
to dy, and Ns = Homg, (75/7%, Os) is the normal sheaf of S.

As mentioned in the introduction, to get index theorems in the transversal
case we shall need hypotheses on the embedding of S into M. The first such
hypothesis is:

Definition 2.3. Let S be a reduced, globally irreducible subvariety of a com-
plex manifold M. We say that S splits into M if there exists a morphism of sheaves
of Os-modules o : Qg — Qp s such that p o 0 = id, where p: Qu s — Qg is the
canonical projection.

Remark 2.4. 1t is not difficult to prove that if S splits into M then it is neces-
sarily non-singular, and the morphism ds: 75/73 — Qu s is injective. In particu-
lar, when S splits into M the sequence

(2.4) 0—1/22-2 Qys-L 05~ 0
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is a splitting exact sequence of locally free ©Os-modules, and we also have a left
splitting morphism T: Qu s — Zs/72.

We shall now describe several equivalent characterizations of splitting subva-
rieties. In doing so, we shall introduce notations and terminologies that shall be
useful in the rest of the paper.

Definition 2.5. Let S be a reduced, globally irreducible subvariety of a com-
plex manifold M. For any k = 1 let O: OM/flé<+1 — Opum/Is be the canonical
projection given by Ok ([ f1k+1) = [f 1. The k-th infinitesimal neighbourhood of
S in M is the ringed space S(k) = (S, OM/’Jé‘“) together with the canonical in-
clusion of ringed spaces tx: S = S(0) — S(k) given by tx = (ids, Ox). We also
put Osk) = OM/7§+1. A k-th order lifting is a splitting morphism p: Os — Os k)
for the exact sequence of sheaves of rings

0 — 15/7K! — 05y —2 05 — O.

Definition 2.6. Let O and R be sheaves of rings, 0: R — O a morphism of
sheaves of rings, and M a sheaf of ©O-modules. A 0-derivation of R in M is a
morphism of sheaves of abelian groups D: R — M such that

D(riry) = 0(r1) - D(12) + 0(12) - D(11)

forany 71, 1, € R. In other words, D is a derivation with respect to the R-module
structure induced via restriction of scalars by 6.

We can now give a first list of conditions equivalent to splitting (see [17], p.
373, [25], Lemma 1.1, and [15], Proposition 16.12 for proofs):

Proposition 2.7. Let S be a reduced, globally irreducible subvariety of a complex
manifold M. Then there is a 1-to-1 correspondence among the following classes of
morphisms:

(@) morphisms o : Qs — Qu,s of sheaves of Os-modules such that p o o = id;
(b) morphisms T: Qm,s — ’]5/’_{% of sheaves of Os-modules such thatr T o d, = id;
(c) O1-derivations p: Os(1) — 75/1% such that p o i1 = id, where i;: 75/1% .
Os1) is the canonical inclusion;
(d) morphisms p: Os — O 1% of sheaves of rings such that 0, o p = id.
In particular, S splits into M if and only if it has a first order lifting. Finally, if any
(and hence all) of the classes (a)—(d) is not empty, then it is in 1-to-1 correspondence
with the following classes of morphisms:
(e) morphisms T* : Ns — Tm,s of sheaves of Os-modules such thar p; o T* = id;
(£) morphisms 0*: Ty s — Ts of sheaves of Os-modules such that t o 0* = id,
where 1: Ts — Typs is the canonical inclusion.
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We have already noticed (Remark 2.4) that a splitting subvariety is necessarily
non-singular; therefore we can use differential geometric techniques to get another
couple of characterizations of splitting submanifolds.

Definition 2.8. Let S be a (not necessarily closed) complex submanifold
of codimension m = 1 in a complex manifold M of dimension n > 2, and

let (Ux, za) be a chart of M. We shall systematically write zy = (2),...,2%) =
(2, zw), with z, = (2L,...,2") and zj; = (z*1,...,z%). We shall say that

(Ux, 2«) is adapted to S if either Uy NS = @ or
UxNS=1{zk=---=2z"=0}.

In particular, if (Ug, z«) is adapted to S then {z),...,z#} is a set of generators
of Is x forall x € Uy N S. An atlas U = {(Ux, zo) } of M is adapted to S if all its
charts are; then s = {(Ux N S,zy) | Ux NS # @} is an atlas for S. The normal
bundle Ng of S in M is the quotient bundle TM|s/TS; its dual is the conormal
bundle N§ . 1f (Ux, z«) is a chart adapted to S, for v = 1,..., m we shall denote
by 0y« the projection of 0/0z%|y,ns in Ns, and by w¥ the local section of N§
induced by dzX |y, ns. Then {01,x,---,0m,a} and {w,..., ™} are local frames
over Uy N S for Ns and N¢ respectively, dual to each other.

Remark 2.9. From now on, every chart and atlas we consider on M will be
adapted to S. We shall use Einstein convention on the sum over repeated indices.
Indices like j, h, k will run from 1 to n; indices like 7, s, t, u, v will run from 1
to m; and indices like p, g will run from m + 1 to n.

Remark 2.10. 1f (Uy,zx) and (Ug,zg) are two adapted charts with
Ux NUg NS # &, then it is easy to check that

ozh
Z“B 0

ozh s

forall¥ =1,....mandp=m+1,...,n.

Then computing the cohomology class associated to the conormal sequence (2.4)
and recalling Proposition 2.2 we get:

Proposition 2.11. Let S be a complex submanifold of codimension m of a com-
plex manifold M, and let \\ = {(Ux, z«)} be an adapted atlas. Then the cohomology
class s € H'(S,Hom(Qg, N{")) associated to the conormal exact sequence of S is
represented by the 1-cocycle {spx} € H' (Us, Hom(Qs, N)) given by

22} o2}
0z azg S

w3 ® 9 € H(UynUg N S,NF ® Tg).

Spo = ozh

In particular, S splits into M if and only if's = O.
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We can rewrite this characterization in a more useful form using the notion of
splitting atlas, originally introduced in [2].

Definition 2.12. Let 4 = {(Ux, z«)} be an adapted atlas for a complex sub-
manifold S of codimension m > 1 of a complex n-dimensional manifold M. We
say that U is a splitting atlas if

p
azB o
oz s
forall¥ =1,...,m,p=m+1,...,n and indices &, B so that Uy nUgN S # O.

Definition 2.13. Let 4 = {(Uy, o)} be an atlas adapted to S. If p: Os —
Os(1) is a first order lifting for S, we say U is adapted to p if

25) P =1 - [ 22

[04

forall f € ©O(Uy) and all indices & such that Uy NS # @.
Remark 2.14. In [3] it is shown that U is adapted to p if and only if

p(9)(za) = gu(O',2) + T2

forall g € O(Ux N'S) and all indices « such that Uy NS # &, where we are
assuming (without loss of generality) that z4 € Uy implies (O', zy) € Ux N S.

Proposition 2.15. Let S be a complex submanifold of codimension m = 1 of an
n-dimensional complex manifold M. Then:

(i) S splits into M if and only if there exists a splitting atlas for S in M;
(ii) an atlas adapted to S is splitting if and only if it is adapted to a first order lifting;
(iii) #f'S splits into M, then for any first order lifting there exists an atlas adapted to
1t.

Proof. (i) By Propositions 2.2 and 2.11, the existence of a splitting atlas clearly
implies that S splits into M. Conversely, assume that S splits into M. Then
by Propositions 2.2 and 2.11 we can find an adapted atlas ¢ and a 0-cochain
¢ = {ca} € HO(8s, N§ ® Ts) such that sgy = cg — cq on Uy N Up N S, that is

dz%, 0z dzr 0z}
(2.6) - =« =(ca)V =2 —E| —(cp)d
0z 0zi s e 0z ozh s Bis
onUxnUgNnSforals=1,...,mand p = m+1,...,n, where we have written
0

p s
ta = (Ca)s Wy ® .
« 7 ozk
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Then using (2.6) it is easy to check that the coordinates
25 = z3,
(2.7)

restricted to suitable open subsets Ux S Uy, give a splitting atlas U ={(Ua, 20}
(ii) Let & = {(Ux, Zo)} be an atlas adapted to S. Setting

pullfN) = 1 - [ 2zt

ozh

we define local first order liftings pa: Oslusns = Os)luans; we claim that in
this way we get a global first order lifting p if and only if 4 is a splitting atlas
(necessarily adapted to p). But indeed

s (LF1D) = palLf1) = | 24 zf]z— [af zf]
2

| 0zh X oz B
i oz ozh
(2 ()[4
| ZB Z(X 2 aZB ZD( 2

[ of 02} ]

z
_azf; 0zg ,

and so py = pgon Ux N Ug NS for all & and B if and only if £f is a splitting atlas.
(iii) Let 4 = {(Ux, z«) } be asplitting atlas, adapted to the first order lifting po,
and choose another first order lifting p. Lemma 2.1.(ii) implies that p = pg—to @
for a suitable @ € H°(S,Hom(Os,75/72)), and it is easy to check that @ is a
derivation. Therefore there is a 0-cocycle ¢ = {co} € HO(Us, N& ® Ts) such that

99
p(g) = po(g) — (ca)¥ [—22]
0 ozhk %,

[0

for all g € Osly,ns. Then defining new coordinates as in (2.7) we still get a
splitting atlas, easily seen adapted to p. O

Remark 2.16. Given a first order lifting p: Os — Os(1), let p, T* and o*
be the morphisms associated to p by Proposition 2.7, and let = {(Uy, z«)} be
an atlas adapted to S. Then it is easy to check that the following assertions are
equivalent:

(i) U is adapted to p;
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(ii) for every (Uy, z«) € U with Ux NS # & and every f € Oumly, one has

B(Lf1a) = [aa;;zg]z;

(iii) for every (Uy,zx) € Uwith Uy NS # @ and every ¥ = 1,...,m one has
0

T (ar,o() = R?

(iv) for every (Uy, Zzo) € U with Ux N S # @ and every fé 9/9zk e Tm.sluens

one has
i 0 0
* J_Y ) Pi_
7 (“az{) “ozk

Remark 2.17. It is also possible to prove (see, e.g., [3]) that a submanifold S
splits into M if and only if its first infinitesimal neighbourhood $(1) in M is iso-
morphic to the first infinitesimal neighbourhood Sn (1) of the zero section in N.

We end this section with a list of examples of splitting submanifolds.

Example 2.18. A local holomorphic retract always splits into the ambient
manifold (and thus it is necessarily non-singular). In particular, the zero section of
a vector bundle always splits, as well as any slice § X {x} in a product M = § x X
(with both § and X non-singular, of course).

Example 2.19. 1f S is a Stein submanifold of a complex manifold M (e.g., if
is an open Riemann surface), then S splits into M. Indeed, we have
HY(S, Ts®N) = (0) by Cartan’s Theorem B, and the assertion follows from
Proposition 2.11. In particular, if S is a singular curve in M then the non-singular
part of S always splits into M.

Example 2.20. Let M be the blow-up of a point in a complex manifold M.
Then the exceptional divisor splits into M: indeed, it is easy to check that the atlas
of M induced by the atlas of M is splitting.

Example 2.21. A smooth closed irreducible subvariety of P™ splits into P™ if
and only if it is a linear subspace (see [29], [25], [24]).

Example 2.22, Let S be a non-singular, compact, irreducible curve of genus g
on a surface M. If S - § < 4 — 4g then S splits into M. In fact, the Serre duality
for Riemann surfaces implies that

H'(S,Hom(Qg, N¥)) = H(S, Qs®Qs®N5),

and the latter group vanishes because the line bundle T*S ® T*S ® Ny has
negative degree by assumption. The bound § - S < 4 — 4g is sharp: for in-
stance, a non-singular compact projective plane conic S has genus g = 0 and

self-intersection S - S = 4, but it does not split in the projective plane (see Exam-
ple 2.21).
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3. COMFORTABLY EMBEDDED SUBMANIFOLDS

In this section we introduce two other, more stringent, conditions on the em-
bedding of S into M. From the definitions it will be clear that they are just the
beginning of two infinite lists of progressively more restrictive conditions; we shall
however limit ourselves to present only the properties we need in this paper, refer-
ring to [3] for a more complete discussion.

We start with a natural generalization of splitting:

Definition 3.1. Let S be a submanifold of a complex manifold M. We say
that S 2-splits into M if there exists a second order lifting p: Os — Og(3) or, in
other words, if the exact sequence

0
0 —15/13 — Os2)—= Os — O

splits as sequence of sheaves of rings. Notice that a 2-splitting submanifold is
necessarily splitting.

We have the following analogue of Proposition 2.15:

Proposition 3.2. Let S be an m-codimensional submanifold of a complex
manifold M of dimension n. Then S 2-splits into M if and only if there is an at-
las U = {(Ux, z&) } adapted to S such that

(3.1)

forallvy =1,...,m, p =m+1,...,n and indices &, B so that Ux N Ug NS #+ .

Proof. Let us first assume that we have an atlas 4 = {(Ux, z«)} adapted to S
and such that (3.1) holds. Let us then define p«: Osly, — Os3)lu, by

— _ af v 1 azf 1 512
(32) po(([f]l)—[f]3 I:azz;zo(]s'f_z [821&1821&22“2“}3

for all f € O(Ux). It is easy to check that the right-hand side depends only
on [f1i, and that p is a ring morphism such that 8, o p = id. So to prove that
S 2-splits into M it suffices to show that px does not depend on «. But indeed,
since we have

s 258
0% , 1&271272
0zo % 20zy0zy T |4

(3.3) B [
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foralls =1,...,m, we find

(3.4) pp(Lf11) = pa([fT1)
of 1 Af .. of 1 % f g
[aza ]3 [az Hozi Jace 5 azgzﬁ 5+2 0zg0zg “B %8 ,
af %ZY . 18272227’127’2
0zp \0z&k ™ TP 20zdozi T TY) |,
1 o2f dzy dzy
_2[822162}? (82 nz S 3
[3f 925 ] [ 2f 0zj 0z , ]
+ ZO( ‘V ‘VZO(lZ
aZB az(x 3 8ZﬁaZB 1 0(2 3

1 2 f az"" azgz .
(XZ(X
3

2 azﬁlazg2 az zZw

=0,

because of (3.3) and (3.1).

Conversely, let us assume that we have a second order lifting p: Os — Os(3);
we must build an atlas adapted to S such that (3.1) holds.

If 02,1: Os(2) = Os(1) is the canonical projection, then p; = 02,1 o p is a first
order lifting; let 4 = {(Ux, z«)} be a splitting atlas adapted to p;. Define then
local second order liftings p« as in (3.2), and set 0x = p — px. Now

0r100x=p1—6210px=0,

because the atlas is adapted to p1; therefore the image of oy is contained in 72/73,
which is an @s-module. Furthermore, oy is a derivation; therefore we can find
(so()fl,f2 € O(Ux N'S), symmetric in the lower indices, such that

0

Ox = (Sa)hnlzhzi]3 ® —5.
0Zx

Now, since we are using a splitting atlas, the computations in (3.4) yield

dzp )
(3.5 FZo| ® =5 =P —Pu=0x—0p
3

0zk azg
0z p 0z 0zp 3
|:<a q (Sa)rlrz (SB)SISZa El Y B ) Zo( 27&2:|3 ® E
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Furthermore, always because we are using a splitting atlas, we can write zp =

bpa(zi) + (pe) Vi ze z with (hga)¥ir, € O(Ux N Up) symmetric in the lower
indices. Putting this in (3.5) we get

dzp dzy 9z
Z(hﬁrx)rlrz - 024 ~_ad (So()rlyz + (S3)51Sz 32" o a € ls
and hence
azp aZp 0z%
. [azg - 5a Gzl + (phinzy 5 7

Let us then consider the change of coordinates

zr =z
2’5( = 20( + 5 (S(X)Tl‘l"z(z )Z(x Zo< ;

defined in suitable open sets Ux € Ugs using (3.0) it is easy to check that (U, 200}
is the atlas we are looking for. O

Definition 3.3. An atlas adapted to S satisfying (3.1) will be said 2-sp/itting.

Remark 3.4. There is a cohomological characterization of splitting subman-
ifolds which are 2-splitting. Indeed, assume that S splits into M, and let 4 =
{(Ux,z«)} be a splitting atlas. If we define local second order liftings {p«} as
in (3.2), the computations made in the proof of the previous proposition show
that setting pga = pp — P« the cocycle {pgy} defines a cohomology class

ge H'(S,1%/13 ® Ts),

and it is easy to check that S 2-splits if and only if this cohomology class vanishes.

It turns out that for our aims it will be much more useful a different, though
related, condition on the embedding of S into M.

Let S be a splitting submanifold of codimension m of a complex manifold M,
and let p: Os — Os) be a first order lifting. The sheaf 75/.72 has a natural
structure of Og(1)-module; by restriction of scalars via p, we get a structure of
Os-module, and it is easy to check that with this structure the sequence

(3.7) ~ 2213 — 15/ 25 15/72 — 0

becomes an exact sequence of locally free Os-modules. In particular, it is clear that

if {(Ux,za)} is an atlas adapted to p then {[z]]3, [z& 2o 13} is a free set of local

generators of 7s / 72« over Og.
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Remark 3.5. The cohomology class h € H'(S,7%/73 ® Ni) associated to
the sequence (3.7) by the procedure described at the beginning of the previous
section is represented by the cocycle {hg} given by

oz e v 1
= — zHzR213 ® 0y «,
Dpe 2 [azg} ozk 82216222 . (22615 ® Ora

where {(Uq, z«)} is a splitting atlas associated to the first order lifting p.
We are thus led to the following

Definition 3.6. Let S be a (not necessarily closed) submanifold of a complex
manifold M. We say that S is comfortably embedded in M if there exists a first
order lifting p: Os — Og(1) such that the sequence (3.7) splits as sequence of
Os-modules. We shall sometimes say that S is comfortably embedded with respect
10 p.

We can characterize comfortably embedded submanifolds using adapted at-
lases, recovering in particular the original definition of comfortably embedded
submanifolds introduced in [2]:

Proposition 3.7. Let S be an mi-codimensional submanifold of a complex man-
ifold M of dimension n. Then S is comfortably embedded into M if and only if there
exists an atlas | = {(Uy, z«) } adapted to S such that

3.8 i o VR B

38 azk ©F M am 8

forallv, sy, s, =1,....m,p =m+1,...,nand indices &, B such that Ux N Ug N
S+ @.

Proof. If we have an atlas satisfying (3.8) then, by Proposition 2.15, S splits
into M, and Y is adapted to a first order lifting p. Furthermore, Proposition 2.2
and Remark 3.5 imply that S is comfortably embedded with respect to p.

Conversely, assume that S is comfortably embedded with respect to a first or-
der lifting p: Os — Os(1), let U = {(Uy, z&)} be a splitting atlas adapted to p,
and let v: 75/7% — 15/73 be a splitting morphism for the sequence (3.7). For
every index « such that Ux NS # @ define vu: .’Ig/.’l%an - .’Ig/ﬂgan by set-
ting Vo ([24]2) = [z4]3 and then extending by Og-linearity. Notice that (2.5)
and (3.3) yield

,
0zy

(3.9) vp([zgl2) — vallzgl2) = p ([azs] ) (2315 — [24]5
B 11

1 [ 2zl 52]
= —= S 3 ZB ZB .
2 azB 8zB 5
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Now set Ox = V — Vy; since 021 o 0« = O, it follows that Imoy < ﬂg/ﬂg. In
particular, there are (cq)},,, € O(Ux N S), symmetric in the lower indices, such
that

O—O(([ ]2) (Co()rl‘rz[ 1’ 10/(2]3-
But 0« — 08 = Vg — Vq; therefore (3.9) yields

0zy 0zy 0z 1 3’z

(310) (CB)SISZa 1 a 7/2 a ( (X)Tlrz 821&1821&2

€ 7Is.

We can finally define new coordinates 2 by setting

{ZT =z + (ca)l 1,28 28,

AP p
Zo = Zy

on suitable open subsets Ux S Uy Itis easy to check that = {(Uq, 24)} still is
a splitting atlas adapted to p. Moreover,

0?2} o’z azg1 3252 oz ,
aﬁ&%&z oznozh T2\ P ooy T g S )

and (3.10) concludes the proof. O
Definition 3.8. An atlas satisfying (3.8) will be said a comfortable atlas.

We end this section with a last definition and some examples.

Definition 3.9. Let S be a complex submanifold of a complex manifold M.
We shall say that S is 2-/inearizable if it is 2-splitting and comfortably embedded
(with respect to the first order lifting induced by the 2-splitting).

Remark 3.10. In [3] we prove that S is 2-linearizable if and only if its second
infinitesimal neighbourhood $(2) in M is isomorphic to the second infinitesimal
neighbourhood Sx(2) of the zero section in Ng; compare with Remark 2.17.

Example 3.11. The zero section of a vector bundle is always 2-linearizable in
the total space of the bundle.

Example 3.12. A local holomorphic retract is always 2-split in the ambient
manifold. Indeed, if p: U — S is a local holomorphic retraction, then a second
order lifting p: Os — Os(2) is given by p(f) = [f o p1.

Example 3.13. Let M be the blow-up of a submanifold X in a complex man-
ifold M. Then the exceptional divisor E C M is 2-linearizable in M.
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Example 3.14. 1f S is a Stein submanifold of a complex manifold M (e.g., if
S is an open Riemann surface), then S is 2-linearizable in M. Indeed, by Cartan’s
Theorem B the first cohomology group of S with coeflicients in any coherent sheaf
vanishes, and the assertion follows from Proposition 2.2 and Remarks 3.4 and 3.5.
In particular, if S is a singular curve in M then the non-singular part of S is always
comfortably embedded in M.

Example 3.15. Let S be a non-singular, compact, irreducible curve of genus g
in a surface M. The Serre duality for Riemann surfaces implies that

H'(S, 12/72 ® Ts) = H'(S, Qs ® Qs @ NE?).

Therefore if 2(S - S) < 4 — 4g, then H' (S, ’Jf/’];@‘fg) = (0). Analogously, we
have
H'(S, 72/13 ® Ng) = H(S, Qs ® N5),

andso S - S < 2 —2g implies H'(S, 72/7®Ns) = (O). It follows that if g > 1
and S-S <4—-4g,org=0and S-S <2, then S is 2-linearizable.

4. PARTIAL CONNECTIONS

As explained in the introduction, to get index theorems we need partial holomor-
phic connections. Atiyah in [4] showed that a complex vector bundle admits a
holomorphic connection if and only if a particular exact sequence of locally free
sheaves splits. In this section we shall adapt Atiyah’s construction to the case of
partial holomorphic connections; in the next section we shall describe a more con-
crete realization of Atiyah’s exact sequence that will allow us to explicitely construct
splitting morphisms (the morphisms ¢ of the introduction).

Remark 4.1. From now on, we shall denote the locally free sheaf of germs of
holomorphic sections of a vector bundle (e.g., E) by the corresponding calligraphic
letter (e.g., ).

Let us start briefly recalling Atiyah’s construction [4]. Let E be a complex vec-
tor bundle of rank d over a complex manifold S; we shall denote by Pg the prin-
cipal bundle associated to E, with structure group GL(d). The group GL(d) acts
on the tangent vector bundle Tp of the total space of Pg, and the quotient Ap =
Tp/GL(d) can be identified with the vector bundle on S of rank d? + dim S com-
posed by the fields of tangent vectors to Pr defined along one of its fibers and
invariant under the action of GL(d). Since the action of GL(d) on Pg preserves
the fibers of the canonical projection 1: Pr — S, the differential of 11y defines a
vector bundle morphism, still denoted by 119, from Af onto TS. Atiyah has shown
([4], Theorem 1 and Proposition 9) that there is a canonical exact sequence

(4.1) O — Hom(E,E) — Ap— T¢ — O,
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of locally free Os-modules, where Hom(Z, E) is canonically identified with the
sheaf of germs of holomorphic sections of the quotient, under the action of GL(d),
of the sub-bundle of Tp formed by vectors tangential to the fibres of Pg. Further-
more, this sequence splits if and only if there is a holomorphic connection on E
([4], Theorem 2). See also [16], where part of this theory is extended to subvari-
eties S having normal crossing singularities.

Remark 4.2. Atiyah ([4, pp. 190 and 195] also computed the cohomology
class associated to the sequence (4.1). In particular, if E is the normal bundle N
of a submanifold S of a complex manifold M and {(Uqx, z«)} is an atlas adapted
to S, then the cohomology class is represented by the cocycle {gng} where

_ 822 azzg
0z azgazé :

(4.2) Gup dzp ® Wy ® Oy q

It is easy to adapt Atiyah’s construction to the case of partial holomorphic
connections.

Definition 4.3. Let F be a sub-bundle of the tangent bundle T'S of a complex
manifold S. A partial holomorphic connection along F on a complex vector bundle E
on S is a C-linear morphism V: E — F* ® F such that

V(gs) =dgly ® s +gVs

forallg € Og and s € E.

If F is a sub-bundle of TS, we can consider the restriction to F of the se-
quence (4.1)

(4.3) O — Hom(E,E) — Apr—> F - 0,

where App = 115 L(F). Then arguing as in [4] it is easy to prove the following

Proposition 4.4. Let F be a sub-bundle of the tangent bundle TS of a complex
manifold S, and let E be a complex vector bundle over S. Then there is a partial
holomorphic connection on E along F if and only if the sequence (4.3) splits, that is if
and only if there is an Os-morphism Wo: F — Ag such that Ty o Y = id.

In the next section we shall give a more concrete realization of the sheaf Ag
when E is the normal bundle of a submanifold S into a manifold M, allowing
us to present an alternative explicit description of the partial holomorphic con-
nection given by a splitting of the sequence (4.3), and later on to build the mor-
phisms o: F — Ag. But we conclude this section with a few general definitions,
useful to put in the right perspective what we are going to do.
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Definition 4.5. Let E and F be locally free sheaves of Os-modules over a
complex manifold S. Given a section X € H(S,Ts ® F*), a holomorphic X-
connection on E (also called a holomorphic action of 'F on E along X) is a C-linear
map X: £ — F* ® Z such that

X(gs) = X*(dg) ® s + gX(s)

forall g € Os and s € E, where X*: Qg — F* is the dual map of X. We shall
often write X, (s) instead of X(s)(v), for s € F and v € F, where as usual
we have identified F* ® £ with Hom(F, E). Clearly, if F is an Os-submodule
of Ts and X is the inclusion, then X is just a partial holomorphic connection on E
along F.

Remark 4.6. Let E, F be locally free Os-modules and X: F — T be an Os-
morphism. The sheaf of first jets JYE of T along X is the sheaf of abelian groups
(F* ® E) @ E, with the structure of Og-module given as follows: for f € Og and
(w®e)de e ]}l(f we define

flwee)oe =(X*df)®e +w fe)o fe'.

The natural projection JYE — F given by (w ® e) ® ¢/ — ¢’ is a surjective
Os-morphism whose kernel is F* ® E. Thus we obtain the exact sequence

(4.4) O-F*®F—~JYE—~TF 0.

Notice that J{Z is locally Os-free and the sequence (4.4) is functorial on Z. It
is easy to see that this sequence splits if and only if there is a holomorphic X-
connection on E. If we denote by cx () € H' (S, F* ® Hom(Z,E)) the class
associated to the sequence (4.4), and by ¢(£) € H'(S,Qs ® Hom(Z, %)) the
class associated to the same sequence when F = T and X is the identity, then it
is not difficult to see that

cx(E) = (X* ®id)«C(E).

Furthermore, Atiyah ([4], Theorem 5) has shown that ¢(Z) is the opposite of the
cohomology class associated to the sequence (4.1).

We shall need a notion of flatness for a holomorphic X-connection. To state
it in full generality, we need a new definition and a lemma.

Definition 4.7. Let F be a sheaf of Og-modules over a complex manifold S,
equipped with an Og-morphism X: F — Ts. We say that F is a Lie algebroid of
anchor X if there is a C-bilinear map {-,- }: F @ F — F such that

@ {v,u}=—-{u,vh
b) {u, {fv,wi} +{v, {w,u}} + {w,{u,v}} = O;
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(© {g-u,vi=g-{u,v} -Xw)(g)  -uforallg € Osand u, v € F.

Example 4.8. Assume that X: F — T is injective, and that X (/F) is an
involutive subsheaf of Tg (we recall that a subsheaf F of T is involutive if it
is locally Os-free and, for each x € S, the fiber Fyx is closed under the bracket
operation for vector fields). Then we can easily provide F with a Lie algebroid
structure of anchor X by setting

{fu, v} = X 1([X(w),X@)].

In particular in this case we have X ({u, v}) = [X(u), X(v)].

We refer to [23] and references therein for the general theory of Lie algebroids;
here we shall use the definition only.
Let /F be a Lie algebroid of anchor X over a complex manifold S, and assume

we also have a holomorphic X-connection X: £ — F* ® F over a locally free
Os-module Z. Then it is easy to see that setting

(4.5) Ryvs = Xu o Xv (s) - Xv OXu(S) —X{u,v}(s)
we define a C-linear map R: £ — A? F* ® F such that
(4.6) Ruv(g-5) =g Ruv(s) + ([X(u), X(v)] - X({u,v}))(g) - s

forallg € Og, u, v € Fand s € E.

Definition 4.9. Let F be a Lie algebroid of anchor X over a complex man-
ifold S, and X: £ — F* ® F a holomorphic X-connection over a locally free
Os-module E. The curvature of X (with respect to the given Lie algebroid struc-
ture) is the C-linear map R: £ — A T* ® F defined in (4.5). We shall say that
X is flar if R = O.

Remark 4.10. Note that if X is flat, then from (4.6) it follows that

[X(w),X(v)] =X({u,v})

forallu, v € F.

Example 4.11. Let X: F — T be the inclusion of an involutive locally free
Os-submodule F of T with locally free quotient @ = T/ F and consider the
associated exact sequence

o-FE1,% 00,

Then we can define a partial holomorphic connection X: @ — F* ® Q on Q
along F by setting
Xu(q) = p([X(u),q]),
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where g is any local section of T such that ¢(4) = q. Putting on F the natural
Lie algebroid structure of anchor X given by the bracket of vector fields, it is easy
to check that X is a flat partial holomorphic connection. The existence of this
natural flat partial holomorphic connection is one of the main ingredients in the
proof of Baum-Bott index theorem for singular holomorphic foliations; see [5],

[12], and [28], Chapter II.

5. THE UNIVERSAL PARTIAL CONNECTION ON THE NORMAL SHEAF

In this section we shall describe a concrete incarnation of the sheaf Ar when E is
the normal bundle of a submanifold S of a complex manifold M.

Definition 5.1. Let S be a (not necessarily closed) complex submanifold of
a manifold M. Set Ta,s1) = Tm ®0,Os(1); with a slight abuse of notation we
shall denote by 0, the Oy-morphism id ® 01: Tys(1) = Tam,s. Let TA‘;S(I) be
the Op-submodule of Ty 5(1) given by

Thisa) = ker(pa 0 01) € Tars),

where p,: Tys — N is the natural projection. Notice that 01 (T} ¢(;)) = Ts.

In local adapted coordinates, an element
v = [aj]zi € Tusn)
0zJ ’

belongs to TA§1,5(1) if and only if [a"]; = 0 for ¥ = 1,...,m. In other words,
v € Tum,s(1) belongs to TI\%,S(I) if and only if when restricted to S it is tangent to
1t.

In general, ’T]@’S(I) is not an Os-module (it is if S splits into M, but we do
not want to assume this yet). However, we can almost define on it a Lie algebroid
structure of anchor 0.

If v € Tys and f € Opy, then v(f) is a well-defined element of Og.
Analogously, if v € Ty sy and f € Ou, then v(f) is a well-defined element
of Os(1); on the other hand, if g € Og(1) then v(g) is well defined as an ele-
ment of Os, but not of Og(1). This means that we can define a bracket operation
[-,-1]: TM,S(]) 52} TM,S(l) - TM,S by setting

[u, v1(f) = u(w(f) —v(ulf)) € Os
forall f € Ou. In particular, for every g € Os(1) and u, v € Tp,5(1) we have
(5.1) [gu,v]=0:1(g)[u,v]l-v(g) - 0:1(u).

Remark 5.2. In general, if u, v, w € Tys1) then [v,w] € T, and so
[u, [v, w]] is not defined. But we shall see exceptions to this rule.
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Lemma 5.3. Let S be a complex submanifold of a manifold M. Then
(i) everyv € Ty g, induces a derivation g — v(g) of Os(1);
(i) there exists a natural C-bilinear map {-, - } : TA§I,S(1) GBTA‘,SLS(I) - T]\L?I,S(l) such
that
@ {v,u} =—-{u,v}
(b) {u,{v,wi} +{v, {w,ut} + {w, {u,v}} =0,
(© {gu,v}=glu,v}—v(g) - uforall g € Os(), and
d) O1{u, v} =[01(w),01(v)] =[u,vl.

Proof- (i) The relevant fact here is that if we have an adapted chart (U, z) and
germs [ f1, € Os(1) and [h], € T5/73, then we get well-defined elements of Os (1)
by setting

[h]2

ozp ozpv 0zv 0zv

a[f]zz[ﬁ]z and a[f]zz[hﬂ]z

forp =m+1,...,nmand v = 1,...,m. This implies that if [f]> € Os(1) and
v =[al],(0/0z7) e ’T]@’S(I) then

olf]2

2
0z"

oLf1a
p

v([fl2) =[a"] 32

+ [aF ],

is a well-defined (and independent of the local coordinates) element of Os (1), and
not just of O, and in this way we clearly get a derivation of Og1).

(ii) We define {-, - } by setting
{u,v}(g) =u(v(@) -vug),

for all g € Osq). It is easy to check (working for instance in local coordinates
adapted to S) that {u, v} € Tjj ¢y and that properties (a)—(d) are satisfied. O

It turns out that a quotient of 7T, ﬁ S() has a natural ©Og-module structure, and
inherites the Lie algebroid structure of anchor 6;. To prove this, we need the
following

Lemma 5.4. Let S be an m-codimensional complex submanifold of a mani-
Jfold M of dimension n. Then:
() u € Tmsq) is such that p2([u,s]) = O for all s € Ty s if and only if
ueis- Tl\fl,S(l)"
(i) ifuels  Tygy andv € Ty g, then {u, v} € Is - Ty o1
(iii) the quotient sheaf
A= T]\§I,S(1)/75 ) T]\§I,S(1)

admits a natural structure of Os-locally free sheaf such that 0,: A — T is an
Os-morphism.
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Proof. (i) Let us work in local coordinates adapted to S. Writing

0 0
u= [aJ]zg and s = [bh]zg € TMs(1) »

we have by sar1 3
. .0a
) YA .
p2({w.s) [a 0zi 821]1 0z"
Now u € 7Is - TJEI,S(I) if and only if a” € 7§ and a? € 15 forv = 1,...,m
and p = m + 1,...,m; in particular it is clear that u € s - T}, gy, implies

pz([u,s]) =0 forall s TM,S(])'

Conversely, assume that u = [a/],(9/027) € Ty sa1) is such that p2([u, s]) =
O for all s € Ty sa). From po([u,0/0z]) = O forallp = m+1,...,n
we get that [a"]; is a constant &” € C for ¥ = 1,...,m. But then from
p2([u,0/0z°]) = O foralls = 1,...,m we get [a"], = & forv = 1,...,m.
Now from p,([u, [z%],0/0z%]) = O forall so = 1,...,m (no sum on Sy here)
we get o = 0 for v = 1,...,m. Finally, from p,([u,[zP°],8/0z']) = O
forall po = m +1,...,n we get [aP]; = O forall p = m +1,...,n, and
sou €5 - Ty g1, as claimed.

(ii) Working again in local coordinates adapted to S, if

0

S
a-h € Tirsa)

0
u=la'ls— €l Tisy and v=[b"]

then we have

ob" oa’ 0 .ob? oaP 0
— | g7 _ B JZ2Z iz | 2 LTS
tw, v} [a 0zJ b azf]z oz" [ 0zJ b azj]z ozp €35 Ty s
becausea’eﬂfandal’,breﬂgforallr=1,...,mandp=m+1,...,n.

(iii) The sheaf Tf/}’s(l) is an Og(1)-submodule of T,5(1) such that (by defi-
nition) g - v € Ig - TI\%,S(I) forall g € 75/72 and v € TA‘;S(I). Therefore the
Os(1)-module structure induces a natural Os-module structure on A. It is easy
to check that, in terms of local coordinates adapted to S, the sheaf A is a lo-
cally free Og-module freely generated by 1w(0/0z7) and m([z°],(8/02")) (with
p=m+1,...,n,and v, s = 1,..., m), where 1: Tz\fl,S(l) — A is the quotient
map.

Finally, since 7Zs - TJEI,S(I) C ker 0, the morphism 0; defines a map, still
denoted by the same symbol, 6,: A — Tg, and it is clear that 0y is an Os-
morphism for the structure we just defined. O

Definition 5.5. Let S be a complex submanifold of a complex manifold M.
The Atiyah sheaf of S in M is the locally free Os-module

S S
A= TM,S(l)/'JS ’ TM,S(l)'
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The sheaf A appears also in [26], where it is denoted by Ny ¢, and in [16],

where it is denoted by T (Y) ® Oy. We now show that A4 is isomorphic to the
sheaf Ay described in the previous section.

Theorem 5.6. Let S be an m-codimensional complex submanifold of a
manifold M of dimension n. Then there is a natural exact sequence of locally free
Og-modules

(5.2) O — Hom(Ng, Ns) — A2 7o~ 0

which is isomorphic to the sequence (4.1) with E = Ns. In particular, the sheaf A
only depends on the normal bundle Ns of the embedding of S into M, and Ns admits
a holomorphic connection if and only if the sequence (5.2) splits.

Proof. As usual, we work in local coordinates {(Uy, z«)} adapted to S. The
kernel of 6; is freely generated by the images under the canonical projection
T: TA§1,5(1) - A of [23]12(0/02]) forv, s = 1,...,m. Now we have

Tr [z 12 ﬁ>,
(e

and hence the kernel of 6, is naturally isomorphic to Hom(Ng, Ns).
To prove that (5.2) is isomorphic to (4.1), by Proposition 2.2 it suffices to
prove that the cohomology class associated to both sequences is the same.

Define local splittings o« of (5.2) by setting

(e[
*\ozk )~ ozh

and then extending by Os-linearity. The class of the sequence (5.2) is then repre-
sented by the cocycle given by

.

oz

- U)<a)n<a) 0zk|
B=UVx) | TP | T PYSZ2N e
823 5zﬁ azﬁ s
o 0z, 0 o 9%zl Jt 0
822 2527& azﬁazﬁ B 2323
aZE aZZV ([ZS a )
ozh /)’

and our claim follows from (4.2). The last assertion now is an immediate conse-
quence of [4], Theorem 2. O

ozy
>
s 8zB

8)_82{)(
ozy)  ozy

™ ([fo]z

aZo( aZB aZB



3022 M. ABATE, F. BRACCI, F. TOVENA

The main advantage of our A over Atiyah’s Ay, is that we have an explicit
way of going from a splitting of the sequence (5.2) to a partial holomorphic con-
nection on Ns. Indeed, A comes equipped with both a natural structure of Lie
algebroid of anchor 6; and a holomorphic €;-connection on Ng:

Proposition 5.7. Let S be a complex submanifold of a complex manifold M.
Then:

(i) the Atiyah sheaf A has a natural structure {- , - } of Lie algebroid of anchor 0,
such that

(5.3) 0i1{a1,q2} = [01(q1),01(q2)]

forall a1, a> € A;
(ii) there is a natural holomorphic 6:-connection X: Ng - A% ® Ns on N
given by
Xq(s) = p2([v,3])
forallq € A ands € Ns, wherev € Ty ¢, and § € T,s1) are such that

(V) = qand py © 01(5) = s; _
(iii) this holomorphic 0,-connection X is flat.

Proof (i) Lemmas 5.3 and 5.4.(ii) imply that setting

{a1, a2} = m({vi,v2})

for all 1, g2 € A, where v; € TA‘Z’S(I) is such that g; = (v;), we get a well-
defined 0,-Lie algebroid structure satisying (5.3).

(ii) Lemma 5.4.(i) implies thatif T (v) = 1 (v") then p2([v,5]) = p2([v’,§])
for all § € Ta,5(1). Analogously, Lemma 5.3.(ii).(d) implies that if p5 0 0;(5) =
P20 01(5") then pr([v,5]) = p2([v,§']) forallv € TA§,5(1)§ therefore Xq(s) is
a well-defined element of N.

Now, (5.1) yields

Xif1-a(s) = p2([Lf12v,5]) = p2(Lf W [v, 51 -5(Lf12) - 01 (v)) = [f ] - Xy (v)

because v € ker(p; o 01), and so X(s) € A* ® N, as claimed. Finally,

Xe(Lf 1 - s) = pa([v, [£125]) = p2(Lf 11 (v, 51+ v ([ f2) - 01(5))
=[f1 - X;(v) + (@) ([f]1) - s,

because

[v([f12)]; = 01()([f]1) = O (rr () (Lf 1)

forall [f], € Osayand v € T]@’S(I), and thus X is a holomorphic 01 -connection.
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(iii) We must prove that
(5.4) [v1, [0, 51] + [v2, [5, 011] + [5, {v1,v2}] € Ts

for all vy, v, € TA‘,SI’S(I) and § € Ty s(1), where [V}, §] is any element of Ty s(1)
such that its 0;-image is equal to [v;,5] € Tu,s. But using local coordinates
adapted to S it is easy to see that (5.4) is a consequence of the usual Jacobi rule for
brackets of vector fields. O

Definition 5.8. Let S be a complex submanifold of a complex manifold M.
The holomorphic 6;-connection X: Ng — A* ® N on Ny defined in Propo-
sition 5.7.(ii) is called the universal holomorphic connection on N.

We can now summarize what we have done up to now in the following
Theorem 5.9. Let S be a submanifold of a complex manifold M, and F a sub-
bundle of the tangent bundle TS. Then:

@) if w: F — A is an Os-morphism such that 01 o ¢ = id then the map
XV: Ng - F*® N given by

XV (s) = Xy (5)

forallv € F and s € N, where X is the universal holomorphic connection
on N, is a partial holomorphic connection on Ns along F;

(ii) there exists a partial holomorphic connection on Ns along F if and only if there
exists an Os-morphism W : F — A such that 01 o @ = id;

(iii) #fF is involutive, then the partial holomorphic connection XY is Sflat if and only
if: F — A is a Lie algebroid morphism.

Proof- (i) The only not completely trivial property is Leibniz’s rule. But indeed

X(g-5) = Xpw)(@-5) = g-Xpw) () +01 (W) (g) s =g-X¥ () +v(g)-s

for all g € Og, and we are done.

(ii) In one direction is (i). Conversely, assume that we have a partial holomor-
phic connection on N along F. Then Proposition 4.4 yields an Og-morphism
from F to Ang such that 1y o @y = id, and hence Theorem 5.6 yields an Og-
morphism ¢: F — A such that 0; o ¢ = id.

(iii) If we denote by R¥ the curvature of XV, recalling that the universal
holomorphic connection X is flat, we get

v o
Ruv = Xipw),p )1 -ylu,v]

for all u, v € F. One direction is then clear; conversely, assume that RY
Now, Proposition 5.7.(i) implies that {¢/(u),p(v)} — @lu,v] € ker0;

Nl
m O
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for all u, v € F; therefore it suffices to prove that if g € ker0; ¢ A is such
that X; = O then g = O. But indeed, if g € ker 0 then q = w(v) with v =
[a"1,0/0z" for suitable a” € 75 (and we are using local coordinates adapted to S,
as usual). Then from Xq(as) = O fors = 1,...,m it easily follows that a” € ’J§
forr =1,...,m, and hence g = O. O

Remark 5.10. As suggested by [4], the sequence of the first jets sheaves can
be interpreted as a subsequence of the extension obtained dualizing the sequence
(5.2) and tensorizing with N:

0] Qs @ Ns JHNg) ——— Ns o
O QS®N5 ﬂ*@j\fg Hom(Ng,.’]\fg)®N5 O

where the last vertical map is the injection locally given by s — id ® s, where
s is a local section of N; it is obtained tensorizing by N the inclusion Og -
Hom (N, Ns) that corresponds to the identity map on N. In particular, J! (Ns)
is a subsheaf of Homg, (A, N).

When S has codimension 1 in M, we have Hom(Ns, Ng) = Og and hence
the previous remark yields

Corollary 5.11. If'S is a codimension 1 submanifold of a complex manifold M,
then the sequence (5.2) becomes O — Os — A — Ts — O, so that
A=JUNE) ® Ns

and A admits a nowhere zero holomorphic section.
We end this section with a remark that will be useful in Section 7:

Proposition 5.12. Let S be a submanifold of a complex manifold M, comfortably
embedded with respect to a first order lifiing p: Os — Os(1y. Then there exists an
Os-morphism Tt: Tysy — A such that ﬁlﬁﬁsm = 1T, where T s(1) s endowed

with the structure of Os-module given by restriction of scalars via p.

Proof. Fix a comfortable atlas 4 = {(Uq, z«)} adapted to p. If v € Ty 501),
we can write

i 0
v = [X{x]zij
0z
for suitable [Xg(]z € Os(1); then we set
_ IR S 0
) =m{ plxal2) 37+ [Xa]ZE = (v -plxadlgzr ).



Index Theorems for Holomorphic Maps and Foliations 3025

We claim that 77 is well defined, that is it does not depend on the particular chart
chosen to express v. Indeed, if we also write v = [x’ﬁ‘] 2(0/ az’g), then we have

- ozk
[xK]2 = [x4]2 [—f] :
0Zx )

Applying p o 01 to both sides and recalling that we are working with an atlas
adapted to S we get

azg
plxgh) = plxgl) p ([azr} ) .
@ |y

Then

s a _ s aZ;; a _ v azz; a
p([xgh)ﬁ = p([xgl)p ([azg]l> 625 p([xgli) {82& oz

where we used (2.5) and the fact that U is a comfortable atlas adapted to p. So

(v - p([%]ﬂ%) - (v-pUxtlnsS) € 35 T
B

=
0zk

because we are using a splitting atlas, and thus 7 is well defined. Finally, it is easy
to check that 7 is an Og-morphism extending 17, and we are done. O

6. THE GENERAL INDEX THEOREM

In this section we shall prove our general index theorem following the strategy
indicated in the introduction; in the next two sections we shall show how all the
known (and a couple of new ones) index theorems of this kind (with M smooth)
for both holomorphic maps and holomorphic foliations are just particular in-
stances of our general statement.

In the previous sections we have shown how to get a partial holomorphic con-
nection on the normal bundle from a splitting morphism . The next step is
showing how the existence of a partial holomorphic connection forces the van-
ishing of some Chern classes. This has been proved, for instance, by Baum and
Bott ([5]; see also [14]); we report here a statement (and a proof) adapted to our
situation.

Theorem 6.1. Let S be a complex manifold, F a sub-bundle of TS of rank €, and
E a complex vector bundle on S. Assume we have a partial holomorphic connection on
E along F. Then:

(i) every symmetric polynomial in the Chern classes of E of degree larger than
dim S — € + | £/2] vanishes.
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(ii) Furthermore, if F is involutive and the partial holomorphic connection is flat
then every symmetric polynomial in the Chern classes of E of degree larger than
dim S — € vanishes.

Proof. Write
6.1) TRS@ C=FaoF, & TV,

where F is any C*-complement of F in TS = T:0S. Define a (real) connec-
tion V on E using the given partial holomorphic connection on F, any connection
on Fy,and 0 on TS,

Let w be the curvature form of V. We claim that

(6.2) w,w)=wu,w) =0

forallv € Fand i1, w € TODS. It is enough to prove that they vanish when
applied to holomorphic sections of E, since these generate I'(E) as a C*-module,
and the curvature is a tensor. But if 0 is a holomorphic section of E we have

w,w)(og) =Vy(Vypo) = Vg (Vyo) = Vipwo =0,

because Vy kills every holomorphic section, V40 is holomorphic because V is
holomorphic along F, and [v,w] = O. Analogously, since [, w] € TODS one
shows that w (@1, w) = O.
Choose local coordinates and local forms nt,...,n" (where n = dimS) so
that
', ont,nt ... onn,dzl, ..., dz"}

is a local frame for the dual of TRS ® C respecting (6.1); in particular, a local
frame for the dual of F is given by U, ...,n'E}, and (n? g, ..., n™ g} is
a local frame for the dual of F;. Then (6.2) implies that in this local frame the
curvature matrix is composed by forms which are linear combinations of

n Aant, n? ant, n? An?t, dziant,

wherel <p’'<q' <, +1<p” <q”" <nand1 < j < n. Since any product
of more than n — € + | /2] of these forms vanishes, (i) follows.

If F is involutive and the partial holomorphic connection along F is flat, we
moreover have w (v, w) = O for all v, w € F. This means that we can drop the
forms n?" A n?’ from the previous list, and then any product of more than n — £
of the remaining forms vanishes, giving part (ii). O

Remark 6.2. The previous proof shows not only that Chern classes of suitable
degree vanish, but that the standard differential forms representing them (the one
obtained starting from the curvature matrix of a connection) vanish too.
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We have now all the ingredients needed to apply the general cohomological
argument devised by Lehmann and Suwa. Let us first introduce a couple of defi-
nitions to simplify the statements of our theorems.

Definition 6.3. Let S be a (possibly singular) subvariety of a complex man-
ifold M, and let S™8 < S be the regular part of S. We shall say that S has an
extendable normal bundle if there exists a coherent sheaf of Cy-modules N de-
fined on an open neighborhood of S in M such that N' ®9,,Ogee = Ngrs. We
say that N is an extension of Ngrs.

Example 6.4. Any nonsingular submanifold has an extendable normal bun-
dle: an extension of Ny is given by the pull-back (under the retraction) to a
tubular neighbourhood. If S is singular but has codimension one in M then the
line bundle O([S]) associated to the divisor [S] provides an extension of Nre,
and hence S has an extendable normal bundle. More generally, if S is a locally
complete intersection defined by a section, or a strongly locally complete intersection,
then it has an extendable normal bundle (see [20] and [21]).

Remark 6.5. The extension of the normal bundle might be, in general, not
unique. However, in all cases described in the previous example there is a natural
extension to consider.

The next definition will considerably shorten several statements.

Definition 6.6. Let S be a compact, complex, reduced, irreducible, possibly
singular, subvariety of dimension d of an n-dimensional complex manifold M.
Assume that S has extendable normal bundle. Let X be an analytic subset of S,
containing the singular part §5°¢ of §, so that §° = § \ = < §™8, and let further-
more § denote another analytic object involved in the problem (for instance, in
our applications § will be either a holomorphic foliation or a holomorphic self-
map, and X the union of the singular set of S with the singular set of §). We shall
say that S has the Lehmann-Suwa index property of level € = 1 on T with respect to §
if given an extension N of Ngws we can associate to every homogeneous symmet-
ric polynomial @ of degree k > d — £ and every connected component 2y of X a
homology class

Resg (3, N'320) € Haa-k (Ea; 0),

depending only on N and on the local behavior of § near %, so that

> (ia)xResg (F, N320) = [S] ~ @(N)  in Hya—k) (S; 0),

where the sum ranges over all the connected components of 3, the map iy: =) <= S
is the inclusion, and @ (N') denotes the class obtained evaluating @ in the Chern
classes of NV'.

Remark 6.7. When k = d then [S] ~ @(N) = ch(ﬁ\f) e C.
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And now, our general index theorem:

Theorem 6.8. LetS be a compact, complex, reduced, irreducible, possibly singu-
lar, subvariety of dimension d of an n-dimensional complex manifold M, and assume
that S has extendable normal bundle. LetS. be an analytic subset of S containing S*"8
such that there exist a sub-bundle F of rank € of TS® (where S° = S\ 3 < §™8) and
an Oso-morphism @ : F — A with 01 o @ = id, where A is the Atiyah sheaf of S°.
Then:

(i) S has the Lehmann-Suwa index property of level € — | €/2] on X with respect
to .

(ii) If furthermore F is involutive and p is a Lie algebroid morphism, then S has
the Lehmann-Suwa index property of level € on 3 with respect to .

Proof. Theorem 5.9 yields a partial holomorphic connection on Ngo along F,
which is flat in case (ii). Theorem 6.1 then implies that every symmetric poly-
nomial in the Chern classes of Ngo of degree larger than d — € + [€/2] (or, in
case (ii), larger than d — ¥) vanishes. The theorem then follows from the general
Lehmann-Suwa theory (see, e.g., [28, Chapter V] or [21]). O

Remark 6.9. For the sake of completeness, let us summarize here the gist of
Lehmann-Suwa’s argument, warning the reader that the complete proof is a bit

technical and requires Cech-de Rham cohomology (see, e.g., [28]). Let
H*(S,8%C) — H*(S;C) — H*(S%;0)

be the long exact cohomology sequence of the pair (S,5°). The vanishing The-
orem 6.1 says that the cohomology class @ (N') vanishes when restricted to §7;
hence it must be the image of some cohomology class n € H* (S, $%; C) which is,
by definition of cohomology of a pair, concentrated in an arbitrary neighbourhood
of §\ §° = X. Such a class is not unique in general, and it should be chosen in a
suitable way depending on the partial holomorphic connection given by ¢. Now,
since S is compact, the Poincaré homomorphism (consisting exactly in taking the
cap product with [S]) gives a natural map from H*(S; C) to Hyg—« (S; C). On the
other hand, since X is an analytic subset of S, the Alexander homomorphism A
gives a natural map from H*(S,5%;C) to Hyq—+(Z;C). Furthermore, if we de-
note by i: ¥ — S the inclusion, we have the equality i+A(n) = [S] ~ @(N).
Now, if £ = U, 2 is the decomposition in connected components of X, we have
Hyq— 4 (3;C) = @) Haa—« (Za; C); therefore if we denote by Resg (@, N3 23) the
component of A(n) belonging to Hzq—(Z); C), we obtain

> (ia)«Resg (W, N532) = [S] ~ @(N),
A

that is the index theorem.
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Remark 6.10. Let us now describe how to compute Resg (5 23) in a simple
(but useful) case. Assume that: S is a locally complete intersection defined by a
section; the connected component 3 reduces to an isolated point p € S; the sub-
bundle F has rank £ = 1; and there exists a local vector field v € (Ts), € (Tm,s)p
vanishing at p and generating F in a pointed neighbourhood of p. Let I!,...,I"™
be a local system of defining functions for S near p, so that {[1'],,...,[1"™],} isa
local frame for ’Jg/?f« = N, and denote by {Tj,...,Cn} the corresponding dual
local frame of Ns. If X¥ is the partial holomorphic connection induced by ,
then writing

X (@) =
we get an m X m matrix C = (c!) of holomorphic functions defined in a pointed

neighbourhood of p. Finally (see [20]), it is possible to choose a local chart (U, z)
at p so that if we write v = [a/],0/0z/ then

{ll:___:lm:aerl:___:an:()}:{p}

(if p is a regular point of S it suffices to take any chart adapted to ). Take now
a homogeneous symmetric polynomial @ of degree dim S; then Resg, (; {p}) is
given by the Grothendieck residue

1 p(C) 1
(63) Resy (W, Ni1ph) = G | —H a2 ndzn,
whereT = {g € S: |a™ ! (q)| =---=]a"(q)| = €} for 0 < £ << 1, oriented so
that darga™*! A - -+ A darga™ is positive, N is the natural extension of N

mentioned in Remark 6.5, and @ (C) denotes @ evaluated on the eigenvalues of
the matrix C. This formula can be obtained by observing that if 7 € Ty ¢y, is
such that () = @/(v) outside p, then the local partial holomorphic connection
on Ny induced by ¥ coincides with XY and the residue Resg (@, N5 {p})
coincides with the residue associated to ¥ and obtained in [20]. By the way,
an explicit algorithm for computing the Grothendieck residue (6.3) when p is a
regular point of S is described in [5, p. 280].

We end this section by describing the general strategy we are going to use
to build the morphism ¢: F — A. Such a morphism exists if and only if the
sequence

0 — Hom(Nso, N5o) — 0; /() L F~0
splits, that is, if and only if the associated cohomology class in

H'(S°, F* ® Hom(Nsgo, Nso))

vanishes. The latter class is represented by a cocycle of the form {yg — Yq«},
where the @« are local splitting morphisms. Therefore the morphism ¢ exists if
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and only if we can find local morphisms x from F to Hom(Nso, Nso) such that
Yp—YPou =X~ Xa.

Our strategy then will be to use the additional data involved (foliation or self-
map) to build local splitting morphisms; in this way we shall be able to express the
cohomological problem in terms of the geometry of the additional data, and then
to give sufficient conditions for the problem to be solvable.

Notice in particular that if S° is Stein then this cohomological problem is
always solvable, and thus we have

Corollary 6.11. Let S be a compact, complex, reduced, irreducible, possibly sin-
gular, subvariety of dimension d of an n-dimensional complex manifold M, and as-
sume that S has extendable normal bundle. LetS. be an analytic subset containing S5™8
such that S° = S\ X is Stein. Then S has the Lehmann-Suwa index property of
level A — | A /2] on X with respect to anything providing local splitting morphisms for
the sequence (5.2) over S°.

7. HOLOMORPHIC FOLIATIONS

The aim of this section is to show how to use a holomorphic foliation on the am-
bient manifold to implement the strategy just discussed. We recall that a (possibly
singular) holomorphic foliation F on a complex n-dimensional manifold M is, by
definition, a coherent involutive subsheaf of Ty. The singular locus Sing(F) is
the set of points x € M such that the quotient T)/F is not free at x. In partic-
ular, F is a locally free Op-module of some rank 1 < £ < n outside Sing(F); the
number ¥ is the dimension of the holomorphic folitaion. The foliation is called
non-singular if the singular locus is empty. We refer to [5] and [28], chapter VI,
for more details on holomorphic foliations.

Definition 7.1. Let S be a complex (not necessarily closed) m-codimensional
submanifold of an n-dimensional complex manifold M, and let ¥ be a (possibly
singular) holomorphic foliation F on M, of dimension £ < n — m = dimS. We
shall denote by Fs(1) the Os(1)-submodule F ®¢,,Os(1) of Ti,s1), and by Fs
the Os-submodule F ®¢,,Os of Ty s. If Fs = Ts C Tu,s, then F is tangent to
S; otherwise, the foliation F is tranverse to S.

Remark 7.2. We shall always assume that S is not contained in the singular

locus of F.

In the tangential case, we clearly have Fs1) € Ty ¢). Furthermore, Fs
is a (possibly singular) holomorphic foliation of S of dimension €. The singular
locus of Fs (which is the intersection of Sing(F) with S) is an analytic subset of S;
therefore since our aim is to build a splitting morphism ¢ outside the singularities,
we shall assume that

Case 1. Fs is a non-singular holomorphic foliation of S of dimension £ <
dim S (and thus, in particular, it is the sheaf of germs of holomorphic sections
of an involutive sub-bundle F of TS of rank £). To be consistent with the non-
tangential case, we shall also set 77 = Fg and o* = idy,.



Index Theorems for Holomorphic Maps and Foliations 3031

If F is not tangent to S then Fs is not a subsheaf of T, but only of Ty 5. To
get a subsheaf of Tg, we must project Fs into it.

Definition 7.3. Let S be a splitting submanifold of a complex manifold M.
Given a first order lifting p: O — Op /73, let 0*: Ty s — Ts be the left splitting
morphism associated to p by Proposition 2.7. If F is a holomorphic foliation
on M of dimension ¥ < dim S, we shall denote by F7 the coherent sheaf of
Os-modules given by

Fo =0"(Fs) € Ts.

We shall say that p is F-faithful ousside an analytic subser > C S if F7 is a non-
singular holomorphic foliation of dimension £ on § \ X. If = = @ we shall simply
say that p is F-faithful.

It might happen that a first order lifting is not F-faithful while another one is.
Furthermore, F? might be as well as not be involutive depending on the choice
of p.

Example 7.4. Let M = C4, take S = {z! = 0} and let /F be the non-singular
foliation generated over O by the global vector fields

0 0 0
(Z —Z)—-*—a4 and g-i‘@,
so that Fs is generated over Og by z2(3/0z%) + (9/9z*) and (3/0z") + (3/02?).
The submanifold S clearly splits into M, and a natural choice of first order lifting
is
_ of i
p(LfI) = - | 552! .
The corresponding left splitting morphism o* is the identity on T and kills
0/0z'; therefore F7 is generated over Og by z2(8/023) + (0/0z%) and 0/0z2,
and thus F7 is not involutive.
If we choose as first order lifting the less standard p; given by

prtf == [ (254 25) 2

0z2

then the corresponding left splitting morphism o7 sends 0/0z! in —9/9z?%, and
JF9 turns out to be generated by 22(0/023)+(0/0z%) only, and so it is involutive,
but of the wrong dimension. Finally, if we take as first order lifting

_ _[(of  of _ ﬁ) ]
R [ B I
then o sends 0/0z! in (8/0z3) — (8/0z%), so that F is generated by
22(0/023%) + (0/0z%) and 8/023, and thus p5 is F-faithful.
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If F7 has dimension equal to 1 or to the dimension of S, then it is automati-
cally involutive. In this case it is easy to have faithfulness:

Lemma 7.5. Let S be a splitting submanifold of a complex manifold M, and let
F be a holomorphic foliation on M of dimension equalto 1 or to the dimension of S. If
there exists X € S\ Sing(F) such that F is tangent to S at Xo, i.e., (Fs)x, € T xo>
then any first order lifting is F -faithful outside a suitable analytic subset of S.

Proof. Let 0*: Ty,s — Ts be the left-splitting morphism associated to a first
order lifting p. By assumption, ker 0¥ N (Fs)x, = (O); therefore ker o N (Fs)x =
(0) for all x € S outside an analytic subset Xy of S. Furthermore, F7 has
dimension equal to 1 or to dim S; therefore it is involutive, and hence p is F-

faithful outside =y U Sing(F7). O

Notice that there are topological obstructions for a foliation to be everywhere
non-tangential to S. For instance, in [9], [18] it is proved that if S is a curve in a
surface M, the number of points of tangency between S and an one-dimensional
holomorphic reduced foliation F of M, counted with multiplicity, is § - S =S - F.
Therefore if S - S # S - F then every first order lifting is F-faithful outside a
suitable analytic subset.

Another result of this kind shows that for one-dimensional foliations most
first order liftings are faithful:

Lemma 7.6. Let S be a non-singular hypersurface splitting in a complex mani-
Jfold M, and let F be a one dimensional holomorphic foliation on M. Assume that S is
not contained in Sing(F). Then there is atr most one first order lifting p which is not
F-faithful outside a suitable analytic subset of S.

Proof. Suppose p is a first order lifting of S which is nor F-faithful; since F
is one-dimensional, this means that (Fs)x < kerof for all x € S\ Sing(F),
where 0* is the left splitting morphism associated to p. By Lemma 2.1.(iii)
any other left splitting morphism is of the form 07" = 0* + @ o p, with @ €
H%(S,Hom(N5s, Ts)); in particular, 0" (v) = @(p2(v)) forall v € Fs. Now,
since 0% is a left splitting morphism, we have kero¥ N ker(pz)x = (O) for
all x € S; therefore p,| g is injective. Furthermore, since N has rank one,
@y is either injective or identically zero; hence (07") x restricted to (Fs) is either
injective or identically zero. Now, if @ # O then @x # O for x outside an ana-
lytic subset X of S; therefore it follows that if @ # O then the first order lifting
associated to 07" is F-faithful outside =g U Sing(F ). O

Corollary 7.7. Let S be a non-singular hypersurface splitting in a complex man-
ifold M, and let F be a one dimensional holomorphic foliation on M. Assume that S
is not contained in Sing(F). IfHO (S, Ts ® IN) = (O) then there exists at least one
[forst order lifting F-faithful outside a suitable anlytic subset of 'S.
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Proof: If H(S, Ts ® N¢) # (O) then by Lemma 2.1.(iii) there exist at least
two different splitting morphisms. Then the assertion follows from the previous
lemma. O

Coming back to our main concern, in the non-tangential case we shall mo-
mentarily make the following assumption:

Case 2. There exists an F-faithful first order lifting p, with associated left-
splitting morphism o *; in particular, F7 is a non-singular holomorphic foliation
of § of dimension £ < dim S, and 0*|z;: Fs — F7 is an isomorphism of Og-
modules.

If G = Ts is a non-singular holomorphic foliation of S of dimension £ <
dim S, Frobenius’ theorem implies that we can always find an atlas { = {(Ux, z«) }
adapted to S such that the {9/0z"1, ..., 8/82&”*5} are local frames for G. Fur-
thermore, it is easy to check that if § is split (2-split, comfortably embedded) in M
we can also assume that U is a splitting (2-splitting, comfortable) atlas.

Definition 7.8. Assume we are either in Case 1 or in Case 2. An atlas ¢ =
{(Ux, z«)} adapted to S such that the {9/0zm"!, ..., a/azg’”f} are local frames
for F shall be said adapted to S and F. We explicitly notice that if 4l is adapted
to S and F then

0z1"
B
- s
ozk
forallp’ =m+1,....m+4¥,q9" =m+¥+1,...,nand indices «, B such that

Uaf\UBfLs¥:®.

Remark 7.9. From now on, indices like p’, q’, p’ and ¢’ will run from m +1
to m + ¥, while indices like p”’ and q”’ will run from m + £ + 1 to n.

Using adapted atlas we can find special local frames for the foliation:

Lemma 7.10. Assume we are in Case 1 or in Case 2, and let {(Uy, Zx)} be an
atlas adapted to S and 'F (and to p too in Case 2).

(i) For each index « there exists a unique £-uple (Vam1, ..., Vamt) of elements

of F of the form

0 "
(7.1) Vap = + (@) +(an))y

7 77
% az“ az”

[0

with (aa)gI €lsforp =m+1,....m+Landp”" =m+4L+1,...,n,
(and, in Case I, (an)y, € Is forv = 1,...,m), s0 that 0* (Vo ® [1]1) =

a/02h .
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(i) The set {Vaymstys -y Vamat} is a local frame for the sheaf F in a neighbour-
hood of S 0 U. Furthermore, writing

o
Vg = (CBa) g Vaypr

the (CBD()Z: € Ow define a cocycle (cg) representing the vector bundle associ-
ated to 'F in a neighbourhood of S and satisfy the following relations:

aZp’ zr ozk
(cpely = "+ 03,2 = + (ap)l Z“,,,
B B
’ ozh ozlh " ozr
14 _ a «
02 leslilaaly = i @ply e+ @p
o o g g” & ozb"
(Cﬁa)qr (atx)p' = + ( 3) s + (a[;)q, 7

Proof- (i) Since {(Uqx, Zza)} is adapted to S and F, the a/azﬁ' ’s form local
frames for F7. Hence we can find U« € F such that 0* (Vg ® [1]1) =

/028 . Write
3 3

: .o
D = b 61/ T/ b 61/ 7

for suitable (bfx)i,/ € Op; we must have [(b(x)?,/]l = 521, and [(ba)p]1 =0

in Case 1. In particular, ([(ba)?,, 11) is the identity matrix; hence ((b,x)?,,) is
invertible as matrix of germs. Multiplying then the £-uple (Vam+1,--+s Vamt)
by the inverse of this matrix we get an £-uple (Va,m+1,- .-, Vam+e) of elements
of F of the desired form. Furthermore, since rko, F = ¥, the vyp'’s form a
local frame for F; an exercise in linear algebra then shows that they are uniquely
determined.

(ii) The elements Vam+1, - - -, Vom+¢ form a local frame for the sheaf F in a
neighbourhood of § N Uy since their restriction to S form a local frame for Fs on
Ux N S. The relations (7.2) then follows directly from (7.1). O

Restricting to S the first equation in (7.2) we get:

Corollary 7.11. Assume we are in Case 1 or in Case 2, let {(Uy,za)} be an
atlas adapted t0 S and F (and to p too in Case 2), and let Vam+1,. .., Vam+e be
given by the previous lemma. Then the vector bundles associated to Fs and F7 are
represented by the same cocycle

’ azﬁ’
(7.3) [(CBa)th = [822’] .
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in the frames {Vom+1 ® [111,..., Vaomie ® [111} and {0/0z0+),...,0/0z0+13,
respectively. In particular, the isomorphism o* |52 Fs — F7 is represented with
respect to these frames by the identity matrix.

The restriction to S of the second equation in (7.2) gives

, ozh
[epe)ly Til(@an)y Ti = Lap)y T [aig]l’

and thus we get a global section T € H(S, (F7)* ® N&) by setting
Tly, = [(@a)}]i Wh ® 3ra,

where wg/ is the local section of (F7)* induced by dzgl. It is easy to check that
the corresponding morphism T: F7 — N is given by the composition

(%] 5g)"!

T: 77 Fs — Tu,s—= Ns.
Remark 7.12. The morphism T is non-zero if and only if the foliation F is
transversal to S.

Now we are ready to characterize the existence of morphisms @: F7 — A

such that 01 o ¢ = id:

Proposition 7.13. Assume we are in Case 1, or in Case 2 with S comfortably
embedded in M. Given a (comfortable in Case 2) atlas \ = {(Ux, zx)} adapted to S
and F (and to p too in Case 2), let { fga} be the cocycle defined by

Spa = [(C“B)Z:]lﬁ ([(CB‘X)Z”L) ® aZaf” ® w’;/
(6.4
227 a(cpa)? d
] o e

N

and denote by € H' (S, NS ® F7 ® (F9)*) the corresponding cohomology class.
Then there exists a morphism @ : FO — A such that 01 o @ = id if and only if

T«(5) =0

in HY (S, N ® Ns ® (F)*), where Ty is the map induced in cohomology by the
morphismid ® T ® id.

Proof It is easy to check that f is a well-defined cohomology class indepedent
of the particular atlas ¢ chosen. Thus to prove the assertion it suffices to find local
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splittings Wu: F luens = Aluans so that {¢g — P «} represents the cohomology
class Ty (f).

A local frame for F7 is {a/azam“,...,a/azg"”’}. We then define ¢« by
setting

(7.4) Y <aj§'> = ﬁ(vo(,p’ ® [1]2)
0 _ v 0
-n (azg’ +p([(aa)p,]z)azg>

and then extending by Og-linearity, where 1: T} ¢4, — A is the canonical pro-
jection, and 7r: Ty s(1) — A is the morphism introduced in Proposition 5.12.
Notice that, in Case 1, vap ® [1]2 € ’T]\‘;’S(I), and so W« is defined without
assuming anything on the embedding of S into M.

Now, we have:

2 oz | 5 oz} 3 3
- = | = = | T = +P((ap)i]|,)
v (3z§ ) e ([azg ]1 oz} ) [azg o \ozd P [ Bla ]2 3z}
z¥ 1 5 [oaz%] 3
B B ~ s
=l | | e || Al@p)i)
([azg ]2 0zj | dzk PRI 12 0z}

42

o [ozi] [ezt ] @
T 3 7 + 3 v 3 q g
Zu Za |, [ 02 [, T

oz} ozr ] 2
B ~ s Zu
+ 1T ([azg,]zp([(aﬁ)q’]z) [32?;]2 az&)

Hence

(@ —‘l’)(i):n azg’ 2% CH
p “ ozl ozl . azg’ ) 0zk
2z oz 2
B 5 s Za | _ 5 r
+ 1 (‘[[azgr]lp([(ag)qr]z) [52;3]1 P([(a(x)pr]z)} ad{)

In Case 1 the second line of (7.2) yields g — ¢« = O. In Case 2, applying p to
the second line of (7.2), and recalling that we are using a comfortable atlas, we get




Index Theorems for Holomorphic Maps and Foliations 3037

2z oz 927 oz
B = s Zx | 5 r B’ Z(x’
[azg’lp([(aﬁ)q’h) [62;;1 pillaalyl2) + [525( ]1 {azg 2

E<Z N .
= 7 CRx )y Ax)z 11
_azg lp B q 2 p 1
Hence
o\ , 822’ | 3(630()5: ( ;. 0 )
(7.5) ((IJB - Ya) (azg/) = [(aa)f,r]l |:azg/ 1, |: az& 17T [z"‘]zaz& )
and we are done. O

Corollary 7.14. Let S be a complex m-codimensional submanifold of an n-
dimensional complex manifold M, and let F be a holomorphic foliation F on M, of
dimension £ < n —m = dim S tangent to S. Assume that Fs is a non-singular
holomorphic foliation of S. Then we can always find an Os-morphism @: Fs — A
such that 0y o W = id which is furthermore a Lie algebroid morphism.

Proof. In this case (7.5) shows that (7.4) defines a global morphism . To
prove that it is a Lie algebroid morphism, it suffices to show that

{ﬁ(vtx,p’ ® [1]2),ﬁ(va,q’ ®[1]1)} =0

forall p’, ¢ = m+1,...,m + £. But since F is tangent to S, we have that
T(Vap ® [1]2) = T(Vap ® [1]2); hence it suffices to show that

(7.6) {va,p’ ® [l]z,v(x,q’ ® [1]2} €1s - T]\fI,S(l)'
Now, {Vaym+1,---» Vam+e} is a local frame for ‘F, which is an involutive sheaf; it
follows that [Vup', Va,q'] = O, and (7.6) is an immediate consequence. O

Definition 7.15. Let S be a complex submanifold of a complex manifold M,
and F a holomorphic foliation of M of dimension d < dimS. Assume that
S splits into M, with first order lifting p: Os — Os(1) and associated projec-
tion 0*: Ty,s — Ts. We shall say that

F splits along p if f = O in H'(S,Hom(F7, N& ® F9)).

Corollary 7.16. Let S be a complex m-codimensional submanifold of an n-
dimensional complex manifold M, and let F be a holomorphic foliation F on M, of
dimension £ < n —m = dim S tangent to S. Assume that S is comfortably embedded
in M with respect to an F -faithful first order lifiing p: Os — Osy. If F splits along
p then there is an Os-morphism Y. F — A such that 0, o ¢ = id.
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Remark 7.17. In general, the morphism ¢ provided by the previous corollary
might not be a Lie algebroid morphism, unless € = 1.

Remark 7.18. As a consequence of (7.3), we know that

Py azg' _ azg' ]
p([(cpa)?r 1) p([azg’]l) [azg’ ;

therefore ﬁ([(Cﬁa)Z: ]2) = O is equivalent to

p’ _ azg(/ .
[(cpa)?) 12 [a ]2,

o
2B

compare with Corollary 7.11.

Since we are using an adapted atlas, the first line of (7.2) yields

] , co e [az :
(7.7) A([(cpa)li 12) = [ap)y [azé ]2 + [52?1 [(ag)y lo.

This suggests a couple of sufficient conditions for the splitting of ¥ along p:

Corollary 7.19. Let S be a comfortably embedded submanifold of a complex
manifold M, with first order lifting p: Os — Osq) and associated left splitting
morphism 0*: Tys — Ts. Let F be a holomorphic foliation of M of dimen-
sion ¥ < dim S such that p is F -faithful. Assume moreover that one of the following
conditions is satisfied:

(a) S is 2-linearizable, and £ = dim S;
(b) S is 2-linearizable, and there exists a nonsingular holomorphic foliation of S
transversal to FO.

Then F splits along p.

Proof. In both cases we can find a comfortable 2-splitting atlas {(Ux, z«)}

adapted to S, F7 and p such that p’([(cBa)Z:]z) = 0 always. In case (a) this
follows directly from (7.7), because m + € = n; in case (b) the hypothesis implies
the existence of a comfortable 2-splitting atlas adapted to S, F and p and such

that [625)(/ /azg”]l = 0, and we are done. O

In Case 2 there is another condition ensuring the existence of the morphism :

Lemma 7.20. Let S be a comfortably embedded submanifold of a complex man-
ifold M, with first order lifting p: Os — Os(1y and associated left splitting mor-
phism 0*: Tys — Ts. Let F be a holomorphic foliation of M of dimension £ <
dim S such that p is F-faithful. Assume moreover that Fs) is (isomorphic to) the
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trivial sheaf 0?'(51) of dimension L (this happens, for instance, if F is globally generated
by ¥ global vector fields). Then there exists an Os-morphism @: FO — A such that
010y =id.

Proof. Let vy, ...,v4 be global generators of Fs(1); by assumption, the ; =
o*(wj ® [1]}) for j = 1,...,¥ are global generators of F?. We then define
Y: F7 — A by setting

Y0 =m(v)),

where 77 is the Os-morphism defined in Proposition 5.12, and then extending by
Os-linearity. It is then easy to check that 01 o ¢ = id, and we are done. O

We finally have all the ingredients needed to prove our most general index
theorem for holomorphic foliations:

Theorem 7.21. Let S be a compact, complex, reduced, irreducible, possibly singu-
lar, subvariety of dimension d of an n-dimensional complex manifold M, and assume
that S has extendable normal bundle. Ler F be a (possibly singular) holomorphic
Joliation F on M, of dimension ¥ < d. Assume that there exists an analytic subset S
of S containing (Sing(F) N'S) U S8 such that, setting S° = S\ 3, we have either

(1) F is tangent to S° and Fso is a non-singular holomorphic foliation of S° (and
in this case we can take = = (Sing(F) N S) U $n8); or

(2) S° is comfortably embedded in M with respect to a first order lifiing p which is
F-faithful ousside of 3, and

(2.a) SO is 2-linearizable, and £ = dim S, or

(2.b) S is 2-linearizable, and there exists a nonsingular holomorphic foliation

of S° transversal to F, or

(2.c) Fsoqy is (isomorphic to) the trivial sheaf (9?,’,9(1) of dimension €, or, more
generally,
(2.d) T«(f) = O in HI(SO,.’J\@Z ® Ngo ® (FO)*).
Then S has the Lehmann-Suwa index property of level £ in Case 1, and of level
- €/2] in Case 2, on X with respect to F.

Proof- It follows from Theorem 6.8, Proposition 7.13, Corollaries 7.14, 7.19,
and Lemma 7.20. O

Remark 7.22. Theorem 7.21.(1) is Lehmann-Suwa’s theorem (see [19], [20]
and [28]); Theorem 7.21.(2.a) generalizes both Camacho-Movasati-Sad theorem
(Appendix of [13]) and Camacho’s ([10]) and Camacho-Lehmann’s results ([12]);
Theorems 7.21 (2.b), (2.c) and (2.d) are, as far as we know, new.

Example 7.23. We would like to compute the residue in the situation studied
in [13], to show that we recover their theorem exactly. So let S be a Riemann
surface 2-linearizable in a complex manifold M, and let F be a one-dimensional
foliation of M generated by a local vector field v € Ty s at a regular point p € §
which is an isolated singular point for F7. If (U, z«) is a local chart at p adapted
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to S and to the first order lifting p, this means that we can write v = a'9/0z}, +
a’0/0z% and p is an isolated zero of a; on S. In a pointed neighbourhood of p
the element vy defined in (7.1) is given by

o a0
27522 " a2 ozl
Therefore
0 (| a! 0
plo*(w))=m ([az]zﬂ +[a’]p ([;]2) a) ,
and so -
- 0 d(a'/a*) 0
XV (L) = 282 ) 2
v (az}x) 4 0z& |g0z&

The unique (up to a constant) homogeneous symmetric polynomial of degree 1
in one variable is the identity id; hence (6.3) yields
dzi),
N

1 do(al/a?)
Resld(f’p)_Zni latl=¢ 0z

d(al/a?)
ozl

dz% = Res, (
s

which is exactly the formula given in [13] (and used in Theorem 1.1).

8. HOLOMORPHIC MAPS

In this final section we shall describe how to apply the strategy discussed in Section
6 using holomorphic maps instead of foliations.

Let S be an irreducible subvariety of a complex manifold M, and let us denote
by End(M, S) the space of holomorphic self-maps of M fixing S pointwise. We
recall a few definitions and facts from [2].

Definition 8.1. Let f € End(M,S), f # idy. The order of contact vy of f
with S is defined by

vi= min max{peN|hof-he1,|enN

hE(r)MIV

where p is any point of S.

In [2, Section 1], we proved that the order of contact is well defined (i.e., it
does not depend on the point p € S), and that it can be computed by the formula

Vi = j=rrlli"r.1nmax{u eN| fa—-zke ’Jg’p},

Wh¢re (Ux, z«) is any local chart at p, and f& = Z& o f. In particular,
[fa— Z{x]vfﬂ ® 8/0z)% defines a local section of



Index Theorems for Holomorphic Maps and Foliations 3041

v+l

’J;f/’ls ® TM,S = Syme (NS*) ® TM,S,
that (see [2, Section 3]) turns out to be independent of the particular chart chosen:

Definition 8.2. Let f € End(M,S), f # idu. The canonical section Xy €
HO(S,Sym™ (N¢) ® Tu,s) is given by
Xy = [fg( _Z{x]Verl ® a—

zk

for any local chart (Uy, z«) at a point p € S.

Since we have Sym"’ (Ng) = (Sym" (Ns))*, the canonical section Xy can
be thought of as an Og-morphism Xy: Sym" (Ns) — Tus.

Definition 8.3. Let f € End(M, S), f # idy. The canonical distribution 'F ¢
associated to f (it was denoted by ¢ in [2]) is the subsheaf of Ty, s defined by

Fr=Xp(Sym™ (Ns)) € Tus.

We shall say that f is zangential if Fr < Ts.

Remark 8.4. 1f S is smooth, in [2, Corollary 3.2], we proved that f is tan-
gential if and only if
fi-zhend™
forall » = 1,...,m and all local charts (Uy, z«) adapted to S. We also refer to
[2] for a discussion of the relevance of this notion.

Until further notice, we shall assume that S is a smooth complex submanifold
of M. We shall also assume that

(8.1) rko, Sym" (N) = (m +va - 1) < dimS$,
f
where m is the codimension of S. ,
If (U, z) is a local chart adapted to S, we can find (gfx)il___yvf € Oy sym-

metric in the lower indices such that

; ; ; Iz
J J vy

fo( —Zx = (ga)h...r\,f 21&1 o Zy -

The (ga)il,__yvf are not uniquely defined as elements of Oy, but it is not difficult

to check that the [(go():;l;l_"rvf]] € Og are uniquely defined. Furthermore, the
sheaf Fy is locally generated by the elements

; 0
vrl...rvf,o( = [(go()gq...rvf] aij
: z
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Finally, the fact that X¢ is well defined is equivalent to the formula

, oz 0z 2z,
[(Ge)h... yvfh[—’?} :[ P ] [gp)l .., T,
1 1

ozt |, |32 | O ,
so that

dozy az;”f
(8.2) Vriry 0 = 52l w lvgl...svf,ﬂ.

We would like to build our morphism ¢ outside singularities. So in the
tangential case we shall momentarily assume that

Case 3. The sheaf Fy is the sheaf of germs of holomorphic sections of a
sub-bundle of TS of rank
0= m+ vy — 1
= v, )

To be consistent with the non-tangential case, we shall also set j—"}T =Fr 0% =
M g —
idf, and Urirya = Vrieny e

Remark 8.5. In other words, we are removing from S the analytic subset of
the points of § where X is not injective, together with the analytic subset of the
points of S where T/ Fy is not locally free.

In the non-tangential case, we project F into T, as usual.

Definition 8.6. Let S be a splitting submanifold of a complex manifold M.
Given a first order lifting p: Os — Oy /73, let 0*: Tys — Ts be the left splitting
morphism associated to p by Proposition 2.7. If f € End(M,S), f # idwm, has
order of contact vy, and (8.1) holds, we shall denote by f}r the coherent sheaf of
Os-modules given by

Ff=0%oX o (df)® (Sym" (Ns)) € Ts,

where (df)®Vr is the endomorphism of Sym"/ (Ns) induced by the action of d f
on Ns. Notice thatif vy > 1 (or vf = 1 and f is tangential) we have d f|n; = id,
and hence the presence of d f is meaningful only for v = 1 and f not tangential.
We shall say that p is f-faithful outside an analytic subset = < S if F§ is the sheaf
of germs of holomorphic sections of a sub-bundle of rank € = (m+‘)sz _1) of TS

on S\ 2. If X = & we shall simply say that p is f-faithful.
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Remark 8.7. The assumption of faithfulness amounts to saying that 0* o X o
(df)®V/ is injective and T/ f}r is locally free outside . In particular, if m = 1,

then either 0* o X o (df)®Vr is identically zero or p is f-faithful outside a suitable
analytic subset.

So in the non-tangential case we shall assume the following:
Case 4. There exists an f-faithful first order lifting p, with associated left

splitting morphism o *. If {(Ux, z«)} is an atlas adapted to p, we shall also set

0

14

vg]...rvf,tx = O'*(Url...r\,f,a) = [(go()h...rvf]l Py
o<

when v¢ > 1, and

0
vg,tx =0%oXo df(ar,tx) = [(5i + (g(x)ff)(g(x).’?]l g
x

when vy = 1, so that the vg---rvf,a form alocal frame for F¢ and (8.2) still holds.

We are now ready to compute the obstruction to the existence of the mor-

phism .

Proposition 8.8. Assume we are in Case 3 or in Case 4. Given an atlas 4 =

{(Ux, za)} adapted to S (and to p in Case 4), ler {mpu} be the cocycle defined by

0z} 52z 0zt

B Z B p U','V]...va

Mpx = @ azqaoz(t ozs (ga)rl...rvf (fo ® ar,tx ® Vy ,

B¥<B S
if ve > 1 or f is tangential, or by
0z} p25r 0zt
_ _“B z B 4 o
Mpx = @azgaz% oz (571/}1 + (.ga);/ftl)(gtx)u ; Wy ® Oy o ® Vo' ',

if vi = 1 and f is not tangential, where the ve form the frame of (F§)* dual
to the frame {vﬂl___yvf‘a} 0ff?, and denote by m € H' (S, N @ Ng ® (31‘}7)*)
the corresponding cohomology class. Then there exists a morphism : j—"}T — A such
that 0 o @ = id if and only if

m=0

in H' (S, N ® Ns ® (F§)*).
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Proof. Let us first assume vy > 1 or f tangential. We then define local
Og-morphism P : f?'Uo( — A by setting

o _ p 0
(8.3) (po‘(vﬁ---va,tX) =T <[(ga)h...rvf]zazg)

where 11: T ;) — A is the canonical projection, and then extending by @s-
linearity. Notice that the argument of 17 in (8.3) is not well defined, but its image
under 77 is. Since 0; o Yy = id, it suffices to show that the cocycle {mpq} is
represented by g — P«. But indeed, recalling (8.2) and using either that f is
tangential or that we are working with an atlas adapted to p, we have

Wp (vrol-...rvf,(x) -y (vg...rvf,a)

0zy 0z, 5
- B ... B _
= [azgl az”f] wpvg sy 8 (g va]ln(aZJ)
1

o (64

0z} ozk 0 0
B Za | O
[(go()?’] VVf] |:azg(:|1-n—(|:azg:|zaz]&) [(go()h VVJ]ITT(aZ&>
. oz} ozh d ozl | @
_ J 7B 0Za o Za| 9
- [(ga)rl va]l'n'( a])

0Zx
0z} 9227 0z, 2
_ p B Zx B ( s )
[(g(x)‘l”]...?’vf]l |:azg:|1 [azgazg:|l |:azsov(:|1-n- [Zo(]ZaZ"Dr( )

and we are done in this case.
If vp = 1 and f is not tangential, we define @« by

(pa(vg(x) =TT ([(5;3 + (gtx) )(g(X)S 12 p)

O(
and the assertion follows as before. O

It turns out that in codimension 1 (assuming S comfortably embedded in
Case 4) we have m = O always:

Proposition 8.9. Assume we are in Case 3 or in Case 4 with S comfortably
embedded, and that S has codimension 1. Then m = O.
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Proof. Let {(Ux, z«)} be an atlas adapted to S, and also comfortable and
adapted to p in Case 4. We define a 0-cochain {x«} € H?(8s, N ® N5 ® (}"}T )*)
by setting

a o 1
(8.4) Xq(V7 o) =T (ﬁ([(g@%.,.ﬂﬁé) - ([“”11} [z;]zf’l> ,
& 1

aZ}x 0Zx
where in Case 3 we have p([(ga)} 112) = [(ga)} 112, and thus we do not need
to assume anything on the embedding of S into M. Notice furthermore that, since
the codimension of S is 1, the germ (gu)]. ; is well defined as germ in Oy, and
not only as germ in O, and so (8.4) is well defined.

To prove the assertion it suffices then to show that x4 — xg = Mg« Now we
have

(X(X - Xg) (vf.-..l,tx)

N U 2 1
:7T<p([(g“)1"'1]2)az}x) |3zl 1 xg(vy_18)

~ 21 Vf ) azé( ;
:n({p([(gm..l]z)—[azi]z p(Lgp)1.a12) [az; Jon)

If vi > 1 from
1 Ly _ fl 1_82113 J J R
(9p)1..1(2p) —fB—ZB—g(f(x—le)Jr 2vy
24

0z} ,
= —f (g(x)],1 (Z(lx)vf + R2Vf,
Zx

2vy
where Ry, € 15 7 we get

azL 1" 0z} 0z}
Z“B 1 _| =B 1 7B p
[82&]2 [(93)11]2 |:aZ’1X:|2[(g(x)1"_1]2+ |:azg(:|2[(go()1_“1]2.

Since we are working with a comfortable atlas, ﬁ([@Zé/aZ}x]z) = O; therefore
applying (in Case 4) p to the previous formula we get

ozL 1 ozl ozl
[3] pL(gp)i. 1) = [‘3] ﬁ([(gw%...l]m[ﬁ} () 1 1o
2 2

ozk ) ozk 0zh
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Remarking that

4 1 - 1 p q ’
ozkozl 1 oz 1 dzp Loz |, azﬁazé X

we obtain the assertion if vy > 1 or f is tangential.
If instead v = 1, recalling that we are using a comfortable atlas, we have

l 251
@iz = f} - zh= S (g =2l + L 028 (pk - 2+ Ry
oz 209zhozk
Zl , 221
B J B p
= a(go()lzé( + m(gﬂ)l (go()%(zé()z +R3,

where R3 € 73, and so

P 1 0 1 0 !
|:§:| [(gB)“ZZ |:if:| [(ga)%]2+|:ﬁ:| (1+[(gtx)%]2)[(g0()’f]2

0z ozk
R b %1, R b

Applying p and arguing as before we obtain the assertion in this case too. o
We are now ready for our most general index theorem for holomorphic maps:

Theorem 8.10. Let S be a compact, complex, reduced, irreducible, possibly sin-
gular, subvariety of codimension m of an n-dimensional complex manifold M, and
assume that S has extendable normal bundle. Let f € End(M,S), f # idy, have

order of contact vy with S, and such that £ = <m+v‘;f _1) < dim S. Assume that there
exists an analytic subset 3. of S containing S8 such that, setting S° = S\ X, we have
either
(1) f is tangential to S°, X|so: Sym™ (N¢5) — Tso is injective, Tso | (Fylso) is
locally free, and
(1.a) S has codimension m = 1, or, more generally,
(1.b) m =0O;
(2) S° is comfortably embedded in M with respect to a first order lifting p which is
Sf-faithful outside of =, and
(2.a) S has codimension m = 1, or, more generally,
(2.b) m=0.
Then S has the Lehmann-Suwa index property of level € — | £/2] on T with respect
to f.

Proof. It follows from Theorem 6.8 and Propositions 8.8 and 8.9. O

Remark 8.11. Theorem 8.10.(1.a) and (2.a) are contained in [2]. Theorem
8.10.(1.b) and (2.b) are, as far as we know, new.
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