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1. Introduction

In this short note we shall summarize a method recently introduced1 to
study the real dynamics of complex homogeneous vector fields. Besides its
intrinsic interest, this is an useful problem to study because the discrete
dynamics of the time 1-map is encoded in the real integral curves of the
vector field, and time 1-maps of homogeneous vector fields are prototypical
examples of holomorphic maps tangent to the identity at the origin (that
is, of holomorphic self-maps f : Cn → Cn with f(O) = O and dfO = id).
Indeed, Camacho2,3 has proved that every (germ of a) holomorphic self-map
tangent to the identity in C is locally topologically conjugated to the time-
1 map of a homogeneous vector field, and it is natural to conjecture that
such a statement should hold for generic holomorphic self-maps in several
variables too; so understanding the real dynamics of complex homogeneous
vector fields will go a long way toward the understanding of the dynamics
of holomorphic self-maps tangent to the identity in a full neighborhood of
the origin, one of the main open problems in contemporary local dynamics
in several complex variables.

The main idea is that, roughly speaking, integral curves for homoge-
neous vector fields are geodesics for a meromorphic connection on a projec-
tive space. To understand the dynamics of geodesics of meromorphic con-
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nections is another very interesting problem, and it naturally splits in two
parts: study of the global dynamics of geodesics (e.g., recurrence properties
and Poincaré-Bendixson-like theorems), and study of the local dynamics
nearby the poles of the connection (via normal forms and local conjuga-
cies).

Due to space limitations, we shall describe our results in dimension 2
only; but part of the construction can be extended to any dimension, up to
replace meromorphic connections by partial meromorphic connections. See
Refs. 1,4 for details and proofs.

2. The construction

A homogeneous vector field of degree ν + 1 ≥ 2 in C2 is a vector field of
the form

Q = Q1 ∂

∂z1
+Q2 ∂

∂z2
,

where Q1, Q2 are homogeneous polynomials of degree ν+1 in two complex
variables. A homogeneous vector field Q is dicritical if it is of the form

Q = Pν(z)
(
z1 ∂

∂z1
+ z2 ∂

∂z2

)
where Pν is a homogeneous polynomial of degree ν; non-dicritical otherwise.

Let [·] : Cn \ {O} → P1(C) be the canonical projection. A direction
[v] ∈ P1(C) is a characteristic direction for a homogeneous vector field Q if
the complex line L[v] = Cv is Q-invariant (and then L[v] is a characteristic

line of Q). We shall moreover say that a characteristic direction [v] is degen-

erate if Q|L[v] ≡ O, and non-degenerate otherwise. It is easy to check that
all directions are characteristic if Q is dicritical, and that a non-dicritical
homogeneous vector field only has a finite number of characteristic direc-
tions. The dynamics on a characteristic line is one-dimensional, and very
easy to study; so from now on we shall deal with non-dicritical homoge-
neous vector fields only, and we shall mainly be interested in the dynamics
outside characteristic lines.

Let π : M → C2 be the blow-up of the origin in C2, with exceptional
divisor E = P1(C). Let p : N⊗νE → E be the ν-th tensor power of the
normal bundle of E into M . There exists a natural ν-to-one holomorphic
covering map χν : C2 \ {O} → N⊗νE \ E generalizing the usual biholomor-
phism between C2 \ {O} and NE \ E = M \ E: in the coordinates (ζ, v)
induced by the canonical chart of M in π−1(z1 6= 0) the map χν is given
by ζ(z) = z2/z1 and v(z) = (z1)ν , where ζ is the coordinate on E = P1(C)
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and v is the coordinate on the fiber of N⊗νE ; in particular, p ◦ χν(z) = [z]
for all z ∈ C2 \ {O}.

The homogeneity of Q has a first important consequence: whereas the
push-forward of a vector field in general is not a vector field, the push-
forward dχν(Q) of Q by χν is a global holomorphic vector field G defined
on the total space of N⊗νE , and vanishing only on the zero section and on
the fibers over the degenerate characteristic directions.

The point is that G is, in a suitable sense, the geodesic field of a mero-
morphic connection. To explain why, we need two more objects. First of
all, using Q it is possible to define a global morphism XQ : N⊗νE → TE

vanishing only over the characteristic directions of Q (and hence it gives
an isomorphism between N⊗νS and TS, where S ⊂ E is the complement
in E of the characteristic directions). If we denote by ∂1 the local generator
of NE in the canonical chart of M in π−1({z1 6= 0}), and by ∂/∂ζ the local
generator of TE, the local expression of XQ is

XQ(∂⊗ν1 ) = [Q2(1, ζ)− ζQ1(1, ζ)]
∂

∂ζ
.

Notice that [1 : ζ] is a characteristic direction of Q if and only if Q2(1, ζ)−
ζQ1(1, ζ) = 0.

Furthermore, we can also define a meromorphic connection ∇ on N⊗νE .
The global definition of ∇ is a bit involved;1,4 in the usual coordinates is
locally expressed by

∇∂/∂ζ∂⊗ν1 = − νQ1(1, ζ)
Q2(1, ζ)− ζQ1(1, ζ)

∂⊗ν1 .

Notice that ∇ is actually holomorphic on S; its poles are contained in the
characteristic directions.

Mixing XQ and ∇ we can get a linear connection, that is a connection
∇o defined on the tangent space of S; it suffices to set

∇ovw = ∇vX−1
Q (w)

for any tangent vector fields v and w on S. It is clear that ∇o is a holomor-
phic linear connection on S (and a meromorphic linear connection on E);
we can then use it to define the notion of geodesic in this context. A smooth
curve σ : I → S, where I ⊆ R is an interval, is a geodesic for ∇o if σ′ is ∇o-
parallel, that is ∇oσ′σ′ ≡ O. In local coordinates, this equation is equivalent
to the clearly geodesic-looking equation

σ′′ + (k ◦ σ)(σ′)2 = 0 ,
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where k is the meromorphic function defined by ∇o∂/∂ζ(∂/∂ζ) = k(∂/∂ζ).
Again, the poles of ∇o are contained in the set of characteristic direc-
tions of Q. Furthermore, to each pole p of ∇o is associated a residue

Resp(∇o) ∈ C, locally defined as the residue of the meromorphic func-
tion k just introduced (but again the definition is independent of the local
coordinates). Similarly, one can define the residue Resp(∇) ∈ C of ∇ at a
pole p ∈ E; the difference between the two residues is given by the order of
vanishing of XQ.

The relations between integral curves of Q, integral curves of G and
geodesics of ∇o is summarized by the following:

Proposition 2.1. Let Q be a non-dicritical homogeneous vector field in
C2, and let ŜQ be the complement in C2 of the characteristic lines of Q.
Then for a real curve γ : I → ŜQ the following are equivalent:

(i) γ is an integral curve in C2 of Q;
(ii) χν ◦ γ is an integral curve in N⊗νS of the geodesic field G;

(iii) [γ] is a geodesic in S for the induced connection ∇o.

The big advantage of this approach is that we can now bring into play
the differential geometry machinery developed to study geodesics of con-
nections. It is true that the connection ∇o in general is not globally in-
duced by a metric, and thus the theory of our geodesics is subtly different
from the usual theory of metric geodesics. However, ∇o is locally induced
by a conformal family of flat metrics, and the flatness enables the use of
global results like the Gauss-Bonnet theorem. Furthermore, we can use the
residues of ∇o to express the relations between the holomorphic structure
and the behavior of geodesics. All of this yields a fairly complete description
of the recurrence properties of the geodesics, that is a Poincaré-Bendixson
theorem for meromorphic connections:

Theorem 2.1. Let σ : [0, ε0) → S be a maximal geodesic for a meromor-
phic connection ∇o on P1(C), where S = P1(C)\{p0, . . . , pr} and p0, . . . , pr
are the poles of ∇o. Then either

(i) σ(t) tends to a pole of ∇o as t→ ε0; or

(ii) σ is closed, and then surrounds poles p1, . . . , pg with
g∑
j=1

Re Respj
(∇o) =

−1; or
(iii) the ω-limit set of σ in P1(C) is given by the support of a closed geodesic

surrounding poles p1, . . . , pg with
g∑
j=1

Re Respj
(∇o) = −1; or
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(iv) the ω-limit set of σ in P1(C) is a simple cycle of saddle connections (see

below) surrounding poles p1, . . . , pg with
g∑
j=1

Re Respj
(∇o) = −1; or

(v) σ intersects itself infinitely many times, and in this case every simple
loop of σ surrounds a set of poles whose sum of residues has real part
belonging to (−3/2,−1) ∪ (−1,−1/2).

In particular, a recurrent geodesic either intersects itself infinitely many
times or is closed.

In this statement, a saddle connection is a geodesic connecting two (not
necessarily distinct) poles of ∇o; and a simple cycle of saddle connections

is a Jordan curve composed of saddle connections. Notice furthermore that
a closed geodesic is not necessarily periodic: it is if and only if the sum of
the imaginary parts of the residues at the poles it surrounds is zero.

As a consequence, we get a Poincaré-Bendixson theorem for homoge-
neous vector fields:

Theorem 2.2. Let Q be a homogeneous holomorphic vector field on C2

of degree ν + 1 ≥ 2, and let γ : [0, ε0) → C2 be a recurrent maximal inte-
gral curve of Q. Then γ is periodic or [γ] : [0, ε0) → P1(C) intersect itself
infinitely many times.

Proposition 2.1 and Theorem 2.1 are very helpful in describing the global
behavior of integral curves away from the characteristic lines; to complete
the picture we need to know what happens nearby the characteristic lines.
It turns out that the best way of solving this problem is by studying the
integral curves of G nearby the fibers over the characteristic directions;
the advantage here is that G extends holomorphically everywhere, and this
makes the local study easier.

The characteristic directions can be subdivided in three classes: the ap-

parent singularities, which are the characteristic directions which are not
poles of ∇, the Fuchsian singularities, which are poles of ∇ of order 1, and
the irregular singularities, which are poles of ∇ of order greater than 1.
Fuchsian singularities are generic; and non-degenerate characteristic direc-
tions are Fuchsian singularities. We have a complete formal description of
all kinds of singularities, and a complete holomorphic description of Fuch-
sian and apparent singularities. For instance, the holomorphic classification
of Fuchsian singularities, revealing in particular the existence of resonance
phenomena, is the following

Theorem 2.3. Let z0 ∈ P1(C) be a Fuchsian pole of ∇, that is assume



January 14, 2010 16:0 WSPC - Proceedings Trim Size: 9in x 6in Isaac˙Abate

6

that in local coordinates (Uα, zα) centered at z0 we can write

G = zµα(a0 + a1zα + · · · )∂α − zµ−1
α (b0 + b1zα + · · · ) ∂

∂vα
,

with µ ≥ 1 and a0, b0 6= 0. Put ρ = b0/a0. Then µ and ρ are (formal and)
holomorphic invariants, and we can find a chart (U, z) centered in p0 in
which G is given by

zµ−1

(
zv∂ − ρv2 ∂

∂v

)
if µ− 1− ρ /∈ N∗, or by

zµ−1

(
zv∂ − ρ(1 + azn)v2 ∂

∂v

)
for a suitable a ∈ C (another formal and holomorphic invariant) if n =
µ− 1− ρ ∈ N∗.

Putting together all previous results (and several similar results proved
in Ref. 1) one gets a fairly complete description of the dynamics of a large
class of homogeneous vector fields. An example of statement we are able to
prove is the following:

Theorem 2.4. Let Q be a non-dicritical homogeneous vector field on C2 of
degree ν+1 ≥ 2. Assume that all characteristic directions of Q are Fuchsian
singularities of order 1 (this is the generic case). Assume moreover that for
no set of characteristic directions the real part of the sum of the residues
of ∇o is equal to −1. Let γ : [0, ε0)→ C2 be a maximal integral curve of Q.
Then:

(a) If γ(0) belongs to a characteristic line L then the image of γ is contained
in L. Moreover, either γ(t) → O (and this happens for a Zariski open
dense set of initial conditions), or ‖γ(t)‖ → +∞.

(b) If γ(0) does not belong to a characteristic line, then either

(i) γ converges to the origin tangentially to a characteristic direction
whose residue with respect to ∇ has negative real part; or

(ii) ‖γ(t)‖ → +∞ tangentially to a characteristic direction whose residue
with respect to ∇ has positive real part; or

(iii) [γ] : [0, ε0)→ P1(C) intersects itself infinitely many times.

Furthermore, if (iii) never occurs then (i) holds for a Zariski open dense
set of initial conditions.
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In this theorem, the assumption on the sum of the residues of ∇o is
used just to exclude closed geodesics or simple cycles of saddle connections
with the aim of simplifying the statement, but we have a fairly good under-
standing of the dynamics in those cases too. For instance, we have exam-
ples of homogeneous vector fields with periodic integral curves of arbitrarily
high period accumulating the origin — and thus of holomorphic self-maps
tangent to the identity with periodic orbits of arbitrarily high period accu-
mulating the origin, an unexpected phenomenon the cannot happen in one
variable. Furthermore, since the only constraint on the residues of ∇o is
that their sum must be −2, using Theorem 2.1.(v) it is easy to construct a
large class of homogeneous vector fields with only Fuchsian singularities of
order 1 where the case (b.iii) in Theorem 2.4 cannot occur; and so for this
large class of homogeneous vector fields we have a complete description of
the dynamics. To have a complete description of the dynamics of all homo-
geneos vector fields in C2 it remains to understand better what happens for
irregular singularities and when there are geodesics intersecting themselves
infinitely often; and we plan to attack these problems in future papers.
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