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Abstract. In this note we discuss a family of holomorphic self-maps of C3 tangent to the
identity at the origin presenting dynamical phenomena not appearing for lower dimensional maps.
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0. Introduction

The classical Leau-Fatou flower theorem in one-dimensional holomorphic dynamics is

Theorem 0.1: (Leau-Fatou Flower Theorem [L, F]) Let g(ζ) = ζ +akζk +O(ζk+1), with k ≥ 2 and ak 6= 0,
be a holomorphic function fixing the origin. Then there are k − 1 disjoint domains D1, . . . , Dk−1 with the
origin in their boundary, invariant under g (that is, g(Dj) ⊂ Dj) and such that (g|Dj

)n → 0 uniformly on
compact subsets as n→∞ for j = 1, . . . , k − 1, where gn denotes the composition of g with itself n times.

Any such domain is called a parabolic domain for f at the origin, and they are (together with attracting
basins, Siegel disks and Hermann rings) among the building blocks of Fatou sets of rational functions (see,
e.g., [Mi] for a modern exposition).

In [A3] this theorem has been generalized to any (germ of) holomorphic self-map f of C2 fixing the
origin and tangent to the identity, that is such that f(O) = O and dfO = id. To describe precisely the
statement we need a couple of definitions.

Let f be a germ of holomorphic self-map of Cn fixing the origin and tangent to the identity. Writing
f = (f1, . . . , fn), let fj = zj+Pj,νj +Pj,νj+1+· · · be the homogeneous expansion of f in series of homogeneous
polynomial, where deg Pj,k = k (or Pj,k ≡ 0), and Pj,νj

6≡ 0. The order ν(f) of f at the origin is defined
by ν(f) = min{ν1, . . . , νn}.

A parabolic curve for f at the origin is a injective holomorphic map ϕ: ∆→ Cn satisfying the following
properties:

(i) ∆ is a simply connected domain in C with 0 ∈ ∂∆;
(ii) ϕ is continuous at the origin, and ϕ(0) = O;
(iii) ϕ(∆) is invariant under f , and (f |ϕ(∆))n → O as n→∞.

Furthermore, if [ϕ(ζ)] → [v] ∈ Pn−1 as ζ → 0 (where [·] denotes the canonical projection of Cn \ {O}
onto Pn−1) we say that ϕ is tangent to [v] at the origin.

Then in [A3] the following theorem was proved:

Theorem 0.2: Let f be a (germ of) holomorphic self-map of C2 tangent to the identity and such that the
origin is an isolated fixed point. Then there exist (at least) ν(f)− 1 parabolic curves for f at the origin.

The proof of this theorem was achieved following a path suggested by a problem in continuous holo-
morphic dynamics, the so-called separatrix problem. It was known since the end of the last century, thanks,
e.g., to Poincaré [P], that a generic holomorphic vector field with an isolated singularity at the origin in Cn

admits invariant submanifolds (i.e., leaves of the 1-dimensional foliation induced by the given vector field)
passing through the singularity (separatrices); but it remained unknown for more than one hundred years,
even replacing “submanifold” by “complex analytic subvariety”, whether this was true for any holomorphic
vector field with an isolated singularity. At last, in 1982 Camacho and Sad [CS] proved that separatrices
always exist through isolated singularities of 2-dimensional holomorphic vector fields.
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The proof of Camacho-Sad theorem depended on three ingredients: Poincaré’s generic result; a canonical
reduction of the singularity to simpler, reduced cases via blow-ups (developed by Briot and Bouquet [BB],
Dumortier [D], Seidenberg [S] and Ven den Essen [V]; see [MM] for a good account); and an index theorem
for compact smooth leaves.

Accordingly, the proof of Theorem 0.2 depended on three ingredients as well: a generic result due to
Hakim [H1, 2] (see Section 1 for a precise statement); a reduction of the singularity via blow-ups, and an
index theorem for pointwise fixed 1-dimensional compact submanifolds, both developed in [A3] (but see [BT]
for a generalization of the index theorem to not necessarily smooth 1-dimensional subvarieties).

These results leave open the problem of what happens in dimensions greater than two. For the separatrix
problem the answer, surprisingly, is negative: Gómez-Mont and Luengo [GL] (see also [O1, 2] and [LO]
for n > 3) found a family of holomorphic vector fields with an isolated singularity at the origin in C3 and
no complex analytic leaf passing through the singularity.

On the other hand, the aim of this note is to provide an example showing that in dimensions greater
than 2 the discrete case presents behaviors not predicted by the analogy with the continuous case.

An apparently trivial characteristic of complex analytic leaves is that they survive to blow-ups: if S is a
1-dimensional leaf, possibly singular, of a holomorphic foliation F on a complex manifold M , and p ∈ S, then
the proper transform of S in the blow-up M̃ of M at p is still a 1-dimensional leaf of the canonical lifting F̃
of F to M̃ . This characteristic is the cornerstone of Gómez-Mont and Luengo construction of foliations in
C3 with no separatrices through a singular point.

As we shall prove in Section 1, the parabolic curves constructed in Theorem 0.2 survive to blow-ups
too. Indeed, we shall show that any such a curve ϕ: ∆→ C2 admits an asymptotic expansion at the origin:
there exists a formal power series at the origin asymptotic to ϕ in ∆. In particular, the strict transform of
the image of ϕ is still a parabolic curve for the lifting of f to the blow-up of the origin in C2, and we can
keep blowing-up as many times as we want always obtaining a parabolic curve for the corresponding lifting.
Such parabolic curves are called robust; see Section 1 for a precise definition.

Then in Section 3 we shall be able to prove the following

Theorem 0.3: There exists a family of (germs of) holomorphic self-maps of C3 tangent to the identity and
with the origin as isolated fixed point but with no robust parabolic curves at the origin. Nevertheless, all
these maps admit parabolic curves at the origin.

So if n = 3 in the discrete case there are maps with only “fragile” (that is, destroyed by repeated
blow-ups) parabolic curves, which is a phenomenon not happening for n = 2 and with no clear analogy in
the continuous case.

1. Robust parabolic curves

We start recalling a few definitions adapted from [A2, 3]. The symbol On will denote the ring of germs of
holomorphic functions defined in a neighbourhood of the origin O of Cn. Any g ∈ On has a homogeneous
expansion as infinite sum of homogeneous polynomials, g = P0 + P1 + · · ·, with deg Pj = j (or Pj ≡ 0); the
least j ≥ 0 such that Pj is not identically zero is the order ν(g) of g.

Given a subset S of a complex n-dimensional manifold M , we shall denote by End(M, S) the set of
germs about S of holomorphic self-maps of M fixing S pointwise. If S = {p}, we shall write End(M, p)
instead of End(M, {p}). We say that an f ∈ End(M, p) is tangent to the identity if dfp = id.

Let f ∈ End(Cn, O). We shall always write f = (f1, . . . , fn); furthermore, fj = P1,j+P2,j+· · · will be the
homogeneous expansions of fj (in most cases, P1,j(z) = zj). We shall consistently write fj = P1,j + gj ; fur-
thermore, by definition, the order of f is ν(f) = min{ν(g1), . . . , ν(gn)}. We shall always assume ν(f) < +∞,
that is f 6= idCn . We shall also set ` = gcd(g1, . . . , gn) and gj = `go

j ; both ` and the go
j ’s are defined up to

units in On. In particular, if ` is not a unit then `(z) = 0 is a (not necessarily reduced) equation of the germ
at the origin of the fixed points set of f ; conversely, if the germ at the origin of the fixed point set of f has
dimension n− 1 then ` is not an unit.

The pure order of f at the origin is νo(f) = min{ν(go
1), . . . , ν(go

n)}. We say that the origin is singular
for f if νo(f) ≥ 1, that is if go

1, . . . , g
o
n vanish at the origin. This happens for instance if the fixed points set

of f at the origin has dimension less than n− 1 (e.g., if the origin is an isolated fixed point). Furthermore,
go

j = P o
0,j + P o

1,j + · · · will be the homogeneous expansion of go
j .
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Following Hakim [H1, 2], we shall say that v = [v1 : · · · : vn] ∈ Pn−1 is a characteristic direction for f
at the origin if there exists λ ∈ C such that Pν(f),j(v1, . . . , vn) = λvj for j = 1, . . . , n; it is a non-degenerate
characteristic direction if λ 6= 0, and degenerate otherwise.

More generally, if P = (P1, . . . , Pn) ∈ End(Cn, O) is a n-uple of homogeneous polynomials of degree ν,
a characteristic direction for P is a vector v ∈ Pn−1 such that P (v) = λv for a suitable λ ∈ C; again,
it is degenerate or non-degenerate according to λ being zero or nonzero. If v is an isolated characteristic
direction of P , its multiplicity µP (v) is the local intersection multiplicity (see, e.g., [C] or [GH] for definition
and properties of the local intersection multiplicity) at v in Pn−1 of the polynomials zj0Pj − zjPj0 with
j 6= j0, where j0 is any index such that vj0 6= 0 (and µP (v) is clearly independent of j0).

Lemma 1.1: Let P = (P1, . . . , Pn) ∈ End(Cn, O) be a n-uple of homogeneous polynomials of degree ν ≥ 2.
Denote by π: Pn \{[1 : 0 : · · · : 0]} → Pn−1 the projection π([v0 : v1 : · · · : vn]) = [v1 : · · · : vn], and let S ⊂ Pn

be the set of solutions of the system 
P1(z)− zν−1

0 z1 = 0,
...

Pn(z)− zν−1
0 zn = 0.

(1.1)

Then

(i) The vector v = [v1 : · · · : vn] ∈ Pn−1 is a characteristic direction for P iff π−1(v) ∩ S is not empty.
More precisely, v is a degenerate characteristic direction iff π−1(v) ∩ S = {[0 : v1 : · · · : vn]}, and it is a
non-degenerate characteristic direction iff π−1(v) ∩ S contains exactly ν − 1 elements all with non-zero
first coordinate.

(ii) If v is a non-degenerate isolated characteristic direction, then its multiplicity µP (v) is equal to the mul-
tiplicity of any element in π−1(v)∩S as solution of (1.1); on the other hand, if v is a degenerate isolated
characteristic direction, then the multiplicity of [0 : v1 : · · · : vn] as solution of (1.1) is (ν − 1)µP (v).

(iii) The number of characteristic directions of P , counted according to their multiplicities, if finite is given
by (νn − 1)/(ν − 1).

Proof : (i) This is obvious.
(ii) Without loss of generality we can assume that v = [0 : · · · : 0 : 1], and fix ṽ ∈ π−1(v) ∩ S. In the

usual local coordinates of the subset {zn 6= 0} ⊂ Pn the point ṽ is represented by (λ, 0, . . . , 0), where λ = 0
iff v is degenerate. Analogously, the local coordinates of the subset {zn 6= 0} ⊂ Pn−1 are centered in v. So
we have

µP (v) = I
(
P1(z′, 1)− z1Pn(z′, 1), . . . , Pn−1(z′, 1)− zn−1Pn(z′, 1);O

)
,

while the multiplicity of ṽ as solution of (1.1) is

µ̃ = I
(
P1(z′, 1)− zν−1

0 z1, . . . , Pn−1(z′, 1)− zν−1
0 zn−1, Pn(z′, 1)− zν−1

0 ; (λ, 0, . . . , 0)
)
,

where I denotes the local intersection multiplicity, and z′ = (z1, . . . , zn−1). The standard properties of I
immediately yields

µ̃ = I
(
P1(z′, 1)− z1Pn(z′, 1), . . . , Pn−1(z′, 1)− zn−1Pn(z′, 1), Pn(z′, 1)− zν−1

0 ; (λ, 0, . . . , 0)
)
.

Set Qj(z′) = Pj(z′, 1) − zjPn(z′, 1) for j = 1, . . . , n − 1. Now, if v is degenerate, that is if λ = 0, the
ring On/

(
Q1, . . . , Qn−1, Pn(z′, 1)− zν−1

0

)
is generated by 1, z0, . . . , z

ν−2
0 on the ring On−1/

(
Q1, . . . , Qn−1

)
;

therefore
µ̃ = (ν − 1)µP (v),

as claimed.
On the other hand, if λ 6= 0 we can translate the coordinates obtaining

µ̃ = I
(
Q1, . . . , Qn−1, Pn(z′, 1)− (z0 + λ)ν−1;O

)
.

Now, Pn(O′, 1) = λν−1; therefore there is Qn ∈ On−1 such that Qn(O′) = λ and

Pn(z′, 1)− (z0 + λ)ν−1 =
(
Qn(z′)− z0 − λ

)
R(z0, z

′)
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in On, with R(O) 6= 0. Indeed, it suffices to take Qn ∈ On−1 so that Qn(O′) = λ and Qν−1
n = Pn(z′, 1)

in On−1. But then
µ̃ = I

(
Q1, . . . , Qn−1, Qn − λ− z0;O

)
,

and thus the argument used before yields µ̃ = µP (v).
(iii) By Bezout’s theorem we know that (1.1) has exactly (infinite or) νn solutions, counted according

to their multiplicities. The solution [1 : 0 : · · · : 0], which is the only one not generating a characteristic
direction of P , has multiplicity 1. Thus we are left with νn − 1 solutions, and the assertion follows from (i)
and (ii). ¤

A characteristic direction for f at the origin is a characteristic direction for Pf = (Pν(f),1, . . . , Pν(f),n).
Similarly, a singular direction for f at the origin is a characteristic direction for P o

f = (P o
νo(f),1, . . . , P

o
νo(f),n).

Since Pν(f),j = P o
νo(f),jRκ, where Rκ is the first nonzero term in the homogeneous expansion of ` (and we

have ν(f) = νo(f) + κ), it is clear that every non-degenerate characteristic direction is a singular direction,
and that every singular direction is a characteristic direction.

The set of singular directions is clearly an algebraic subvariety of Pn−1. If the maximal dimension of
the irreducible components of this subvariety is k, we say that the origin is k-dicritical for f ; if k = 0 (that
is, if there is only a finite number of singular directions) we say that the origin is nondicritical for f .

We now recall some basic definitions and results on blowing up maps, referring to [A2] for details. Let M
be a complex n-manifold, and p ∈M . The blow-up of M at p is the set M̃ = (M \ {p})∪ P(TpM), endowed
with the manifold structure we shall presently describe, together with the projection π: M̃ → M given by
π|M\{p} = idM\{p} and π|P(TpM) ≡ p. The set S = P(TpM) = π−1(p) is the exceptional divisor of the
blow-up.

Fix a chart ϕ = (z1, . . . , zn):U → Cn of M centered at p. Set Uj = (U \ {zj = 0}) ∪
(
S \ Ker(dzj |p)

)
,

and let χj : Uj → Cn be given by

χj(q)h =


zj(q) if j = h and q ∈ U \ {zj = 0},
zh(q)/zj(q) if j 6= h and q ∈ U \ {zj = 0},
d(zh)p(q)/d(zj)p(q) if j 6= h and q ∈ S \Ker(dzj |p),
0 if j = h and q ∈ S \Ker(dzj |p).

(1.2)

Then the charts (Uj , χj), together with an atlas of M \ {p}, endow M̃ with a structure of n-dimensional
complex manifold such that the projection π is holomorphic everywhere and given by

[ϕ ◦ π ◦ χ−1
j (w)]h =

{
wj if j = h,
wjwh if j 6= h. (1.3)

In the sequel we shall refer to these charts (or to charts obtained by these composing with a translation so
to center them in another point) as canonical charts.

Let f ∈ End(M, p) be tangent to the identity. Then ([A2]) there exists a unique map f̃ ∈ End(M̃, S),
the blow-up of f at p, such that π◦ f̃ = f ◦π. The action of f̃ on S is induced by the action of dfp on P(TpM);
in particular, f̃ |S = idS .

Lemma 1.2: Let f ∈ End(Cn, O) be tangent to the identity, and f̃ its blow-up at O. Assume that O is not
(n− 1)-dicritical. Then a direction v0 ∈ Pn−1 is singular for f iff it is a singular point for f̃ .

Proof : Without loss of generality we can assume that v0 = [1 : 0 : · · · : 0]. Writing

fj(z) = zj + `(z)
(
P o

ν,j(z) + Rν+1

)
,

where ν = νo(f) and Rν+1 denotes a remainder term of order at least ν + 1, in the canonical chart centered
at v0 the blow-up f̃ is represented by

f̃j(w) =

{
w1 + `(w1, w1w

′)wν
1 [P o

ν,1(1, w′) + O(w1)] for j = 1,

wj + φj(w)`(w1, w1w
′)wν−1

1 [P o
ν,j(1, w′)− wjP

o
ν,1(1, w′) + O(w1)] for 2 ≤ j ≤ n,

where φ2, . . . , φn are units and w′ = (w2, . . . , wn). Now, since O is not (n − 1)-dicritical, we must have
P o

ν,j(1, w′)−wjP
o
ν,1(1, w′) 6≡ 0 for at least one j ≥ 2; therefore arguing as in [A3, Lemma 2.1 and Corollary 2.1]

we see that the origin (that is, v0) is a singular point for f̃ iff P o
ν,j(1, O′) = 0 for 2 ≤ j ≤ n, that is iff v0 is a

singular direction for f . ¤
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A parabolic curve at p for f is an injective holomorphic map ϕ: ∆→M \ {p} such that:

(i) ∆ is a simply connected domain in C with 0 ∈ ∂∆;
(ii) ϕ is continuous at the origin, and ϕ(0) = p;
(iii) ϕ(∆) is invariant under f , and (f |ϕ(∆))k → p as k →∞.

Remark: Since ϕ is injective and f
(
ϕ(∆)

)
⊆ ϕ(∆), there is a unique holomorphic function fo: ∆→ ∆ such

that f ◦ ϕ = ϕ ◦ fo. Clearly, 0 is the Wolff point of fo; therefore Wolff’s lemma implies that fo(∆r) ⊆ ∆r

for all r > 0, where ∆r is the horocycle in ∆ of center 0 and radius r (see, e.g., [A1] for Wolff’s lemma and
the definition of horocycles). In particular, ϕ|∆r

is still a parabolic curve for f at the origin for any r > 0.

Let ϕ: ∆ → M be a parabolic curve for f at p. If there exists v ∈ P(TpM) such that ϕ̃ = π−1 ◦ ϕ is a
parabolic curve at v for f̃ (where π: M̃ →M is the blow-up of M at p, and f̃ is the blow-up of f), then we
say that ϕ is tangent to v at p, and that ϕ̃ is the strict transform of ϕ. We explicitely remark that since the
image of ϕ does not contain p, the curve ϕ̃ is always well-defined and ϕ̃(∆) is f̃ -invariant; however, ϕ̃ is a
parabolic curve for f̃ only if ϕ is tangent to some direction in p.

The main results of [H1, 2] and [A3] can then be summarized as follows:

Theorem 1.3: Let f ∈ End(Cn, O) be tangent at the identity. Then:

(i) [H1] If f admits a parabolic curve at the origin tangent to a direction v, then v is a characteristic
direction of f .

(ii) [H1, 2] If v is a non-degenerate characteristic direction for f at the origin, then f admits at least ν(f)−1
parabolic curves at the origin tangent to v.

(iii) [A3] If n = 2 and O is an isolated fixed point of f , then f always admits at least ν(f) − 1 parabolic
curves tangent to some singular direction.

The importance of Theorem 1.3.(iii) is that it is easy to find examples of maps tangent to the identity
with no non-degenerate characteristic directions, where one cannot apply Theorem 1.3.(ii). On the other
hand the techniques in [A3] do not allow yet to prove the existence of parabolic curves tangent to any given
non-degenerate characteristic direction, not even for n = 2: non-degenerate characteristic directions with
positive rational residual index are left out (see [A3, Corollary 3.1] for details).

As mentioned in the introduction, parabolic curves are the moral analogue of separatrices. Now, sep-
aratrices, being analytic subvarieties, survive to blow-ups: the strict transform of an analytic subvariety is
still an analytic subvariety. This is not always the case for parabolic curves: for instance, if ϕ is a parabolic
curve provided by Theorem 1.3.(ii) and tangent to a non-degenerate characteristic direction with residual
index equal to 1 (see [A3] for the definition), then after a finite number of blow-ups the strict transform of ϕ
is not anymore defined.

On the other hand, the main goal of this section is to prove that the parabolic curves given by Theo-
rem 1.3.(iii) do survive to blow-ups. Even better, they are essentially defined by a power series.

To get a precise statement, we need a few more definitions. We say that we can blow-up at level 1 a
parabolic curve ϕ if there exists r0 > 0 such that ϕ|∆r0

is tangent to some direction v ∈ P(TpM), where ∆r0

is the horocycle centered at the origin of radius r0 in the domain ∆ of ϕ. Let ϕ1 denote the strict transform
of ϕ|∆r0

; if we can blow-up ϕ1 at level 1, we say that we can blow-up ϕ at level 2, and we denote by ϕ2 the
parabolic curve so obtained (defined on a possibly smaller horocycle). In an inductive way we say that we
can blow-up ϕ at level h if we can blow-up ϕh−1 at level 1. We then say that ϕ is robust if the following
two conditions are satisfied:

(a) we can blow-up ϕ at level h for any h ≥ 1;
(b) there is a formal power series Q ∈ (C[[ζ]])n such that for every h ≥ 1 there is rh > 0 such that

ϕ−Qh = O(ζh+1) in ∆rh
, where Qh denotes the truncation at degree h of Q.

The main goal of this section is to prove that the parabolic curves whose existence is predicted by Theo-
rem 1.3.(iii) are robust. To do so we need the following

Lemma 1.4: Given δ > 0 and m ∈ N∗, set Dδ,m = {ζ ∈ C | |ζm − δ| < δ}, and let ∆ be any one of the m
connected components of Dδ,m. Then the horocycles centered at the origin of ∆ are all of the form Dδ′,m∩∆
for a suitable 0 < δ′ < δ.
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Proof : The domain ∆ is sent biholomorphically onto Dδ,1 by the map ζ 7→ ζr. In turn, the domain Dδ,1 is
sent biholomorphically onto the right half-plane Hδ = {Re ζ > 1/2δ} by the map ζ → 1/ζ. The horocycles
of Hδ centered at ∞ are exactly the half-planes Hδ′ with 0 < δ′ < δ — and the assertion follows. ¤

Theorem 1.5: Let f ∈ End(C2, O) be tangent at the identity, and assume that the origin is an isolated
fixed point of f . Then f admits at least ν(f)− 1 robust parabolic curves.

Proof : It suffices to show that the parabolic curves obtained in [A3] are robust. First of all, in [A3] we
showed that after a finite number of blow-ups and affine changes of variables we can assume that f is of the
form {

f1(z1, z2) = z1 − zm+1
1 + O(zm+2

1 , zm+1
1 z2),

f2(z1, z2) = z2

(
1− λzm

1 + O(zm+1
1 , zm

1 z2)
)

+ zm+2
1 ψm+1(z1),

(1.4)

with Re λ < 0 and m + 1 ≥ ν(f). Since affine changes of variables and blow-downs send robust parabolic
curves in robust parabolic curves, it suffices to prove the assertion when f is of the form (1.4).

Let us make the change of variables {
Z1 = z1,

Z2 = z2 − ψm+1(0)
λ−1 z2

1 .

In the new coordinates the map f is represented by{
f1(Z1, Z2) = Z1 − Zm+1

1 + O(Zm+2
1 , Zm+1

1 Z2),
f2(Z1, Z2) = Z2

(
1− λZm

1 + O(Zm+1
1 , Zm

1 Z2)
)

+ Zm+3
1 ψm+2(Z1).

(1.5)

Let ∆ be one of the m connected (and simply connected) components of Dδ,m, where δ > 0 will be chosen
later, and set

Fm(δ) = {u ∈ Hol(∆, C) | u(ζ) = ζ2uo(ζ), ‖uo‖∞ ≤ 1, |u′(ζ)| ≤ |ζ|}.

Then in [A3, Theorem 3.1], following [H1, 2], we proved that for every δ small enough there is a unique
u ∈ Fm(δ) such that ϕu(ζ) =

(
ζ, u(ζ)

)
is a parabolic curve for f at the origin. Our aim now is to exploit

the uniqueness of u to show that ϕu is robust. Since different components of Dδ,m give distinct parabolic
curves, from this we conclude the assertion.

Let us first prove that condition (a) of the definition is satisfied. Blowing-up f setting Z1 = w1 and
Z2 = w1w2 we get{

f̃1(w1, w2) = w1 − wm+1
1 + O(wm+2

1 , wm+2
1 w2),

f̃2(w1, w2) = w2

(
1− (λ− 1)wm

1 + O(wm+1
1 , wm+1

1 w2)
)

+ wm+2
1 ψ̃m+2(w1),

where ψ̃m+2(w1) − ψm+2(w1) = O(wm
1 ); in particular, ψ̃m+2(0) = ψm+2(0). Now making the change of

variables {
ŵ1 = w1,

ŵ2 = w2 − ψm+2(0)
λ−2 w2

1,

we get {
f̂1(ŵ1, ŵ2) = ŵ1 − ŵm+1

1 + O(ŵm+2
1 , ŵm+2

1 ŵ2),

f̂2(ŵ1, ŵ2) = ŵ2

(
1− (λ− 1)ŵm

1 + O(ŵm+1
1 , ŵm+1

1 ŵ2)
)

+ ŵm+3
1 ψ̂m+2(ŵ1),

which is of the form (1.5). Thus we get δ̂ > 0, û ∈ Fm(δ̂) such that ϕû is a parabolic curve for f̂ at the
origin. Set then

u1(ζ) = ζû(ζ) +
ψm+2(0)

λ− 2
ζ3. (1.6)

By construction ϕu1 is a parabolic curve for f ; we claim that u1 ∈ Fm(δ′) for δ′ small enough.
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We can write u1 = ζ2uo
1 with uo

1(ζ) = ζûo(ζ) + cζ, where c = ψm+2(0)/(λ− 2). Therefore

|uo
1(ζ)| ≤ (1 + |c|)|ζ|

and
|u′1(ζ)| = |ζ2ûo(ζ) + ζû′(ζ) + 3cζ2| ≤ (2 + 3|c|)|ζ|2;

so if δ′ > 0 is such that |ζ| ≤ (2+3|c|)−1 for all ζ ∈ ∆∩Dδ′,m we get u1 ∈ Fm(δ′), as desired. The uniqueness
of u then implies that u1 is the restriction of u to ∆∩Dδ′,m, and thus by Lemma 1.4 we have proved that we
can blow-up ϕu at level 1. But clearly the same proof works for ϕû, which means that we can blow-up ϕu

at level 2. Arguing by induction we immediately see that condition (a) of the definition of robust parabolic
curves is satisfied.

We are left to verify condition (b). We shall prove, by induction on h, that there is a unique polynomial
Qh of degree at most h such that u(ζ)−Qh(ζ) = O(ζh+1) on ∆ ∩Dδ′,m for all δ′ small enough (depending
on h). The uniqueness of the Qh for all h will then imply the existence of a well defined formal power series
Q ∈ C[[ζ]] such that Q =

(
ζ, Q(ζ)

)
satisfies condition (b) of the definition of robust parabolic curves.

Since u(ζ) = ζ2uo(ζ), for h = 1 the only choice is Q1 ≡ 0. Actually, (1.6) shows that in a possibly
smaller horocycle we have u(ζ) = ζ3uo(ζ), and thus Q2 ≡ 0 too. So now let assume that the claim is true for
h−1 ≥ 2; in particular we get a polynomial Q̂h−1 of degree at most h−1 such that û(ζ)− Q̂h−1(ζ) = O(ζh)
in a sufficiently small horocycle. But then setting

Qh(ζ) = ζQ̂h−1(ζ) +
ψr+2(0)
λ− 2

ζ3

and recalling (1.6) we immediately see that u(ζ) − Qh(ζ) = O(ζh+1) in a sufficiently small horocycle, as
desired.

Finally, if Q′h is another polynomial of degree at most h such that u(ζ)−Q′h(ζ) = O(ζh+1) in ∆∩Dδ′,m,
we have

Qh(ζ)−Q′h(ζ) =
(
u(ζ)−Q′h(ζ)

)
−

(
u(ζ)−Qh(ζ)

)
= O(ζh+1),

and thus Qh ≡ Q′h. ¤

Remark: The formal power series so obtained is a polynomial iff after enough blow-ups the second
component of the blow-up map is divisible by w2. Indeed the procedure described in the proof stops iff we
get a blow-up map of the form (1.5) with ψm+2 ≡ 0. In this case the function u at that level is identically
zero, and thus blowing down we see that the parabolic curves we get are restrictions of a holomorphic curve
defined in a whole neighbourhood of the origin.

2. Singular points

As mentioned in the introduction, to understand the dynamical behavior of maps tangent to the identity we
need to blow-up points. The aim of this section is to prove that for maps obtained with such a procedure
only singular points are dynamically interesting.

Proposition 2.1: Let f ∈ End(Cn, O) be of the form

fj(z) =
{

zj + zj (
∏r

h=1 zνh

h ) gj(z) for 1 ≤ j ≤ r,

zj + (
∏r

h=1 zνh

h ) gj(z) for r + 1 ≤ j ≤ n,
(2.1)

for suitable 1 ≤ r < n, ν1, . . . , νr ≥ 1, g1, . . . , gn ∈ On. Assume that gj0(O) 6= 0 for some r + 1 ≤ j0 ≤ n.
Then no infinite orbit can stay arbitrarily close to O, that is there is a neighbourhood U of the origin such
that for every q ∈ U there is n0 ∈ N such that fn0(q) /∈ U or fn0(q) ∈ Fix(f).

Remark: We shall see in the next section that all maps we are interested in are of the form (2.1), possibly
with r = n. Notice that if gj0(O) 6= 0 for some r + 1 ≤ j0 ≤ n then O is not singular for f .
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Proof : Without loss of generality we can assume j0 = n, and after a linear change of coordinates we can also
assume gn(O) = 1. Write gj(z) = aj + Aj(z) for j = 1, . . . , n with ν(Aj) ≥ 1; we then make the following
change of coordinates:

Zj =
{

zj

(
1 + An(z)

)1/rνj for 1 ≤ j ≤ r,
zj for r + 1 ≤ j ≤ n.

In the new coordinates the map is expressed by

Fj(Z) =


Zj + Zj (

∏r
h=1 Zνh

h ) g̃j(Z), for 1 ≤ j ≤ r,

Zj + (
∏r

h=1 Zνh

h )
(
aj + Ãj(Z)

)
, for r + 1 ≤ j ≤ n− 1,

Zn +
∏r

h=1 Zνh

h , for j = n.

The only non trivial formula here is the first one, which is obtained as follows:

Fj(Z) = fj(z)
[
1 + An

(
f(z)

)]1/rνj = zj

[
1 +

(
r∏

h=1

zνh

h

)
gj(z)

] [
1 + An

(
f(z)

)]1/rνj

= Zj

[
1 +

(
r∏

h=1

Zνh

h

)
gj(z)

1 + An(z)

] [
1 +

An

(
f(z)

)
−An(z)

1 + An(z)

]1/rνj

= Zj

[
1 +

(
r∏

h=1

Zνh

h

)(
aj + Bj(z)

)] [
1 +

(
r∏

h=1

Zνh

h

)
C(z)

]

= Zj

[
1 +

(
r∏

h=1

Zνh

h

)
g̃j(Z)

]
,

for suitable holomorphic functions Bj , C and g̃j , where we used the fact that
∏r

h=1 zνh

h divides each compo-
nent of f(z)− z, and thus An

(
f(z)

)
−An(z) is divisible by

∏r
h=1 Zνh

h .
Set Z(k) = F k(Z) and W (k) =

∏r
h=1(Z

(k)
h )νh ; in particular,

Z(k)
n − Z(0)

n =
k−1∑
l=0

(
Fn(Z(l))− Z(l)

n

)
=

k−1∑
l=0

W (l).

Now, for j = 1, . . . , r we have
(Z(1)

j )νj = Z
νj

j [1 + W (0)g̃j(Z)]νj ;

therefore

1
W (1)

=
1

W (0)

r∏
h=1

1
[1 + W (0)g̃h(Z)]νh

=
1

W (0)

r∏
h=1

[
1− νhW (0)g̃h(Z) + O

(
(W (0))2

)]
=

1
W (0)

+ a(Z),

for a suitable holomorphic function a(Z). In particular, if P (ρ1, . . . , ρn) = {|Zj | < ρj , j = 1, . . . , n} is a
small enough polydisk centered at the origin, we find M > 0 such that∣∣∣∣ 1

W (1)
− 1

W (0)

∣∣∣∣ ≤M

for all Z ∈ P (ρ1, . . . , ρn). Up to shrink ρ1, . . . , ρr we can assume that M |W (0)| < 1 for all Z ∈ P (ρ1, . . . , ρn).
Choose then 0 < ρ < min{(2M)−1 log 2, ρn}, and set U = P (ρ1, . . . , ρn−1, ρ); we claim that no point in
U \ Fix(F ) can have an orbit completely contained in U \ Fix(F ).
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Suppose, by contradiction, that Z(0) ∈ U \ Fix(F ) is such that Z(k) = F k(Z(0)) ∈ U \ Fix(F ) for
all k ∈ N. In particular, W (k) 6= 0 for all k ≥ 0, and so |(1/W (k))− (1/W (0))| ≤ kM . Hence∣∣∣∣W (0)

W (k)
− 1

∣∣∣∣ ≤ kM |W (0)|

for all k ≥ 0. This implies that if kM |W (0)| < 1 then W (k)/W (0) belongs to the disk having the segment
[(1 + kM |W (0)|)−1, (1− kM |W (0)|)−1] as diameter, and thus

Re
W (k)

W (0)
≥ 1

1 + kM |W (0)| .

Let k0 ≥ 2 be the integer such that (k0 − 1)M |W (0)| < 1 ≤ k0M |W (0)|. Then

Re
W (l)

W (0)
≥ 1

(k0 + l)M |W (0)|

for 0 ≤ l ≤ k0 − 1. But this implies

|Z(k0)
n − Z(0)

n | =
∣∣∣∣∣
k0−1∑
l=0

W (l)

∣∣∣∣∣ = |W (0)|
∣∣∣∣∣
k0−1∑
l=0

W (l)

W (0)

∣∣∣∣∣
≥ |W (0)|

k0−1∑
l=0

Re
W (l)

W (0)
≥

k0−1∑
l=0

1
(k0 + l)M

≥ log 2
M

> 2ρ,

and so Z(k0) /∈ U , contradiction. ¤

3. The example

We now introduce the kind of singularity we need in our example. Let f ∈ End(M, p), where M is a 3-
dimensional complex manifold and p ∈ M . We say that p is a simple corner for f if there are a, b ∈ N∗,
c ∈ N, λ1 ∈ C∗, λ2 ∈ C \ (Q+λ1) and local coordinates (z1, z2, z3) centered at p so that we can write

fj(z) =


z1 + (za

1zb
2z

c
3) z1(λ1 + g1), for j = 1,

z2 + (za
1zb

2z
c
3) z2(λ2 + g2), for j = 2,

z3 + (za
1zb

2z
c
3)g3, for j = 3,

(3.1)

with ν(gj) ≥ 1 for j = 1, . . . , 3. We moreover require that z3|g3 if c > 0. Notice that a simple corner is
automatically a singular point for f .

The main properties of simple corners are collected in the following:

Proposition 3.1: Let p be a simple corner for a map f ∈ End(M, p), and denote by f̃ ∈ End(M̃, S) the
blow-up of f at p. Then:

(i) p is never 2-dicritical;
(ii) the singular directions of f are always simple corners of f̃ ;
(iii) if q ∈ S is non-singular for f̃ , then no infinite orbit of f̃ can stay arbitrarily close to q.

Proof : Let us first compute the singular directions of f at p. Choose local coordinates centered at p so that
f can be expressed in the form (3.1), and set also

g3(z) = αz1 + βz2 + γz3 + go
3,

with ν(go
3) ≥ 2. Notice that α = β = 0 and z3|go

3 if c > 0.
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Now v = [v1 : v2 : v3] ∈ P2(C) is a singular direction for f iff

rk

∣∣∣∣∣∣
λ1v1 v1

λ2v2 v2

αv1 + βv2 + γv3 v3

∣∣∣∣∣∣ ≤ 1,

that is iff 
(λ1 − λ2)v1v2 = 0,(
αv1 + βv2 + (γ − λ1)v3

)
v1 = 0,(

αv1 + βv2 + (γ − λ2)v3

)
v2 = 0.

Since λ1 − λ2 6= 0 by assumption, we see that the singular directions of f are [0 : 0 : 1], [0 : λ2 − γ : β], and [1 : 0 : v3] for any v3 ∈ C, if λ1 = γ 6= λ2 and α = 0;
[0 : 0 : 1], [λ1 − γ : 0 : α], and [0 : 1 : v3] for any v3 ∈ C, if λ2 = γ 6= λ1 and β = 0;
[0 : 0 : 1], [0 : λ2 − γ : β], [λ1 − γ : 0 : α], otherwise.

In particular, p is never 2-dicritical, and (i) is proved. By Lemma 1.2, then, the singular points of f̃ belonging
to the exceptional divisor are exactly the singular directions of f .

To prove (ii) and (iii) let us study f̃ . In the canonical coordinates centered in [1 : 0 : 0] we have

f̃j(w) =


w1 + (wa+b+c

1 wb
2w

c
3) w1

(
λ1 + O(w1)

)
, for j = 1,

w2 + (wa+b+c
1 wb

2w
c
3) w2

(
λ2 − λ1 + O(w1)

)
, for j = 2,

w3 + (wa+b+c
1 wb

2w
c
3)

(
α + βw2 + (γ − λ1)w3 + O(w1)

)
, for j = 3;

furthermore, if c > 0 then α = β = 0 and the remainder term for j = 3 is O(w1w3). The exceptional divisor
in this chart has equation w1 = 0, and the singular points of f̃ contained in this chart have coordinates(
0, 0, α/(λ1 − γ)

)
if λ1 6= γ, or (0, 0, w3) if λ1 = γ and α = 0.

Let q = (0, q2, q3) be a point in the exceptional divisor. Then in the coordinates centered at q obtained
by translation we get

f̃j(w)=


w1+

(
wa+b+c

1 (w2 + q2)b(w3 + q3)c
)
w1

(
λ1 + O(w1)

)
, if j = 1,

w2+
(
wa+b+c

1 (w2 + q2)b(w3 + q3)c
)
(w2 + q2)

(
λ2 − λ1 + O(w1)

)
, if j = 2,

w3+
(
wa+b+c

1 (w2 + q2)b(w3 + q3)c
)(

α + βq2 + (γ − λ1)q3 + βw2 + (γ − λ1)w3 + O(w1)
)
; if j = 3.

furthermore, if c > 0 then α = β = 0, and if moreover q3 = 0 then the remainder term for j = 3 is O(w1w3).
If q2 6= 0 we see that f̃ satisfies the hypotheses of Proposition 2.1; therefore we get (iii) for q. If

q2 = 0 and α + (γ − λ1)q3 6= 0 then we can again apply Proposition 2.1; so we have proven (iii) for all
non-singular q in this chart. Finally, if q is singular then f̃ is in the form (3.1), because λ2/λ1 /∈ Q+ implies
(λ2 − λ1)/λ1 /∈ Q+, and so we have proved (ii) in this chart.

In the canonical coordinates centered in [0 : 1 : 0] we have

f̃j(w) =


w1 + (wa

1wa+b+c
2 wc

3) w1

(
λ1 − λ2 + O(w2)

)
, for j = 1,

w2 + (wa
1wa+b+c

2 wc
3) w2

(
λ2 + O(w2)

)
, for j = 2,

w3 + (wa
1wa+b+c

2 wc
3)

(
β + αw1 + (γ − λ2)w3 + O(w2)

)
, for j = 3,

where if c > 0 then α = β = 0 and the remainder term for j = 3 is O(w2w3). Thus arguing as before we get
(ii) and (iii) in this chart too.

To end the proof we must show that [0 : 0 : 1] is a simple corner for f̃ . Expressing f̃ in the coordinate
chart centered in [0 : 0 : 1] we get

f̃j(w) =


w1 + (wa

1wb
2w

a+b+c
3 ) w1

(
λ1 − γ − αw1 − βw2 + O(w3)

)
, for j = 1,

w2 + (wa
1wb

2w
a+b+c
3 ) w2

(
λ2 − γ − αw1 − βw2 + O(w3)

)
, for j = 2,

w3 + (wa
1wb

2w
a+b+c
3 ) w3

(
γ + αw1 + βw2 + O(w3)

)
, for j = 3;

thus up to renumbering the coordinates it suffices to prove that at least one of the quotients (λ1−γ)/(λ2−γ),
(λ1 − γ)/γ, (λ2 − γ)/γ does not belong to Q+. If γ = 0 there is nothing to prove. If γ 6= 0 then
(λ1 − γ)/γ, (λ2 − γ)/γ ∈ Q+ would imply λ2/λ1 ∈ Q+, contradiction, and we are done. ¤
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We are finally ready to prove the main result of this paper:

Theorem 3.2: Let f = (f1, f2, f3) ∈ End(C3, O) be of the form

fj(z) =

 z1 + z2
1 − 9z1z2 − 14z1z3 + 6z2z3 + a1z

3
1 + a2z

3
2 + a3z

3
3 + O(‖z‖4), for j = 1,

z2 − z1z2 + 2z1z3 − 3z2
2 − 10z2z3 + b1z

3
1 + b2z

3
2 + b3z

3
3 + O(‖z‖4), for j = 2,

z3 − 3z1z2 + 4z1z3 − 8z2
3 + c1z

3
1 + c2z

3
2 + c3z

3
3 + O(‖z‖4), for j = 3,

with b1 6= c1, a2 6= c2 and a3 6= c3. Then f is tangent to the identity and with the origin as isolated fixed
point, but it has no robust parabolic curves at the origin. Nevertheless, it admits parabolic curves at the
origin.

Proof : Our first aim is to compute the characteristic directions of f . This amounts to solving the system 2x2y − 6xy2 − 2x2z − 4xyz + 6y2z = 0,
3x2y − 3x2z − 9xyz − 6xz2 + 6yz2 = 0,
3xy2 − 5xyz − 3y2z + 2xz2 − 2yz2 = 0.

(3.2)

It is easy to see that the first polynomial is irreducible; therefore (3.2) cannot have infinitely many solutions,
and thus Lemma 1.1 implies that f has 7 characteristic directions, counted according to their multiplicity.
Clearly [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1] are characteristic directions; since the first two have multiplicity 2,
and the third one has multiplicity 3, we have found all of them.

Now we can prove that O is an isolated fixed point of f . If this is not the case, the fixed point set of
the blow-up f̃ of f at the origin must contain a component intersecting the exceptional divisor, and it is not
difficult to see that the intersection must be a characteristic direction of f . So it suffices to prove that the
only component of the fixed point set of f̃ containing a characteristic direction is the exceptional divisor.

In the canonical chart containing [1 : 0 : 0] the map f̃ is given by

f̃j(w) =


w1 + w2

1

(
1 + a1w1 − 9w2 − 14w3 + 6w2w3 + O(w2

1, w1w
3
2, w1w

3
3)

)
for j = 1,

w2 + w1

(
b1w1 − 2w2 + 2w3 + 6w2

2 + 4w2w3 − 6w2
2w3 + O(w2

1, w1w2, w1w3)
)
, for j = 2,

w3 + w1

(
c1w1 − 3w2 + 3w3 + 6w2

3 + 9w2w3 − 6w2w
2
3 + O(w2

1, w1w2, w1w3)
)
, for j = 3.

(3.3)

Let us write

f̃j(w)− wj =

w2
1(1 + h1), for j = 1,

w1(b1w1 − 2w2 + 2w3 + h2), for j = 2,
w1(c1w1 − 3w2 + 3w2 + h3) for j = 3;

if we show that

I
(
w1(1 + h1), b1w1 − 2w2 + 2w3 + h2, c1w1 − 3w2 + 3w2 + h3;O

)
< +∞

as a consequence we get that the only component of the fixed point set of f̃ containing [1 : 0 : 0] is the
exceptional divisor. But indeed

I
(
w1(1 + h1),b1w1 − 2w2 + 2w3 + h2, c1w1 − 3w2 + 3w2 + h3;O

)
= I(w1, b1w1 − 2w2 + 2w3 + h2, c1w1 − 3w2 + 3w2 + h3;O)

= I(−2w2 + 2w3 + 6w2
2 + 4w2w3 − 6w2

2w3,−3w2 + 3w3 + 6w2
3 + 9w2w3 − 6w2w

2
3;O)

= 3.

Similar computations work at [0 : 1 : 0] and [0 : 0 : 1], and thus we have proved that O is an isolated
fixed point for f . In particular, characteristic directions and singular directions agree.

Now, using (3.3) it is not difficult to see that every point of the exceptional divisor in the canonical
chart containing [1 : 0 : 0] but [1 : 0 : 0] itself satisfies the assumptions of Proposition 2.1. Furthermore,
the singular directions of f̃ at [1 : 0 : 0] are [0 : 1 : 1] and [0 : 2 : 3] (here we use that b1 6= c1). If f̂ is the
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blow-up of f̃ at [1 : 0 : 0], the expression of f̂ in the canonical chart centered in [0 : 1 : 0] (containing both
the singular directions of f̃ at [1 : 0 : 0]) is

f̂j(x) =


x1 + (x1x2)x1

(
3− b1x1 − 15x2 − 2x3 + O(x1x2, x1x3, x2x3, x

2
2)

)
, for j = 1,

x2 + (x1x2)x2

(
−2 + b1x1 + 6x2 + 2x3 + O(x1x2, x2x3, x

2
2)

)
, for j = 2,

x3 + (x1x2)(−3 + c1x1 + 5x3 − 2x2
3 + O(x1x2, x1x3, x2x3, x

2
2)

)
, for j = 3.

(3.4)

Again, it is not difficult to check that every point in the exceptional divisor but the two singular points
satisfies the assumptions of Proposition 2.1. If we center the coordinates in [0 : 1 : 1] via a translation we
get

f̂j(x) =


x1 + (x1x2)x1(1 + g1), for j = 1,
x2 + (x1x2)x2(0 + g2), for j = 2,
x3 + (x1x2)g3, for j = 3,

with ν(gj) ≥ 1 for j = 1, 2, 3. Analogously, if we center the coordinates in [0 : 2 : 3] we get

f̂j(x) =


x1 + (x1x2)x1(0 + g′1), for j = 1,
x2 + (x1x2)x2(1 + g′2), for j = 2,
x3 + (x1x2)g′3, for j = 3,

again with ν(g′j) ≥ 1 for j = 1, 2, 3. In other words, both singular points of f̂ are simple corners.
We leave to the reader the corresponding computations in the other charts. In all cases, we find that

after the second blow-up the only singular points are simple corners, and all other points in the exceptional
divisor satisfy the assumptions of Proposition 2.1. By Proposition 3.1, this holds true blowing up any finite
number of singular points.

Now let us assume, by contradiction, that f admits a robust parabolic curve ϕ at the origin. Then ϕ1 is
a robust parabolic curve for f̃ at some point of the exceptional divisor; by Proposition 2.1, this point must
be a singular point for f̃ . If ϕ1 is not tangent to the exceptional divisor, ϕ2 must be a robust parabolic curve
for f̂ at a point q which is a smooth point of the total transform of the exceptional divisor at level 1; but
since by Proposition 2.1 q must be a singular point of f̂ and we saw that all singular points of f̂ are simple
corners, we get a contradiction.

So ϕ1 is tangent to the exceptional divisor of f̃ . But since ϕ1 is given by a power series, after a finite
number of blow-ups we get a ϕk which is not anymore tangent to the corresponding exceptional divisor.
In particular, then, ϕk+1 is a robust parabolic curve at a point q of the exceptional divisor which is not a
corner. But Propositions 3.1 and 2.1 (and the previous computations) imply that q must be a singular point,
and that the only singular points are corners; therefore we again have a contradiction.

So f has no robust parabolic curves at the origin. On the other hand, it is easy to check that [1 : 0 : 0],
[0 : 1 : 0] and [0 : 0 : 1] are non-degenerate characteristic directions; therefore Theorem 1.3.(ii) yields a
parabolic curve at the origin for each of these directions. ¤

Remark 3.1: The eigenvalues of the 2×2-matrices associated by Hakim [H1, 2] to the characteristic direc-
tions of the map f are {0, 1}. Therefore the parabolic curves whose existence is predicted by Theorem 1.3.(ii)
are described by power series in z and z log z — and thus they cannot be robust.

Remark 3.2: We chose to define the map f in Theorem 3.2 with actual numbers for the sake of defi-
niteness; however, it is possible to prove similar results for a larger family of maps. Looking carefully at the
computations in the proof, it turns out that we actually used only a couple of properties of f : that it had
three singular directions with multiplicities respectively 2, 2, and 3; and that each of those had in turn only
two singular directions, both giving rise to simple corners. Furthermore, the last property is obtained if the
linear part of f̃− id at each singular point is non-diagonalizable with exactly one non-zero double eigenvalue.
For more details see [GL], where similar computations are carried out in the continuous case.
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