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Abstract

This paper studies the embeddings of a complex submanifold S inside a complex manifold M; in par-
ticular, we are interested in comparing the embedding of S in M with the embedding of S as the zero
section in the total space of the normal bundle NS of S in M . We explicitly describe some cohomologi-
cal classes allowing to measure the difference between the two embeddings, in the spirit of the work by
Grauert, Griffiths, and Camacho, Movasati and Sad; we are also able to explain the geometrical meaning
of the separate vanishing of these classes. Our results hold for any codimension, but even for curves in a
surface we generalize previous results due to Laufert and Camacho, Movasati and Sad.
© 2008 Elsevier Inc. All rights reserved.
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0. Introduction

This paper is devoted to the study of the embeddings of a complex submanifold S inside a
larger complex manifold M ; in particular, we are interested in comparing the embedding of S in
M with the embedding of S as the zero section in the total space of the normal bundle NS of S

in M . We explicitly describe some cohomological classes allowing to measure the difference
between the two embeddings, in the spirit of [8,11,12]. Our hope is that it may be a step towards
a classification of foliations on M transverse to a submanifold S; see [8].
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Our interest in this topic originated in our previous papers [1,2], where we studied index the-
orems for holomorphic self-maps and foliations. We had a complex submanifold S of a complex
manifold M and a holomorphic object F (either a holomorphic self-map of M fixing S pointwise,
or a possibly singular holomorphic foliation of M); along the lines of the original Camacho–Sad
index theorem [6], we wanted to recover Chern classes of the normal bundle NS of S in M by
means of local invariants associated to singular points of either S or of the holomorphic object F .
It turned out that to get index theorems of this kind one needs either hypotheses on the relative
position of S and F (e.g., the holomorphic foliation should be tangent to S), or on the embedding
of S into M : it should be close enough to the embedding of S in NS as zero section.

We found two ways to express the geometrical conditions on the embedding we needed; either
in terms of the existence of local coordinates with suitable properties (in a way similar to what
was done in [8], a main source of inspiration for the present paper), or in a more intrinsic way,
as splittings of suitable exact sequence of sheaves, thus allowing us to rephrase the conditions
in terms of vanishing of cohomology classes. Furthermore, it turned out that we were actually
working only with the first two of a list of more and more stringent conditions on the embedding,
and that it might be interesting to study the whole list of conditions.

The first (well-known) condition on the embedding is the splitting condition. We say that S

splits into M if the exact sequence

O −→ T S −→ T M|S −→ NS −→ O

splits as sequence of vector bundles over S, where T S (respectively, T M|S ) is the holomorphic
tangent bundle of S (respectively, of M restricted to S). It turns out (see Section 1) that S splits
into M if and only if the exact sequence

O −→ IS/I 2
S −→ OM/I 2

S −→ OS = OM/IS −→ O

splits as sequence of sheaves of rings, where OM (respectively, OS ) is the structure sheaf of M

(respectively, of S), and IS is the ideal sheaf of S.
Thus if S splits we have a way to extend germs of holomorphic functions on S to germs

of holomorphic functions defined on M up to the first order. It is then natural to say that S is
k-splitting into M (for some k � 1) if the exact sequence

O −→ IS/I k+1
S −→ OM/I k+1

S −→ OS −→ O

splits as sequence of sheaves of rings. If this happens, it turns out (see Section 3) that we can in-
troduce a structure of OS -module on IS/I h+1

S for 2 � h � k +1 in such a way that the sequences

O −→ I h
S /I h+1

S −→ IS/I h+1
S −→ IS/I h

S −→ O

become exact sequences of OS -modules. If these sequences split, we say that S is k-comfortably
embedded in M . (In [1,2] we introduced split, 2-split and 1-comfortably embedded submanifolds
only.)

We can characterize these conditions in terms of local coordinates. Indeed, in Section 2 we
prove that S is k-splitting into M if and only if there is an atlas U = {(Uα, zα)} of M adapted to S
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
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(that is, such that Uα ∩S �= ∅ implies Uα ∩S = {z1
α = · · · = zm

α = 0}, where m is the codimension
of S) such that

∂kz
p
β

∂z
r1
α · · · ∂z

rk
α

∣∣∣∣
S

≡ 0,

for all r1, . . . , rk = 1, . . . ,m, all p = m + 1, . . . , n = dimM , and all indices α, β such that Uα ∩
Uβ ∩ S �= ∅. Furthermore, S is k-comfortably embedded in M if and only if (Section 3) there is
an atlas U = {(Uα, zα)} of M adapted to S such that

∂kz
p
β

∂z
r1
α · · · ∂z

rk
α

∣∣∣∣
S

≡ 0, and
∂k+1zs

β

∂z
r1
α · · · ∂z

rk+1
α

∣∣∣∣
S

≡ 0,

for all r1, . . . , rk+1, s = 1, . . . ,m, all p = m + 1, . . . , n = dimM , and all indices α, β such that
Uα ∩ Uβ ∩ S �= ∅. In particular, we see that if S is k-splitting and (k − 1)-comfortably embedded
then we have an atlas U such that the changes of coordinates are of the form⎧⎪⎪⎨

⎪⎪⎩
zr
β =

m∑
s=1

(aβα)rs
(
z′′
α

)
zs
α + Rk+1, for r = 1, . . . ,m,

z
p
β = φ

p
βα

(
z′′
α

) + Rk+1, for p = m + 1, . . . , n,

where z′′
α = (zm+1

α , . . . , zn
α) are local coordinates on S, and Rk+1 denotes a term belonging

to I k+1
S , that is vanishing of order at least k + 1 along S. We remark that in the total space

of the normal bundle NS we can always find an atlas (the natural one induced by any adapted
atlas of M) with changes of coordinates of the form⎧⎪⎪⎨

⎪⎪⎩
zr
β =

m∑
s=1

(aβα)rs
(
z′′
α

)
zs
α, for r = 1, . . . ,m,

z
p
β = φ

p
βα

(
z′′
α

)
, for p = m + 1, . . . , n;

therefore we may say that the embedding of a k-splitting and (k − 1)-comfortably embedded
submanifold looks, up to order k, like its embedding into the normal bundle.

This is the reason why we were led to study the classical problem of comparing the em-
bedding of a submanifold S in a complex manifold M with the embedding of S in the normal
bundle NS as zero section. In particular, one would like to know when these two embeddings are
holomorphically equivalent, that is when there is a neighbourhood U of S in M biholomorphic
to a neighbourhood of the zero section in NS (in some sense, such a U would be a holomorphic
tubular neighbourhood of S in M). In most approaches to this problem (see, e.g., [3,7–9,11,12,
14,16–18,22] and references therein) the first step consists in showing that the two embeddings
are biholomorphic up to a finite order k (and we shall say that S is k-linearizable) if a suitable
cohomology class vanishes. Then one gives geometrical conditions ensuring the vanishing of all
the involved cohomology groups, and that if the two embeddings are formally isomorphic (that
is, biholomorphic up to any finite order) then they are actually biholomorphic.

The main result of this paper is a direct proof (see Theorem 4.1) of the fact that a complex
submanifold is k-linearizable in this sense if and only if it is k-splitting and (k − 1)-comfortably
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
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embedded. Combining this with our results on the existence of suitable local coordinates, we
are then able to explicitly write two cohomology classes providing the obstructions from k-
linearizable to (k +1)-linearizable. It should be remarked that most other authors (see, e.g., [11])
first gives this obstruction as a single cohomology class, and then use a formal argument to split
this class in two; our approach explains instead the geometrical meaning of the independent
vanishing of any of the two classes. Furthermore, our results hold for any codimension, and not
only in codimension one.

In Section 5 we exemplify our results in the case of a compact Riemann surface S embedded
in a complex surface M . In particular, we are able to recover results originally proved in [8] under
the slightly stronger assumption that S is fibered embedded into M (which implies, in particular,
that S is k-splitting for any k � 1).

Finally, Section 6 is devoted to a slightly different characterization of 1-comfortably embed-
ded submanifolds. In [1,2] we showed that the 1-comfortably embedded condition can be used to
define holomorphic connections on suitable vector bundles; here we show that a possible justifi-
cation for this phenomenon is that 1-comfortably embedded is exactly equivalent to the existence
of an infinitesimal holomorphic connection on NS .

1. Holomorphic splitting

Let us begin by recalling some general terminology on exact sequences of sheaves. We say
that an exact sequence of sheaves (of abelian groups, rings, modules. . . )

O −→ R ι−→ S p−→ T −→ O (1.1)

on a variety S splits if there is a morphism σ : T → S of sheaves (of abelian groups, rings,
modules. . . ) such that p ◦σ = id. Any such morphism is called a splitting morphism. It is easy to
see that (1.1) splits (as sequence of sheaves of modules) if and only if there exists a left splitting
morphism, that is a morphism of sheaves of modules τ : S → R such that τ ◦ ι = id. Furthermore,
for every splitting morphism σ there exists a unique left splitting morphism τ such that

ι ◦ τ + σ ◦ p = id. (1.2)

Following Grothendieck and Atiyah (see [4]), one can give a cohomological characterization
of splitting for sequences of locally free OS -modules defined over a complex manifold S.

Let E ′ and E ′′ be two sheaves of locally free OS -modules over the same complex manifold S.
An extension of E ′′ by E ′ is an exact sequence of locally free OS -modules

O −→ E ′ −→ E −→ E ′′ −→ O. (1.3)

If O → E ′ → Ẽ → E ′′ → O is another extension of E ′′ by E ′, one says that the two extensions
are equivalent if there is an isomorphism χ : E → Ẽ of OS -modules such that

O E ′ E
χ

E ′′ O

O E ′ Ẽ E ′′ O
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
(2008), doi:10.1016/j.aim.2008.10.001
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commutes. Almost by definition, an extension of E ′′ by E ′ splits if and only if it is equivalent to
the trivial extension O → E ′ → E ′ ⊕ E ′′ → E ′′ → O .

Applying the functor Hom(E ′′, ·) to the sequence (1.3) one gets the exact sequence

O −→ Hom(E ′′, E ′) −→ Hom(E ′′, E ) −→ Hom(E ′′, E ′′) −→ O. (1.4)

Let δ : H 0(S,Hom(E ′′, E ′′)) → H 1(S,Hom(E ′′, E ′)) be the connecting homomorphism in the
long exact cohomology sequence of (1.4). Then one can associate to the exact sequence (1.3) the
cohomology class

δ(idE ′′) ∈ H 1(S,Hom(E ′′, E ′)
)
.

This procedure gives a 1-to-1 correspondence between the cohomology group H 1(S,Hom(E ′′,
E ′)) and isomorphism classes of extensions of E ′′ by E ′ (see [4, Proposition 1.2]):

Proposition 1.1. Let S be a complex manifold, and E ′ and E ′′ two locally free OS -modules. Then
two extensions of E ′′ by E ′ are equivalent if and only if they correspond to the same cohomol-
ogy class in H 1(S,Hom(E ′′, E ′)). In particular, the exact sequence (1.3) splits if and only if it
corresponds to the zero cohomology class.

Let us now introduce the sheaves we are interested in. Let M be a complex manifold of
dimension n, and let S be a reduced, globally irreducible subvariety of M of codimension m � 1.
We denote: by OM the sheaf of germs of holomorphic functions on M ; by IS the subsheaf
of OM of germs vanishing on S; and by OS the quotient sheaf OM/IS of germs of holomorphic
functions on S. Furthermore, let TM denote the sheaf of germs of holomorphic sections of the
holomorphic tangent bundle T M of M , and ΩM the sheaf of germs of holomorphic 1-forms
on M . Finally, we shall denote by TM,S the sheaf of germs of holomorphic sections along S

of the restriction T M|S of T M to S, and by ΩM,S the sheaf of germs of holomorphic sections
along S of T ∗M|S . It is easy to check that TM,S = TM ⊗OM

OS and ΩM,S = ΩM ⊗OM
OS .

For k � 1 we shall denote by f 
→ [f ]k the canonical projection of OM onto OM/I k
S . The

cotangent sheaf ΩS of S is defined by

ΩS = ΩM,S/d2
(

IS/I 2
S

)
,

where d2 : OM/I 2
S → ΩM,S is given by d2[f ]2 = df ⊗[1]1. In particular, we have the conormal

sequence of sheaves of OS -modules associated to S:

IS/I 2
S

d2−→ΩM,S
p−→ΩS −→ O. (1.5)

Applying the functor HomOS
(·, OS) to the conormal sequence we get the normal sequence of

sheaves of OS -modules associated to S:

O −→ TS
ι−→ TM,S

p2−→ NS, (1.6)

where TS = HomOS
(ΩS, OS) is the tangent sheaf of S, NS = HomOS

(IS/I 2
S, OS) is the normal

sheaf of S, and p2 is the morphism dual to d2.
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
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The first condition we shall consider on the embedding of the variety S inside M is:

Definition 1.1. Let S be a reduced, globally irreducible subvariety of a complex manifold M . We
say that S splits into M if there exists a morphism of sheaves of OS -modules σ : ΩS → ΩM,S

such that p ◦ σ = id, where p : ΩM,S → ΩS is the canonical projection.

Remark 1.1. In the literature this notion has sometimes appeared under a different name; for
instance, Morrow and Rossi in [19] say that the embedding S → M is direct.

It is not difficult to see that splitting subvarieties must be smooth:

Proposition 1.2. Let S be a reduced, globally irreducible subvariety of a complex manifold M .
Assume that S splits in M . Then S is non-singular, and the morphism d2 : IS/I 2

S → ΩM,S is
injective.

Proof. Let us consider the sequence

O −→ K −→ ΩM,S
p−→ΩS −→ O,

where K = d2(IS/I 2
S) = Ker(p). This is a splitting exact sequence of OS -modules; let σ : ΩS →

ΩM,S be a splitting morphism, and choose any x ∈ S. Then σ((ΩS)x) is a direct addend of
the projective module (ΩM,S)x ; therefore σ((ΩS)x) is itself projective and thus, being OS,x

Noetherian, it is OS,x -free. But σ is an injective OS -morphism; therefore (ΩS)x itself is OS,x -
free for any x ∈ S.

Now, both ΩM,S and ΩS are coherent sheaves of OS -modules, and S is globally irreducible;
therefore ΩS is locally OS -free of constant rank r . Checking the rank at a point in the regular
part of S we see that r must be equal to the dimension of S, and hence [13, Theorem II.8.15] S is
non-singular, and [13, Theorem II.8.17] d2 is injective. �

In particular, when S splits into M the sequence

O −→ IS/I 2
S

d2−→ΩM,S
p−→ΩS −→ O (1.7)

is a splitting exact sequence of OS -modules, and we also have a left splitting morphism τ :
ΩM,S → IS/I 2

S .

Remark 1.2. If S splits into M then the normal sequence

O −→ TS
ι−→ TM,S

p2−→ NS −→ O (1.8)

is a splitting exact sequence of OS -modules too: a splitting morphism is the dual τ ∗ : NS → TM,S

of a left splitting morphism of (1.7). Conversely, if S is a (reduced) locally complete intersection
and (1.8) is exact, then S is non-singular (see, e.g., [21]) and so if moreover (1.8) splits then S

splits into M . There are examples of singular varieties for which (1.8) is exact (see again [21]);
we do not know whether there are singular varieties for which (1.8) is exact and splits.
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
(2008), doi:10.1016/j.aim.2008.10.001

Filippo Bracci
Barra

Filippo Bracci
Barra

Filippo Bracci
Testo sostitutivo
.




ARTICLE IN PRESS
JID:YAIMA AID:3134 /FLA [m1+; v 1.104; Prn:21/10/2008; 10:38] P.7 (1-37)

M. Abate et al. / Advances in Mathematics ••• (••••) •••–••• 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

The aim of this section is to describe several equivalent characterizations of splitting subva-
rieties. Most of them were already present in the literature; we collect them here because they
provide a template for the study of the more stringent conditions on the embedding of S into M

we shall study starting from the next section.

Definition 1.2. Let S be a reduced, globally irreducible subvariety of a complex manifold M .
For any k � h � 0 let θk,h : OM/I k+1

S → OM/I h+1
S be the canonical projection given by

θk,h[f ]k+1 = [f ]h+1; when h = 0 we shall write θk instead of θk,0. The kth infinitesimal neigh-
bourhood of S in M is the ringed space S(k) = (S, OM/I k+1

S ) together with the canonical
inclusion of ringed spaces ιk : S = S(0) → S(k) given by ιk = (idS, θk). We shall also set
OS(k) = OM/I k+1

S .

Definition 1.3. A kth order infinitesimal retraction is a morphism of ringed spaces r : S(k) → S

such that r ◦ ιk = id. A kth order infinitesimal retraction is given by a pair r = (idS, ρ), where ρ :
OS → OS(k) is a ring morphism such that θk ◦ρ = id. So, the existence of a kth order infinitesimal
retraction is equivalent to the existence of a splitting morphism for the exact sequence of sheaves
of rings

O −→ IS/I k+1
S −→ OS(k)

θk−→ OS −→ O. (1.9)

Such a splitting morphism is called a kth order lifting. More generally, for k � h � 0 we shall
say that S(k) retracts onto S(h) if there is a morphism of ringed spaces r : S(k) → S(h) such
that r ◦ ιh,k = id, where ιh,k = (idS, θk,h) : S(h) → S(k) is the natural inclusion.

Remark 1.3. It is easy to see that ρ([1]1) = [1]k+1 for any kth order lifting ρ : OS → OM/I k+1
S .

This is not an automatic consequence of ρ being a morphism of sheaves of rings but can be proved
as follows: from θk ◦ ρ = id we get [1]k+1 − ρ([1]1) ∈ IS/I k+1

S , that is ρ([1]1) = [1 + h]k+1 for
a suitable h ∈ IS . Now

[1 + h]k+1 = ρ
([1]1

) = ρ
([1]1

)
ρ
([1]1

) = [
(1 + h)2]

k+1 = [
1 + 2h + h2]

k+1,

and so [h + h2]k+1 = O . But [1 + h]k+1 is a unit in OS(k); therefore [h]k+1 = O , and ρ([1]1) =
[1]k+1.

Definition 1.4. Let O, R be sheaves of rings, θ : R → O a morphism of sheaves of rings, and
M a sheaf of O-modules. A θ -derivation of R in M is a morphism of sheaves of abelian groups
D : R → M such that

D(r1r2) = θ(r1) · D(r2) + θ(r2) · D(r1)

for any r1, r2 ∈ R. In other words, D is a derivation with respect to the R-module structure
induced via restriction of scalars by θ .

We can now state a first list of properties equivalent to splitting (see [20, Lemma 1.1] and [10,
Proposition 16.12] for proofs) including the existence of first order infinitesimal retractions:
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
(2008), doi:10.1016/j.aim.2008.10.001
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Proposition 1.3. Let S be a reduced, globally irreducible subvariety of a complex manifold M .
Then there is a 1-to-1 correspondence among the following classes of morphisms:

(a) morphisms σ : ΩS → ΩM,S of sheaves of OS -modules such that p ◦ σ = id;
(b) morphisms τ : ΩM,S → IS/I 2

S of sheaves of OS -modules such that τ ◦ d2 = id;
(c) derivations D : OM → IS/I 2

S such that D|IS
= π2|IS

;
(d) morphisms τM : ΩM → IS/I 2

S of sheaves of OM -modules such that d2 ◦ τM = π , where
π : ΩM → ΩM,S is the canonical projection;

(e) θ1-derivations ρ̃ : OS(1) → IS/I 2
S such that ρ̃ ◦ i1 = id, where i1 : IS/I 2

S ↪→ OS(1) is the
canonical inclusion and θ1 : OS(1) → OM/IS is the canonical projection;

(f) morphisms ρ : OS → OS(1) of sheaves of rings such that θ1 ◦ ρ = id.

In particular, S splits into M if and only if it admits a first order infinitesimal retraction. Finally,
if any (and hence all) of the classes (a)–(f) is not empty, then it is in 1-to-1 correspondence with
the following classes of morphisms too:

(g) morphisms τ ∗ : NS → TM,S of sheaves of OS -modules such that p2 ◦ τ ∗ = id;
(h) morphisms σ ∗ : TM,S → TS of sheaves of OS -modules such that ι ◦ σ ∗ = id.

We have already noticed that a splitting subvariety is necessarily non-singular; therefore we
can use differential geometric techniques to get another couple of characterizations of splitting
submanifolds.

Definition 1.5. Let S be a complex submanifold (not necessarily closed) of codimension m � 1 in
an n-dimensional complex manifold M , and let (Uα, zα) a chart of M . We shall systematically
write zα = (z1

α, . . . , zn
α) = (z′

α, z′′
α), with z′

α = (z1
α, . . . , zm

α ) and z′′
α = (zm+1

α , . . . , zn
α). We shall

say that (Uα, zα) is adapted to S if either Uα ∩S = ∅ or Uα ∩S = Uα ∩ S̄ = {z1
α = · · · = zm

α = 0}.
In particular, if (Uα, zα) is adapted to S then {z1

α, . . . , zm
α } is a set of generators of IS,x for

all x ∈ Uα ∩ S. An atlas U = {(Uα, zα)} of M is adapted to S if all its charts are; then US =
{(Uα ∩ S, z′′

α) | Uα ∩ S �= ∅} is an atlas for S. We shall say that an atlas {(Uα, zα)} adapted to S

is projectable if zα ∈ Uα implies (O ′, z′′
α) ∈ Uα ∩ S for any Uα such that Uα ∩ S �= ∅. Clearly,

every atlas adapted to S can be refined to a projectable adapted atlas.

Definition 1.6. Let S be a complex submanifold (not necessarily closed) of codimension m � 1
in an n-dimensional complex manifold M . The normal bundle NS of S in M is the quotient
bundle T M|S/T S; its dual is the conormal bundle N∗

S . If (Uα, zα) is a chart adapted to S, for
r = 1, . . . ,m we shall denote by ∂r,α the projection of ∂/∂zr

α|Uα∩S in NS , and by ωr
α the local

section of N∗
S induced by dzr

α|Uα∩S . Then {∂1,α, . . . , ∂m,α} and {ω1
α, . . . ,ωm

α } are local frames
over Uα ∩ S for NS and N∗

S respectively, dual to each other.

Remark 1.4. From now on, every chart and atlas we consider on M will be adapted to S. Fur-
thermore, we shall use Einstein convention on the sum over repeated indices. Indices like j , h, k

will run from 1 to n; indices like r , s, t , u, v will run from 1 to m; and indices like p, q will run
from m + 1 to n.
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
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Remark 1.5. If (Uα, zα) and (Uβ, zβ) are two adapted charts with Uα ∩ Uβ ∩ S �= ∅, then it is
easy to check that

∂zr
β

∂z
p
α

∣∣∣∣
S

≡ O (1.10)

for all r = 1, . . . ,m and p = m + 1, . . . , n.

Definition 1.7. Let U = {(Uα, zα)} be an adapted atlas for a complex submanifold S of codimen-
sion m � 1 of a complex n-dimensional manifold M . We say that U is a splitting atlas (see [1,2])
if

∂z
p
β

∂zr
α

∣∣∣∣
S

≡ O

for all r = 1, . . . ,m, p = m + 1, . . . , n and indices α, β such that Uα ∩ Uβ ∩ S �= ∅. In other
words, and recalling (1.10), the jacobian matrices of the changes of coordinates become block-
diagonal when restricted to S.

Definition 1.8. Let U = {(Uα, zα)} be an atlas adapted to S. If ρ : OS → OS(1) is a first order
lifting for S, we say U is adapted to ρ if

ρ
([f ]1

) = [f ]2 −
[

∂f

∂zr
α

zr
α

]
2

(1.11)

for all f ∈ O(Uα) and all indices α such that Uα ∩ S �= ∅.

In [2] we proved the following characterization of splitting submanifolds:

Proposition 1.4. Let S be a complex submanifold of codimension m � 1 of a n-dimensional
complex manifold M . Then:

(i) the cohomology class s ∈ H 1(S,Hom(ΩS, N ∗
S )) associated to the conormal exact sequence

is represented by the 1-cocycle {sβα} ∈ H 1(US,Hom(ΩS, N ∗
S )) given by

sβα = −∂zr
β

∂zs
α

∂z
p
α

∂zr
β

∣∣∣∣
S

ωs
α ⊗ ∂

∂z
p
α

∈ H 0(Uα ∩ Uβ ∩ S, N ∗
S ⊗ TS

)
,

where U = {(Uα, zα)} is an atlas adapted to S. In particular, S splits into M if and only if
s = O;

(ii) S splits into M if and only if there exists a splitting atlas for S in M;
(iii) an atlas adapted to S is splitting if and only if it is adapted to a first order lifting;
(iv) if S splits into M , then for any first order lifting there exists an atlas adapted to it.
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
(2008), doi:10.1016/j.aim.2008.10.001
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Remark 1.6. Assume that U = {(Uα, zα)} is a projectable atlas adapted to S. Then if f ∈ O(Uα)

we can write

f (zα) = f
(
O ′, z′′

α

) + ∂f

∂zr
α

(
O ′, z′′

α

)
zr
α + R2 = f

(
O ′, z′′

α

) + ∂f

∂zr
α

(zα)zr
α + R2,

where R2 denotes an element of I 2
S(Uα), possibly changing from one occurrence to the next.

From this formula it follows that U is adapted to a first order lifting ρ if and only if

ρ
([f ]1

) = f
(
O ′, z′′

α

) + R2

for every f ∈ O(Uα). In other words, U is a splitting atlas if and only if we can patch together
the trivial local liftings [f ]1 
→ [f (O ′, z′′

α)]2 so to get a global first order lifting.

Remark 1.7. Given a first order lifting ρ : OS → OM/I 2
S and an atlas U = {(Uα, zα)} adapted

to S, it is not difficult to check that U is adapted to ρ if and only if for every (Uα, zα) ∈ U with
Uα ∩ S �= ∅ and every f ∈ OM |Uα one has

ρ̃
([f ]2

) =
[

∂f

∂zr
α

zr
α

]
2
,

where ρ̃ : OS(2) → IS/I 2
S is the θ1-derivation associated to ρ by Proposition 1.3.

As mentioned in the introduction, one of the aims of our constructions will be the comparison
of the embedding of S into M with its embedding (as zero section) in the normal bundle. The
first result of this kind is our last characterization of splitting submanifolds:

Proposition 1.5. Let S be a submanifold of a complex manifold M . Then S splits into M if
and only if its first infinitesimal neighbourhood S(1) in M is isomorphic to its first infinitesimal
neighbourhood SN(1) in NS , where we are identifying S with the zero section of NS .

Proof. The main observation here is that if E is any vector bundle over S, then T E|S is canoni-
cally isomorphic to T S ⊕ E. When E = NS this implies that the projection T NS |S → NS on the
second direct summand induces an isomorphism NOS

→ NS , where NOS
is the normal bundle

of S (or, more precisely, of the zero section of NS ) in NS ; in particular, then, S always splits in NS

(see also Example 1.1 below). Furthermore, this isomorphism induces an isomorphism between
N ∗

S and N ∗
OS

, and thus an isomorphism of sheaves of OS -modules χ : IS,NS
/I 2

S,NS
→ IS/I 2

S ,
where IS,NS

is the ideal sheaf of S in NS .
By definition, an isomorphism between SN(1) and S(1) is given by an isomorphism of sheaves

of rings ψ : ONS
/I 2

S,NS
→ OM/I 2

S such that θ1 ◦ ψ = θN
1 , where θN

1 : ONS
/I 2

S,NS
→ OS is the

canonical projection.
If SN(1) and S(1) are isomorphic, we can define a morphism of sheaves of rings ρ : OS →

OM/I 2
S by setting ρ = ψ ◦ ρN , where ρN is the first order lifting induced by the splitting of S

in NS described above. Then it is easy to see that θ1 ◦ ρ = id, and thus S splits in M by Proposi-
tion 1.3.
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
(2008), doi:10.1016/j.aim.2008.10.001
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Conversely, assume that S splits in M , and let ρ : OS → OM/I 2
S be a first order lifting. Then

we can define a morphism ψ : ONS
/I 2

S,NS
→ OM/I 2

S by setting

ψ = ρ ◦ θN
1 + i1 ◦ χ ◦ ρ̃N ,

where ρ̃N is the θN
1 -derivation associated to the first order lifting ρN and i1 : IS/I 2

S → OM/I 2
S

is the canonical inclusion. Then it is not difficult to check that ψ is an isomorphism of sheaves
of rings such that θ1 ◦ ψ = θN

1 , and thus SN(1) and S(1) are isomorphic. �
Example 1.1. A local holomorphic retract is always split in the ambient manifold (and thus it
is necessarily non-singular). Indeed, if p : U → S is a local holomorphic retraction, then a first
order lifting ρ : OS → OM/I 2

S is given by ρ(f ) = [f ◦ p]2. In particular, the zero section of a
vector bundle always splits, as well as any slice S × {x} in a product M = S × X (with both S

and X non-singular, of course).

Example 1.2. If S is a Stein submanifold of a complex manifold M (e.g., if S is an open Riemann
surface), then S splits into M . Indeed, we have H 1(S, TS ⊗ N ∗

S ) = (O) by Cartan’s Theorem B,
and the assertion follows from Proposition 1.4.(i). In particular, if S is a singular curve in M then
the non-singular part of S always splits in M .

Example 1.3. Let S be a non-singular, compact, irreducible curve of genus g on a surface M . If
S · S < 4 − 4g then S splits into M . In fact, the Serre duality for Riemann surfaces implies that

H 1(S, TS ⊗ N ∗
S

) ∼= H 0(S,ΩS ⊗ ΩS ⊗ NS),

and the latter group vanishes because the line bundle T ∗S ⊗ T ∗S ⊗ NS has negative degree by
assumption. The bound S · S < 4 − 4g is sharp: for instance, a non-singular compact projective
plane conic S has genus g = 0 and self-intersection S ·S = 4, but it does not split in the projective
plane (see [19,20,23]).

Example 1.4. Let M be an algebraic surface embedded in Pn and let S be a section of M with an
hyperplane H , with the property that there exists a point P /∈ H belonging to each plane tangent
to M in points of S. Then S splits in M . In [5], the authors show a partial converse: if S splits
in M and the natural morphism H 0(S,ΩS) ⊗ H 0(Pn, OPn) → H 0(S,ΩS(1)) is injective, then
there exists a point P /∈ H belonging to each plane tangent to M in a point of S.

Example 1.5. Let S be a compact Riemann surface of genus g > 0, and φ : π1(S) → Diff0(C
n)

be a representation of the fundamental group of S into the group of germs of biholomorphisms
of C

n fixing the origin; assume that all the elements of the image of φ are convergent on some
polydisk Δ ⊆ C

n centered at the origin. If S̃ is the universal covering space of S, we shall also
identify π1(S) with the group of the automorphisms of the covering. The suspension M of the
representation φ is by definition the quotient of Δ × S̃ obtained identifying (z, p̃) and (w, q̃) if
and only if there exists γ ∈ π1(S) such that (w, q̃) = (ρ(γ )(z), γ · p̃). Then S embeds into M as
the 0-slice, that splits into M .

Other examples of splitting submanifolds are discussed in [2] and [15].
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
(2008), doi:10.1016/j.aim.2008.10.001
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2. k-splitting submanifolds

In the previous section we have seen that a complex submanifold S of a complex manifold M

splits into M if and only if the sequence

O −→ IS/I 2
S

ι1−→ OM/I 2
S

θ1−→ OM/IS −→ O (2.1)

splits as a sequence of sheaves of rings. This suggests a natural generalization:

Definition 2.1. Let S be a submanifold of a complex manifold M , and k � 1. We shall say that
S k-splits (or is k-splitting) into M if there is an infinitesimal retraction of S(k) onto S, that is if
there is a kth order lifting ρ : OS → OM/I k+1

S , or, in still other words, if the exact sequence

O −→ IS/I k+1
S ↪→ OM/I k+1

S

θk−→ OM/IS −→ O (2.2)

splits as sequence of sheaves of rings.

Remark 2.1. In [12, p. 373] a k-splitting submanifold is called k-transversely foliated.

The main result of this section is a characterization of k-splitting submanifolds along the lines
of Proposition 1.4. To state it, we need the analogue of Definitions 1.7 and 1.8:

Definition 2.2. Let U = {(Uα, zα)} be an adapted atlas for a complex submanifold S of codimen-
sion m � 1 of a complex n-dimensional manifold M , and let k � 1. We say that U is a k-splitting
atlas (see [1,2]) if

∂z
p
β

∂zr
α

∈ I k
S (2.3)

for all r = 1, . . . ,m, p = m + 1, . . . , n and indices α, β such that Uα ∩ Uβ ∩ S �= ∅.

Definition 2.3. We shall say that an atlas {(Uα, zα)} adapted to S is adapted to a kth order
lifting ρ : OS → OM/I k+1

S if

ρ[f ]1 =
k∑

l=0

(−1)l
1

l!
[

∂lf

∂z
r1
α · · · ∂z

rl
α

zr1
α · · · zrl

α

]
k+1

, (2.4)

for every f ∈ O(Uα) and all indices α such that Uα ∩ S �= ∅.

Then:

Theorem 2.1. Let S be an m-codimensional submanifold of an n-dimensional complex mani-
fold M . Then:

(i) S is k-splitting into M if and only if there exists a k-splitting atlas;
(ii) an atlas adapted to S is k-splitting if and only if it is adapted to a kth order lifting;
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
(2008), doi:10.1016/j.aim.2008.10.001
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(iii) a projectable atlas adapted to S is k-splitting if and only if the local kth order liftings

ρα

([f ]1
) = f

(
O ′, z′′

α

) + I k+1
S (2.5)

patch together to define a global kth order lifting;
(iv) if S is k-splitting into M then every kth order lifting admits an atlas adapted to it.

Proof. Let U = {(Uα, zα)} be a projectable adapted atlas, and f ∈ O(Uα); first of all we would
like to prove that

ρα

([f ]1
) =

k∑
l=0

(−1)l
1

l!
[

∂lf

∂z
r1
α · · · ∂z

rl
α

zr1
α · · · zrl

α

]
k+1

. (2.6)

Let us proceed by induction on k. For k = 1 we have already proved this in Remark 1.7; so
assume that (2.6) holds for k − 1. Then we can write

ρα

([f ])1 = [f ]k+1 −
k∑

j=1

1

j !
[

∂jf

∂z
r1
α · · · ∂z

rj
α

(
O ′, z′′

α

)
zr1
α · · · zrj

α

]
k+1

= [f ]k+1 −
k∑

j=1

1

j !
k−j∑
h=0

(−1)h
1

h!
[

∂j+hf

∂z
r1
α · · · ∂z

rj+h
α

zr1
α · · · zrj+h

α

]
k+1

= [f ]k+1 −
k∑

l=1

(
l−1∑
h=0

(−1)h
l!

h!(l − h)!

)
1

l!
[

∂lf

∂z
r1
α · · · ∂z

rl
α

zr1
α · · · zrl

α

]
k+1

=
k∑

l=0

(−1)l
1

l!
[

∂lf

∂z
r1
α · · · ∂z

rl
α

zr1
α · · · zrl

α

]
k+1

,

as claimed. In particular, the right-hand side of (2.6) is a ring morphism, and to get (ii) it suffices
to prove (iii).

Let U = {(Uα, zα)} be a projectable atlas adapted to S, and assume there is 0 � l � k such that

∂z
p
β

∂zr
α

∈ I l
S

for all r = 1, . . . ,m and p = m + 1, . . . , n, which is equivalent to assuming that

∂lz
p
β

∂z
r1
α · · · ∂z

rl
α

∈ IS

for all r1, . . . , rl = 1, . . . ,m and all p = m + 1, . . . , n. Then it easy to prove by induction on l

that we can write

zp
α(zβ) = φ

p (
z′′) + h

p
r ···r (zβ)z

r1 · · · zrl+1 (2.7)
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
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for suitable φ
p
αβ ∈ O(Uα ∩ Uβ ∩ S) and h

p
ra...rl+1 ∈ O(Uα ∩ Uβ), symmetric in the lower indices;

clearly, φβα ◦ φαβ = id.
To simplify the understanding of the subsequent computations, we shall explicitly use the

local chart ϕα : Uα → C
n associated to (Uα, zα). Now let (Uα, zα) and (Uβ, zβ) ∈ U such that

Uα ∩ Uβ ∩ S �= ∅; we need to evaluate ρβ([f ]1) − ρα([f ]1). First of all we have

ρβ

([f ]1
) − ρα

([f ]1
) = f ◦ ϕ−1

β

(
O ′, z′′

β

) − f ◦ ϕ−1
α

(
O ′, z′′

α

) + I k+1
S

= f ◦ ϕ−1
β

(
O ′, z′′

β

) − f ◦ ϕ−1
β

(
ϕβ ◦ ϕ−1

α

(
O ′,

(
ϕα ◦ ϕ−1

β

)′′
(zβ)

)) + I k+1
S .

Now, (2.7) yields

ϕβ ◦ ϕ−1
α

(
O ′,

(
ϕα ◦ ϕ−1

β

)′′
(zβ)

) = (
O ′, φβα

(
φαβ

(
z′′
β

) + hr1···rl+1(zβ)z
r1
β · · · zrl+1

β

))
and

φβα

(
φαβ

(
z′′
β

) + hr1···rl+1(zβ)z
r1
β · · · zrl+1

β

) = z′′
β + ∂φβα

∂z
p
α

(
φαβ

(
z′′
β

))
h

p
r1···rl+1(zβ)z

r1
β · · · zrl+1

β + Rl+2

= z′′
β + ∂z′′

β

∂z
p
α

(
O ′, z′′

α

)
h

p
r1···rl+1(zβ)z

r1
β · · · zrl+1

β + Rl+2,

where, here and elsewhere, Rj denotes a term with elements in I j
S . Therefore we get

ρβ

([f ]1
) − ρα

([f ]1
) = −∂z

q
β

∂z
p
α

h
p
r1···rl+1(zβ)z

r1
β · · · zrl+1

β

∂f

∂z
q
β

+ Rl+2 + I k+1
S

= −h
p
r1···rl+1(zβ)z

r1
β · · · zrl+1

β

∂f

∂z
p
α

+ Rl+2 + I k+1
S .

In particular, if l = k we get ρα ≡ ρβ , and thus if U is a k-splitting atlas we get a global kth
order lifting, proving one direction in (i), (ii) and (iii). Conversely, if l < k then ρα �≡ ρβ , and
thus we obtain the other direction in (ii) and (iii).

For later use, we explicitly remark that if l = k − 1 then

ρβ − ρα = −h
p
r1···rk

∣∣
S

∂

∂z
p
α

⊗ [
z
r1
β · · · zrk

β

]
k+1 ∈ H 0(Uα ∩ Uβ ∩ S, TS ⊗ I k

S/I k+1
S

)
. (2.8)

Furthermore, it is easy to see that

h
p
r1···rk

∣∣
S

= 1

k!
∂z

p
α

∂z
r1
β · · · ∂z

rk
β

∣∣∣∣
S

. (2.9)

Now, let us assume that we have a kth order lifting ρ : OS → OM/I k+1
S ; we claim that there

exists an atlas adapted to ρ. This will yield (iv) and the missing direction in (i), completing the
proof.

We shall argue by induction on k. For k = 1 the assertion follows from Proposition 1.4. Now
let k > 1. Then ρ1 = θk,k−1 ◦ ρ is a (k − 1)th order lifting; let U = {(Uα, zα)} be a (necessarily
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
(2008), doi:10.1016/j.aim.2008.10.001

Original text:
Inserted Text:
explicitely

Original text:
Inserted Text:
explicitely

Filippo Bracci
Nota
Accepted impostata da Filippo Bracci

Filippo Bracci
Nota
Accepted impostata da Filippo Bracci



ARTICLE IN PRESS
JID:YAIMA AID:3134 /FLA [m1+; v 1.104; Prn:21/10/2008; 10:38] P.15 (1-37)

M. Abate et al. / Advances in Mathematics ••• (••••) •••–••• 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

(k − 1)-splitting) projectable atlas adapted to ρ1. Define local kth order liftings ρα as in (2.5),
and set σα = ρ − ρα . Now

θk,k−1 ◦ σα = ρ1 − θk,k−1 ◦ ρα ≡ O,

because the atlas is adapted to ρ1; therefore the image of σα is contained in I k
S/I k+1

S . The latter
is an OS -module; we claim that σα : OS |Uα∩S → I k

S/I k+1
S |Uα∩S is a derivation. Indeed,

σα(fg) = ρ(f )ρ(g) − ρα(f )ρα(g) = ρ(f )(ρ − ρα)(g) + ρα(g)(ρ − ρα)(f )

= f · σα(g) + g · σα(f ),

because σα(f ), σα(g) ∈ I k
S/I k+1

S , and uv = θk(u) · v for all u ∈ OM/I k+1
S and v ∈ I k

S/I k+1
S .

Hence we can find (sα)
p
r1···rk ∈ O(Uα ∩ S), symmetric in the lower indices, such that

σα = (sα)
p
r1···rk

∂

∂z
p
α

⊗ [
zr1
α · · · zrk

α

]
k+1.

Now, by construction σα − σβ = ρβ − ρα ; therefore (2.8) yields

h
p
s1···sk

∂z
s1
β

∂z
r1
α

· · · ∂z
sk
β

∂z
rk
α

+ (sα)
p
r1···rk − ∂z

p
α

∂z
q
β

(sβ)
q
s1···sk

∂z
s1
β

∂z
r1
α

· · · ∂z
sk
β

∂z
rk
α

∈ IS,

and then

h
p
s1···sk−1r

∂z
s1
β

∂z
r1
α

· · · ∂z
sk−1
β

∂z
rk−1
α

+ (sα)
p
r1···rk

∂z
rk
α

∂zr
β

− ∂z
p
α

∂z
q
β

(sβ)
q
s1···sk−1r

∂z
s1
β

∂z
r1
α

· · · ∂z
sk−1
β

∂z
rk−1
α

∈ IS. (2.10)

Let us then consider the change of coordinates

{
ẑr
α = zr

α,

ẑp
α = zp

α + (sα)
p
r1···rk

(
z′′
α

)
zr1
α · · · zrk

α ,

defined in suitable open sets Ûα ⊆ Uα ; we claim that {(Ûα, ẑα)} is the atlas we are looking for.
Indeed, we have

∂ẑ
p
α

∂ẑr
β

= ∂ẑ
p
α

∂zs
β

∂zs
β

∂ẑr
β

+ ∂ẑ
p
α

∂z
q
β

∂z
q
β

∂ẑr
β

= ∂ẑ
p
α

∂zr
β

+ ∂ẑ
p
α

∂z
q
β

∂z
q
β

∂ẑr
β

= ∂z
p
α

∂zr
β

+ k

[
(sα)

p
r1···rk zr1

α · · · zrk−1
α

∂z
rk
α

∂zr
β

− ∂z
p
α

∂z
q
β

(sβ)
q
s1···sk−1rz

s1
β · · · zsk−1

β

]
+ Rk.

Now, (2.7) with l = k − 1 yields

∂z
p
α

∂zr
= kh

p
s1···sk−1rz

s1
β · · · zsk−1

β + Rk,
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and so

∂ẑ
p
α

∂ẑr
β

= k

[
h

p
s1···sk−1rz

s1
β · · · zsk−1

β + (sα)
p
r1···rk zr1

α · · · zrk−1
α

∂z
rk
α

∂zr
β

− ∂z
p
α

∂z
q
β

(sβ)
q
s1···sk−1rz

s1
β · · · zsk−1

β

]
+ Rk

= k

[
h

p
s1···sk−1r

∂z
s1
β

∂z
r1
α

· · · ∂z
sk−1
β

∂z
rk−1
α

+ (sα)
p
r1···rk

∂z
rk
α

∂zr
β

− ∂z
p
α

∂z
q
β

(sβ)
q
s1···sk−1r

∂z
s1
β

∂z
r1
α

· · · ∂z
sk−1
β

∂z
rk−1
α

]
zr1
α · · · zrk−1

α + Rk

= Rk ∈ I k
S

thanks to (2.10), where we used the fact that z
rk
α = (∂z

rk
α /∂zr

β)zr
β + R2.

Finally, we should check that {(Ûα, ẑα)} is adapted to ρ. But indeed (2.8) applied with ẑα

instead of zβ yields

f
(
O ′, ẑ′′

α

) − f
(
O ′, z′′

α

) = (sα)
p
r1···rk zr1

α · · · zrk
α

∂f

∂z
p
α

+ Rk+1 = σα(f ) + Rk+1;

hence

ρ
([f ]1

) = ρα

([f ]1
) + σα

([f ]1
) = f

(
O ′, ẑ′′

α

) + I k+1
S ,

and the assertion follows from (2.6). �
Remark 2.2. In particular, there is an infinitesimal retraction of S(k) onto S if and only if there
is an atlas {(Uα, zα)} adapted to S whose coordinates changes are of the form

{
zr
β = (aβα)rs (zα)zs

α for r = 1, . . . ,m,

z
p
β = φ

p
αβ

(
z′′
α

) + Rk+1 for p = m + 1, . . . , n,

which, roughly speaking, says that a neighbourhood of M is a fiber bundle over S up to or-
der k. The jets of the vector fields ∂

∂zr
α

in TM ⊗ OS(k), for r = 1, . . . ,m, generate an infinitesimal
foliation Fk , i.e., an involutive submodule of TM ⊗ OS(k).

We explicitly compute the obstruction, predicted by [12, Proposition 1.6], for passing from
(k − 1)-split to k-split:

Proposition 2.2. Let S be an m-codimensional submanifold of an n-dimensional complex
manifold M . Assume that S is (k − 1)-splitting in M; let ρk−1 : OS → OM/I k

S be a
(k − 1)th order lifting, and {(Uα,ϕα)} a (k − 1)-splitting atlas adapted to ρk−1. Let gk ∈
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H 1(S,Hom(ΩS, I k
S/I k+1

S )) be the cohomology class represented by the 1-cocycle {(gk)βα} ∈
H 1(US,Hom(ΩS, I k

S/I k+1
S )) given by

(gk)βα = − 1

k!
∂kz

p
α

∂z
r1
β · · · ∂z

rk
β

∣∣∣∣
S

∂

∂z
p
α

⊗ [
z
r1
β · · · zrk

β

]
k+1 ∈ H 0(Uα ∩ Uβ ∩ S, TS ⊗ I k

S/I k+1
S

)
.

Then there exists a kth order lifting ρk : OS → OM/I k+1
S such that ρk−1 = θk−ρk,k ◦ ρk if and

only if gk = O .

Proof. One direction follows from the previous theorem, (2.8) and (2.9). Conversely, if gk = O

up to shrinking the Uα we can find (sα)
p
r1···rk ∈ O(Uα ∩ S) such that setting

σα = (sα)
p
r1···rk

∂

∂z
p
α

⊗ [
zr1
α · · · zrk

α

]
k+1

we get (gk)βα = σα − σβ . Then arguing as in the last part of the proof of the previous theorem
we find a k-splitting atlas, and we are done. �
3. Comfortably embedded submanifolds

The sequence (2.2) is only one of the possible natural generalizations of (2.1). Another, ap-
parently as natural, generalization is the sequence

O −→ I 2
S/I 3

S ↪→ OM/I 3
S

θ2,1−→ OM/I 2
S −→ O; (3.1)

the splitting (as sequence of sheaves of rings) of this exact sequence is equivalent to the existence
of an infinitesimal retraction of S(2) onto S(1). Surprisingly enough, this cannot ever happen:

Proposition 3.1. Let S be a reduced, globally irreducible subvariety of a complex manifold M ,
and take k > h � 1. Assume there is an infinitesimal retraction of S(k) onto S(h); then

⌈
(k + 1)/2

⌉
< h + 1

(where �x� is the smallest integer greater than or equal to x). In particular, there are no infinites-
imal retractions of S(k) onto S(1) for any k � 2.

Proof. For any 1 � l � h consider the following commutative diagram with exact rows and
columns
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O O

O I h+1
S /I k+1

S I l
S/I k+1

S

θk,h

I l
S/I h+1

S O

O I h+1
S /I k+1

S OM/I k+1
S

θk,l−1

θk,h

OM/I h+1
S

θh,l−1

O

OM/I l
S OM/I l

S

O O

.

By assumption, we have a morphism of sheaves of rings ρ : OM/I h+1
S → OM/I k+1

S such
that θk,h ◦ ρ = id. Composing with θh,l−1 on the left we get

θh,l−1 = θh,l−1 ◦ θk,h ◦ ρ = θk,l−1 ◦ ρ.

This implies that ρ(I l
S/I h+1

S ) ⊆ I l
S/I k+1

S : indeed, if u ∈ I l
S/I h+1

S we have θk,l−1(ρ(u)) =
θh,l−1(u) = O , and hence ρ(u) ∈ I l

S/I k+1
S .

Now, if u ∈ I l
S/I h+1

S we have ur = O as soon as r � (h + 1)/ l. Therefore if r � (h + 1)/ l

we have

O = ρ(ur) = ρ(u)r ∈ I l
S/I k+1

S

for all u ∈ I l
S/I h+1

S . But since S is reduced, we have vr = O in I l
S/I k+1

S if and only if
v ∈ I p

S /I k+1
S with p � (k + 1)/r . Therefore if �(k + 1)/r� � h + 1 we have ρ(I l

S/I h+1
S ) ⊆

I h+1
S /I k+1

S , and thus θk,h ◦ ρ|I l
S/I h+1

S
≡ O , impossible; therefore, �(k + 1)/r� < h + 1.

Now, the largest value of �(k + 1)/r� is attained for the lowest value of r ; and since r �
(h+1)/ l, the lowest value of r is 2, attained taking l = h. Therefore we get �(k +1)/2� < h+1,
as claimed. �

The lesson suggested by the previous proof is that if one would like to study the splitting
of sequences of sheaves of rings like (3.1), it is important to take care of what happens in the
nilpotent part of the rings, that is in the sheaves I h

S /I k
S . We observe that the sheaf I k

S/I k+1
S is

isomorphic to the symmetric power Symk(N ∗
S ) of the conormal sheaf, and thus it naturally is

an OS -module. The main new idea of this section is that when S is k-splitting then the sheaf
IS/I k+1 too has a canonical structure of OS -module:
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Proposition 3.2. Let S be a complex submanifold of codimension m of a complex manifold M ,
and let ρ : OS → OM/I k+1

S be a kth order lifting, with k � 0. Then for any 1 � h � k + 1 the

lifting ρ induces a structure of locally OS -free module on IS/I h+1
S so that the sequence

O −→ I h
S /I h+1

S ↪→ IS/I h+1
S

θh,h−1−→ IS/I h
S −→ O (3.2)h

becomes an exact sequence of locally OS -free modules.

Proof. We shall work by induction on k. For k = 0 there is nothing to prove; so let us assume
that the assertion holds for k − 1. As we already remarked, for any h � 1 the sheaf I h

S /I h+1
S

has a natural structure of locally free OS -module. The kth order lifting ρ induces a (k − 1)-
order lifting ρ1 = θk,k−1 ◦ ρ; therefore by induction for 1 � h � k we have a structure of locally
free OS -module on IS/I h+1

S so that all the (3.2)h become exact sequences of locally free OS -
modules. Now, IS/I k+2

S naturally is a OM/I k+1
S -module; we can then endow it with the OS -

module structure obtained by restriction of the scalars via ρ:

v · [h]k+2 = ρ(v) · [h]k+2,

for all v ∈ OS and h ∈ IS , where in the right-hand side we are using the OM/I k+1
S -module

operation. Since ρ is a ring morphism and (by Remark 1.4) ρ[1]1 = [1]k+1, we get a well-
defined structure of OS -module on IS/I k+2

S . We must verify that the inclusion ι : I k+1
S /I k+2

S ↪→
IS/I k+2

S and the projection θk+1,k are OS -module morphisms when I k+1
S /I k+2

S has its own
OS -structure and IS/I k+1

S has the OS -structure induced by ρ1 by induction.
Given v ∈ OS , choose f ∈ OM such that v = [f ]1, and f I ∈ IS so that ρ(v) = [f + f I ]k+1.

Then for all g ∈ I k+1
S we have

ι
(
v · [g]k+2

) = ι
([fg]k+2

) = [fg]k+2 = [(
f + f I )

g
]
k+2 = ρ(v) · [g]k+2 = v · ι[g]k+2,

and ι is an OS -morphism.
Analogously, if g ∈ IS we have

θk+1,k

(
v · [g]k+2

) = θk+1,k

[
fg + f I g

]
k+2 = [

fg + f I g
]
k+1 = ρ1(v) · [g]k+1

= v · θk+1,k[g]k+2,

and θk+1,k is an OS -morphism.
Finally, since (by induction) IS/I k+1

S and I k+1
S /I k+2

S are locally OS -free, IS/I k+2
S is locally

OS -free too, and we are done. �
Remark 3.1. If {(Uα, zα)} is an atlas adapted to a kth order lifting ρ : OS → OM/I k+1

S , it is easy
to see that {[zr

α]h+1, [zr1
α z

r2
α ]h+1, . . . , [zr1

α · · · zrh
α ]h+1} is a local free set of generators of IS/I h+1

S

over OS for h = 1, . . . , k + 1.

We are thus led to the following generalization of the notion of comfortably embedded sub-
manifolds introduced in [1,2]:
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Definition 3.1. Let S be a (not necessarily closed) submanifold of a complex manifold M ,
and let ρ : OS → OM/I k+1

S be a kth order lifting, with k � 1. A comfortable splitting se-
quence ν associated to ρ is a (k + 1)-uple ν = (ν0,1, . . . , νk,k+1), where for 1 � h � k + 1
each νh−1,h : IS/I h

S → IS/I h+1
S is a splitting OS -morphism of the sequence (3.2)h with respect

to the OS -module structures induced by ρ. A pair (ρ,ν), where ρ is a kth order lifting and ν is a
comfortable splitting sequence associated to ρ, is called a k-comfortable pair for S in M . We say
that S is k-comfortably embedded in M with respect to ρ if it exists a k-comfortable pair (ρ,ν)

for S in M .

Remark 3.2. The choice of a k-comfortable pair (ρ,ν) fixes an isomorphism of OS -modules

OM/I k+1
S

∼= OS ⊕ IS/I 2
S ⊕ I 2

S/I 3
S ⊕ · · · ⊕ I k

S/I k+1
S .

The computation of the cohomology class associated to the exact sequence (3.2)h is not too
difficult:

Proposition 3.3. Let S be a complex submanifold of codimension m of a complex manifold M ,
and let ρ : OS → OM/I k+1

S be a kth order lifting. Choose a projectable atlas U = {(Uα, zα)}
adapted to ρ. Then the 1-cocycle {hρ

βα} ∈ H 1(US,Hom(IS/I k+1
S , I k+1

S /I k+2
S )) given by

h
ρ
βα

([
zt1
α · · · zth

α

]
k+1

) = − 1

(k + 1)!
∂z

s1
β

∂z
r1
α

· · · ∂z
sk+1
β

∂z
rk+1
α

∂k+1(z
t1
α · · · zth

α )

∂z
s1
β · · · ∂z

sk+1
β

∣∣∣∣
S

[
zr1
α · · · zrk+1

α

]
k+2 (3.3)

for 1 � t1, . . . , th � m and 1 � h � k, represents the class hρ ∈ H 1(S,Hom(IS/I k+1
S ,

I k+1
S /I k+2

S )) associated to the exact sequence

O → I k+1
S /I k+2

S → IS/I k+2
S → IS/I k+1

S → O, (3.4)

where IS/I k+1
S and IS/I k+2

S have the OS -module structure induced by ρ.

Proof. We can define local splittings να : IS/I k+1
S |Uα → IS/I k+2

S |Uα by setting

να

[
zt1
α · · · zth

α

]
k+1 = [

zt1
α · · · zth

α

]
k+2

and extending by OS -linearity; since U is adapted to ρ, Theorem 2.1 implies that each να is a
well-defined morphism of OS -modules.

Now, for any f ∈ OM we can write

f
(
z′
β, z′′

β

) = f
(
O ′, z′′

β

) +
k+1∑
j=1

1

j !
∂jf

∂z
s1
β · · · ∂z

sj
β

(
O ′, z′′

β

)
z
s1
β · · · zsj

β + Rk+2, (3.5)

where Rk+2 ∈ I k+2
S . In particular, Theorem 2.1(iii) implies

[h]k+2 =
k+1∑ 1

j !ρ
([

∂jh

∂z
s1 · · · ∂z

sj

]
1

)
· [zs1

β · · · zsj
β

]
k+2,
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for all h ∈ IS , and

[f ]k+1 = ρ
([f ]1

) +
k∑

j=1

1

j !ρ
([

∂jf

∂z
s1
β · · · ∂z

sj
β

]
1

)[
z
s1
β · · · zsj

β

]
k+1 (3.6)

for all f ∈ OM .
Using these formulas we easily see that

h
ρ
βα

([
zt1
α · · · zth

α

]
k+1

) = νβ

([
zt1
α · · · zth

α

]
k+1

) − να

([
zt1
α · · · zth

α

]
k+1

)
= νβ

([
zt1
α · · · zth

α

]
k+1

) − [
zt1
α · · · zth

α

]
k+2

= − 1

(k + 1)!
[

∂k+1(z
t1
α · · · zth

α )

∂z
s1
β · · · ∂z

sk+1
β

]
1

[
z
s1
β · · · zsk+1

β

]
k+2

= − 1

(k + 1)!
∂z

s1
β

∂z
r1
α

· · · ∂z
sk+1
β

∂z
rk+1
α

∂k+1(z
t1
α · · · zth

α )

∂z
s1
β · · · ∂z

sk+1
β

∣∣∣∣
S

[
zr1
α · · · zrk+1

α

]
k+2,

as claimed. �
Corollary 3.4. Let S be a (k − 1)-comfortably embedded submanifold of a complex manifold M ,
and let (ρ1,ν1) be a (k−1)-comfortable pair. Assume that we have a kth order lifting ρ such that
θk,k−1 ◦ ρ = ρ1. Then the sequence ν1 extends to a comfortable splitting sequence ν associated
to ρ if and only if the class hρ ∈ H 1(S,Hom(IS/I k+1

S , I k+1
S /I k+2

S )) vanishes.

We can characterize k-comfortably embedded submanifolds using adapted atlases.

Definition 3.2. Let S be a complex submanifold of codimension m in a complex n-dimensional
manifold M , and let k � 1. A k-comfortable atlas is an atlas {(Uα, zα)} adapted to S such that

∂z
p
β

∂zr
α

∈ I k
S and

∂2zr
β

∂z
s1
α ∂z

s2
α

∈ I k
S (3.7)

for all r , s1, s2 = 1, . . . ,m, all p = m + 1, . . . , n and all indices α, β such that Uα ∩ Uβ ∩ S �= ∅.
In particular, a k-comfortable atlas is always k-splitting.

Definition 3.3. Let S be a k-comfortably embedded submanifold of codimension m of a complex
manifold M , and (ρ,ν) a k-comfortable pair for S in M . We shall say that an atlas {(Uα, zα)}
adapted to S is adapted to (ρ,ν) if it is adapted to ρ and

νh−1,h

([
zr
α

]
h

) = [
zr
α

]
h+1

for all 1 � h � k + 1, 1 � j � h − 1 and 1 � r � m.

The following result, in particular, recovers the original definition of 1-comfortably embedded
submanifold introduced in [1,2]:
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Theorem 3.5. Let S be an m-codimensional submanifold of an n-dimensional complex mani-
fold M . Then:

(i) S is k-comfortably embedded into M if and only if there exists a k-comfortable atlas;
(ii) an atlas adapted to S is k-comfortable if and only if it is adapted to a k-comfortable pair;

(iii) if S is k-comfortably embedded into M then every k-comfortable pair admits a k-
comfortable atlas adapted to it.

Proof. First of all, notice that (3.7) implies that

∂lz
p
β

∂z
r1
α · · ·∂z

rl
α

∈ I k−l+1
S and

∂lzr
β

∂z
r1
α · · ·∂z

rl
α

∈ I k−l+2
S (3.8)

for all 2 � l � k + 1, r , r1, . . . , rl = 1, . . . ,m, p = m + 1, . . . , n and indices α, β such that Uα ∩
Uβ ∩ S �= ∅. In particular, if there exists a k-comfortable atlas then Theorem 2.1, Proposition 3.3
and Proposition 1.1 imply that S is k-comfortably embedded, and that the atlas is adapted to a
k-comfortable pair.

To prove the rest of the theorem, we shall work by induction on k. For k = 0 there is nothing
to prove; so we assume that the statement holds for k − 1, and that there exists a k-comfortable
pair (ρ,ν) for S. We must prove that it exists an atlas adapted to (ρ,ν), and that this atlas is
necessarily k-comfortable.

Let ρ1 = θk,k−1 ◦ ρ and ν1 = (ν0,1, . . . , νk−1,k); clearly, (ρ1,ν1) is a (k − 1)-comfortable pair
for S in M . The induction hypothesis then provides us with a (k−1)-comfortable atlas U adapted
to (ρ1,ν1); arguing as in the proof of Theorem 2.1 we can moreover modify this atlas to get a
new projectable k-splitting and (k − 1)-comfortable atlas (still denoted by U) adapted to ρ and
to (ρ1,ν1). We must now show how to modify U so to get an atlas adapted to (ρ,ν), and to prove
that such an atlas is necessarily k-comfortable.

The first observation is that from ∂2zr
β/∂zs

α∂zt
α ∈ I k−1

S we get

zr
β = ∂zr

β

∂zs
α

∣∣∣∣
S

zs
α + hr

s1···sk+1
zs1
α · · · zsk+1

α + Rk+2 (3.9)

for suitable functions hr
s1···sk+1

∈ O(Uα ∩ Uβ ∩ S) symmetric in the lower indices. Notice that
hr

s1···sk+1
≡ 0 if and only if U is k-comfortable.

From (3.9) we derive three identities that will be useful later:

∂zr
β

∂zs
α

= ∂zr
β

∂zs
α

∣∣∣∣
S

+ (k + 1)hr
s1···skt z

s1
α · · · zsk

α + Rk+1,

∂zr
β

∂z
s1
α ∂z

s2
α

= k(k + 1)hr
r1···rk−1s1s2

zr1
α · · · zrk−1

α + Rk,

zs
α = ∂zs

α

∂zr
β

∣∣∣∣
S

zr
β − ∂zs

α

∂zr
β

hr
s1···sk+1

∂z
s1
α

∂z
r1
β

· · · ∂z
sk+1
α

∂z
rk+1
β

∣∣∣∣
S

z
r1
β · · · zrk+1

β + Rk+2. (3.10)

In particular it follows that
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[
zs1
α · · · zsj

α

]
h

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂z
s1
α

∂z
r1
β

· · · ∂z
sj
α

∂z
rj
β

∣∣
S

· [zr1
β · · · zrj

β ]h
if 1 � h � k + 2, 1 � j � h − 1, and (j, h) �= (1, k + 2),

∂z
s1
α

∂z
r1
β

∣∣
S

· [zr1
β ]k+2 − ∂z

s1
α

∂zr
β
hr

t1...tk+1

∂z
t1
α

∂z
r1
β

· · · ∂z
tk+1
α

∂z
rk+1
β

∣∣
S

· [zr1
β · · · zrk+1

β ]k+2,

if j = 1 and h = k + 2.

Now for every index α such that Uα ∩ S �= ∅ define νk,k+1;α : IS/I k+1
S |Uα → IS/I k+2

S |Uα by
setting

νk,k+1;α
([

zs1
α · · · zsj

α

]
k+1

) = [
zs1
α · · · zsj

α

]
k+2

and then extending by OS -linearity. The previous computations imply that

νk,k+1;β
([

zs1
α · · · zsj

α

]
k+1

) − νk,k+1;α
([

zs1
α · · · zsj

α

]
k+1

)
=

{
∂z

s1
α

∂zr
β

∣∣
S
hr

r1···rk+1
· [zr1

α · · · zrk+1
α ]k+2 if j = 1,

0 if 2 � j � k.

In particular, U is adapted to (ρ,ν) if and only if hr
r1···rk+1

≡ 0, if and only if U is k-comfortable.

Now set σα = νk,k+1 − νk,k+1;α ; since θk+1,k ◦ σα = O , it follows that Imσα ⊆ I k+1
S /I k+2

S .
In particular, there are (cα)sr1···rk+1

∈ O(Uα ∩ S), symmetric in the lower indices, such that

σα

([
zs
α

]
k+1

) = (cα)sr1···rk+1
· [zr1

α · · · zrk+1
α

]
k+2.

Since σα − σβ = νk,k+1;β − νk,k+1;α , we get

∂zs
α

∂zr
β

∣∣∣∣
S

hr
r1···rk+1

· [zr1
α · · · zrk+1

α

]
k+2

=
[
(cα)sr1···rk+1

− ∂zs
α

∂zr
β

(cβ)rs1···sk+1

∂z
s1
β

∂z
r1
α

· · · ∂z
sk+1
β

∂z
rk+1
α

∣∣∣∣
S

]
· [zr1

α · · · zrk+1
α

]
k+2,

that is

hr
r1···rk+1

+ (cβ)rt1...tk+1

∂z
t1
β

∂z
r1
α

· · · ∂z
tk+1
β

∂z
rk+1
α

− ∂zr
β

∂zt
α

(cα)tr1···rk+1
∈ IS. (3.11)

We are finally ready to modify U. We define new coordinates ẑα by setting

{
ẑr
α = zr

α + (cα)rs1···sk+1

(
z′′
α

)
z
s1
α · · · zsk+1

α for r = 1, . . . ,m,

ẑ
p
α = z

p
α for p = m + 1, . . . , n,

on suitable Ûα ⊆ Uα . We claim that Û = {(Ûα, ẑα)} is as desired. First of all, it is easy to see that

∂ẑ
p
β

r
= ∂z

p
β

r
+ Rk,
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and so Û is still k-splitting and adapted to ρ. A quick computation shows that

∂2ẑr
β

∂ẑ
s1
α ∂ẑ

s2
α

= ∂2zt
α

∂ẑ
s1
α ∂ẑ

s2
α

∂ẑr
β

∂zt
α

+ ∂z
t1
α

∂ẑ
s1
α

∂z
t2
α

∂ẑ
s2
α

∂2ẑr
β

∂z
t1
α ∂z

t2
α

,

and hence

∂2ẑr
β

∂ẑ
s1
α ∂ẑ

s2
α

= ∂2zr
β

∂z
s1
α ∂z

s2
α

+ k(k + 1)

[
(cβ)rt1...tk+1

∂z
t1
β

∂z
r1
α

· · · ∂z
tk−1
β

∂z
rt−1
α

∂z
tk
β

∂z
s1
α

∂z
tk+1
β

∂z
s2
α

− ∂zr
β

∂zt
α

(cα)tr1···rk−1s1s2

]
zr1
α · · · zrk−1

α + Rk ∈ I k
S

as desired, thanks to (3.10) and (3.11).
Finally, it is easy to check that Û is adapted to (ρ,ν). Indeed, if we define σ̂α by using Û

instead of U, the previous calculations can be used to show that σα − σ̂α = σα , and thus σ̂α = O ,
which means exactly (recalling the induction hypothesis) that Û is adapted to (ρ,ν). �
Remark 3.3. In other words, S is k-comfortably embedded into M if and only if there is an
atlas {(Uα, zα)} adapted to S whose changes of coordinates are of the form

{
zr
β = (aβα)rs

(
z′′
α

)
zs
α + Rk+2 for r = 1, . . . ,m,

z
p
β = φ

p
αβ

(
z′′
α

) + Rk+1 for p = m + 1, . . . , n.
(3.12)

As a corollary of the previous theorem, we are able to characterize the obstruction for passing
from (k − 1)-comfortably embedded to k-comfortably embedded:

Corollary 3.6. Let S be an m-codimensional k split submanifold of an n-dimensional complex
manifold M and assume that there exists a kth order lifting ρ : OS → OM/I k+1

S such that S is
(k − 1)-comfortably embedded in M with respect to ρ1 = θk,k−1 ◦ ρ. Fix a (k − 1)-comfortable
pair (ρ1,ν1), and let U = {(Uα, zα)} be a projectable atlas adapted to ρ and (ρ1,ν1). Then
the cohomology class hρ associated to the exact sequence (3.4) is represented by the 1-cocycle
{h̃ρ

βα} ∈ H 1(US, NS ⊗ I k+1
S /I k+2

S ) given by

h̃
ρ
βα = − 1

(k + 1)!
∂z

s1
β

∂z
r1
α

· · · ∂z
sk+1
β

∂z
rk+1
α

∂k+1zt
α

∂z
s1
β · · · ∂z

sk+1
β

∣∣∣∣
S

∂t,α ⊗ [
zr1
α · · · zrk+1

α

]
k+2. (3.13)

Thus S is k-comfortably embedded (with respect to ρ) if and only if hρ = O in H 1(S, NS ⊗
Symk+1(N ∗

S )).

Proof. The (k − 1)-comfortable pair (ρ1,ν1) induces a canonical splitting

IS/I k+1
S

∼=
k⊕

I h
S /I h+1

S ;
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therefore the class hρ associated to the sequence (3.4) and computed in Proposition 3.3 lives in

H 1(S,Hom
(

IS/I k+1
S , I k+1

S /I k+2
S

)) ∼=
k⊕

h=1

H 1(S,Hom
(

I h
S /I h+1

S , I k+1
S /I k+2

S

))
.

The expression of hρ given in (3.3) clearly reflects this decomposition. Now, (3.8) implies that

∂lzr
α

∂z
r1
β · · · ∂z

rl
β

∈ IS

for all 2 � l � k. Therefore (3.3) shows that the only non-zero component of hρ is the one
contained in

H 1(S,Hom
(

IS/I 2
S, I k+1

S /I k+2
S

)) ∼= H 1(S, NS ⊗ I k+1
S /I k+2

S

) ∼= H 1(S, NS ⊗ Symk+1(N ∗
S

))
,

and its expression is given by (3.13). �
Recalling Proposition 2.2, we then see that the obstruction for passing from (k − 1)-split to k-

split lives in H 1(S, TS ⊗Symk(N ∗
S )), while the obstruction for passing from (k−1)-comfortably

embedded to k-comfortably embedded lives in H 1(S, NS ⊗ Symk+1(N ∗
S )). Now, a vanishing

theorem due to Grauert ([11, Hilfssatz 1]; see also [7]) says that if NS is negative in the sense of
Grauert (that is, the zero section of NS can be blown down to a point) then these groups vanish
for k large enough. We thus obtain the following

Corollary 3.7. Let S be an m-codimensional compact complex submanifold of an n-dimensional
manifold M , and assume that NS is negative in the sense of Grauert. Then there exists a k0 � 1
such that if S is k0-splitting (respectively, k0-comfortably embedded) in M then it is k-splitting
(respectively, k-comfortably embedded) for all k � k0.

A similar result can also be obtained assuming instead that NS is positive in a suitable sense;
see [9,12,16,17,22].

Remark 3.4. At present we do not know whether a submanifold which is k-comfortably embed-
ded with respect to a given kth order lifting is k-comfortably embedded with respect to any kth
order lifting.

We end this section with some examples of k-split and k-comfortably embedded submani-
folds. We refer to Section 5 for a more detailed study of k-split and k-comfortably embedded
curves in a surface.

Example 3.1. The zero section of a vector bundle is always k-split and k-comfortably embedded
in the total space of the bundle for any k � 1: indeed, any atlas trivializing the bundle satisfies

∂z
p
β

∂zr
α

≡ ∂2zr
β

∂zs
α∂zt

α

≡ 0.
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Example 3.2. A local holomorphic retract is always k-split in the ambient manifold. Indeed, if
p : U → S is a local holomorphic retraction, then a kth order lifting ρ : OS → OM/I k+1

S is given
by ρ(f ) = [f ◦ p]k+1.

Example 3.3. If S is a Stein submanifold of a complex manifold M (e.g., if S is an open Riemann
surface), then S is k-split and k-comfortably embedded into M for any k � 1. Indeed, by Cartan’s
Theorem B the first cohomology group of S with coefficients in any coherent sheaf vanishes, and
the assertion follows from Propositions 1.1, 2.2 and 3.3. In particular, if S is a singular curve in
M then the non-singular part of S is always comfortably embedded in M .

Example 3.4. Let M̃ be the blow-up of a submanifold X in a complex manifold M . Then the
exceptional divisor E ⊂ M̃ is k-split and k-comfortably embedded in M̃ for any k � 1: indeed,
it is easy to check that the atlas of M̃ induced by an atlas of M adapted to X is a k-comfortable
atlas for any k � 1.

4. Embeddings in the normal bundle and k-linearizable submanifolds

Proposition 1.5 suggests a third way of generalizing the notion of splitting submanifold:

Definition 4.1. Let S be a complex submanifold of a complex manifold M . We shall say that
S is k-linearizable if its kth infinitesimal neighbourhood S(k) in M is isomorphic to its kth
infinitesimal neighbourhood SN(k) in NS , where we are identifying S with the zero section
of NS .

We have seen that S splits into M if and only if it is 1-linearizable (Proposition 1.5). In
general, however, k-split does not imply k-linearizable (while the converse hold). The missing
link is provided by the notion of (k − 1)-comfortably embedded:

Theorem 4.1. Let S be a complex submanifold of a complex manifold M , and k � 2. Then S is
k-linearizable if and only if it is k-split and (k − 1)-comfortably embedded (with respect to the
(k − 1)th order lifting induced by the k-splitting).

Proof. We shall denote by IS,N the ideal sheaf of S in NS , and by θN
h,k : ONS

/I h+1
S,N →

ONS
/I k+1

S,N the canonical projections. Notice that S is k-split and k-comfortably embedded in NS

for any k � 1, by, for instance, Example 3.1; we shall denote by ρN
k : OS → ONS

/I k+1
S,N and

νN
k−1,k : IS,N/I k

S,N → IS,N/I k+1
S,N the corresponding morphisms.

We shall work by induction on k. We have already seen that SN(1) ∼= S(1) implies that S

is 1-split. Suppose now that SN(k − 1) ∼= S(k − 1) implies that S is (k − 1)-split and (k − 2)-
comfortably embedded, and assume that SN(k) ∼= S(k). Let ψ : ONS

/I k+1
S,N → OM/I k+1

S be a

ring isomorphism such that θk ◦ ψ = θN
k . The gist of the proof is contained in the following

commutative diagrams:
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
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O IS,N/I k+1
S,N

ψ

ONS
/I k+1

S,N

ψ

θN
k

OS

ρN
k

O

O IS/I k+1
S OM/I k+1

S

θk

OS
ρk

O,

O I k
S,N/I k+1

S,N

ψ

IS,N/I k+1
S,N

ψ

θN
k,k−1

IS,N/I k
S,N

νN
k−1,k

ψ̂

O

O I k
S/I k+1

S IS/I k+1
S

θk,k−1

IS/I k
S

νk−1,k

O.

First of all, we define ρk = ψ ◦ ρN
k . As in the proof of Proposition 1.5, we see that this is a

ring morphism such that θk ◦ ρk = id, and so S is k-split in M .
Now, θk ◦ ψ = θN

k implies that ψ(Ker θN
k ) ⊆ Ker θk , that is ψ(IS,N/I k+1

S,N ) ⊆ IS/I k+1
S . Since

ψ is a ring isomorphism, it induces a ring isomorphism (still denoted by ψ ) between the nilpo-
tent parts of the two rings, IS,N/I k+1

S,N and IS/I k+1
S , and thus, by restriction, a ring isomorphism

between I k
S,N/I k+1

S,N and I k
S/I k+1

S . Therefore it also induces a quotient ring isomorphism ψ̂

between ONS
/I k

S,N and OM/I k
S such that θk−1 ◦ ψ̂ = θN

k−1, and thus SN(k − 1) ∼= S(k − 1).

Furthermore, ψ̂ sends IS,N/I k
S,N into IS/I k

S so that ψ̂ ◦ θN
k,k−1 = θk,k−1 ◦ ψ . This restriction

of ψ̂ is an isomorphism of OS -modules: indeed

ψ̂
(
u · [h]k

) = ψ̂
(
ρN

k−1(u)[h]k
) = ψ̂

(
θN
k,k−1

(
ρN

k (u)[h]k+1
)) = [

ψ
(
ρN

k (u)
)
ψ[h]k+1

]
k

= [
ρk(u)ψ[h]k+1

]
k
= ρk−1(u)ψ̂

([h]k
) = u · ψ̂([h]k

)
for all u ∈ OS and h ∈ IS,N , where ρN

k−1 = θN
k,k−1 ◦ ρN

k and ρk−1 = θk,k−1 ◦ ρk .

We then define νk−1,k = ψ ◦νN
k−1,k ◦ ψ̂−1; we claim that νk−1,k is a morphism of OS -modules

such that θk,k−1 ◦ νk−1,k = id. Indeed,

νk−1,k

(
u · [h]k

) = ψ ◦ νN
k−1,k ◦ ψ̂−1(u · [h]k

) = ψ ◦ νN
k−1,k

(
u · ψ̂−1([h]k

))
= ψ

(
u · (νN

k−1,k ◦ ψ̂−1)([h]k
)) = ψ

(
ρN

k (u)
(
νN
k−1,k ◦ ψ̂−1)([h]k

))
= ψ

(
ρN

k (u)
)(

ψ ◦ νN
k−1,k ◦ ψ̂−1)([h]k

) = ρk(u)νk−1,k

([h]k
)

= u · νk−1,k

([h]k
)

for all u ∈ OS and h ∈ IS . Finally, θk,k−1 ◦ νk−1,k = ψ̂ ◦ θN
k,k−1 ◦ νN

k−1,k ◦ ψ̂−1 = id, and hence S

is (k − 1)-comfortably embedded in M , as claimed.
Conversely, assume that S is k-split and (k − 1)-comfortably embedded. Since we shall use

different maps, let us write the involved commutative diagrams:
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O IS,N/I k+1
S,N

ψk

ONS
/I k+1

S,N

ψ

θN
k

OS

ρN
k

O

O IS/I k+1
S OM/I k+1

S

θk

OS
ρk

O,

O I l
S,N/I l+1

S,N

χl

IS,N/I l+1
S,N

ψl

ν̃N
l−1,l

θN
l,l−1

IS,N/I l
S,N

νN
l−1,l

ψl−1

O

O I l
S/I l+1

S IS/I l+1
S

θl,l−1

ν̃N
l−1,l

IS/I l
S

νl−1,l

O.

In the proof of Proposition 1.5 we defined an OS -module isomorphism χ : IS,N/I 2
S,N →

IS/I 2
S ; since I l

S/I l+1
S = Syml (IS/I 2

S), and likewise for I l
S,N/I l+1

S,N , we get for all l � 1 an

OS -module isomorphism χl : I l
S,N/I l+1

S,N → I l
S/I l+1

S . We claim that for all 1 � l � k we can

define a ring and OS -module isomorphism ψl : IS,N/I l+1
S,N → IS/I l+1

S so that the above diagram
commutes.

We argue by induction on l. For l = 1, it suffices to take ψ1 = χ . Assume now that we have
defined ψl−1, and let

ψl = νl−1,l ◦ ψl−1 ◦ θN
l,l−1 + χl ◦ ν̃N

l−1,l ,

where ν̃N
l−1,l is the left splitting morphism associated to νN

l−1,l . It is easy to check that ψl is
invertible, with inverse given by

(
ψl

)−1 = νN
l−1,l ◦ (

ψl−1)−1 ◦ θl,l−1 + (
χl

)−1 ◦ ν̃l−1,l ,

where ν̃l−1,l is the left splitting morphism associated to νl−1,l . Since all the maps involved are
OS -module morphisms, ψl is a OS -module morphism; we are left to show that ψl is a ring
morphism. Using the definition, it is easy to see that ψl is a ring morphism if and only if

ν̃l−1,l

((
νl−1,l ◦ ψl−1)(u)

(
νl−1,l ◦ ψl−1)(v)

) = χl ◦ ν̃N
l−1,l

(
νN
l−1,l(u)νN

l−1,l(v)
)
, (4.1)

for all u, v ∈ IS,N/I l
S,N .

To prove (4.1), we work in local coordinates. Let (U, z) be a chart in a (k − 1)-comfortable
atlas, so that we have νi−1,i[zr1 · · · zra ]i = [zr1 · · · zra ]i+1 for all i = 1, . . . , l, a = 1, . . . , l − 1
and r1, . . . , ra = 1, . . . ,m. The chart (U, z) induces a chart (Ũ , z̃) in a (k − 1)-comfortable atlas
of NS , with z̃ = (v, z′′), where v = (v1, . . . , vm) are the fiber coordinates. Then we have χ[vr ]2 =
[zr ]2, and thus

χi
[
vr1 · · ·vri

] = [
zr1 · · · zri

]
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for all i = 1, . . . , k. From this and the fact that ν̃N
i−1,i ([vr ]i+1) = O for all i = 1, . . . , k and r =

1, . . . ,m, it follows easily that ψi([vr ]i+1) = [zr ]i+1 for all i = 1, . . . , l − 1 and r = 1, . . . ,m.
Now take u, v ∈ IS,N/I l

S,N ; we can write

u =
l−1∑
a=1

αr1···ra · [vr1 · · ·vra
]
l

and u =
l−1∑
b=1

βs1···sb · [vs1 · · ·vsb
]
l

for suitable αr1···ra , βs1···sb ∈ OS . Then

χl ◦ ν̃N
l−1,l

(
νN
l−1,l(u)νN

l−1,l(v)
) =

∑
a+b=l

αr1···raβs1···sb · [zr1 · · · zra zs1 · · · zsb
]
l+1.

Using the fact that ψl−1 is a ring morphism and an OS -morphism we also find

(
νl−1,l ◦ ψl−1)(u) =

l−1∑
a=1

αr1···ra · [zr1 · · · zra
]
l+1 and

(
νl−1,l ◦ ψl−1)(v) =

l−1∑
b=1

βs1···sb · [zs1 · · · zsb
]
l+1,

and hence

ν̃l−1,l

((
νl−1,l ◦ ψl−1)(u)

(
νl−1,l ◦ ψl−1)(v)

) =
∑

a+b=l

αr1···raβs1···sb · [zr1 · · · zra zs1 · · · zsb
]
l+1,

as claimed.
So in particular we have proved that ψk : IN,S/I k+1

N,S → IS/I k+1
S is a ring and OS -module

isomorphism. Let us then define ψ : ONS
/I k+1

S,N → OM/I k+1
S by

ψ = ρk ◦ θN
k + ψk ◦ ρ̃N

k ,

where as usual ρ̃N
k is the derivation associated to ρN

k . It is easy to check that θk ◦ ψ = θN
k , and

that ψ is invertible; we are left to show that it is a ring morphism.
If u, v ∈ ONS

/I k+1
S,N we can write u = ρN

k (uo)+ ρ̃N
k (u), with uo = θN

k (u); so ψ(u) = ρk(uo)+
ψk

(
ρ̃N

k (u)
)
; and analogously for v. Therefore

uv = ρN
k (uo)ρ

N
k (vo) + [

ρN
k (uo)ρ̃

N
k (v) + ρN

k (vo)ρ̃
N
k (u) + ρ̃N

k (u)ρ̃N
k (v)

]
= ρN

k (uo)ρ
N
k (vo) + [

uo · ρ̃N
k (v) + vo · ρ̃N

k (u) + ρ̃N
k (u)ρ̃N

k (v)
]
,

and thus

ψ(uv) = ρk(uovo) + ψk
(
uo · ρ̃N

k (v) + vo · ρ̃N
k (u) + ρ̃N

k (u)ρ̃N
k (v)

)
= ρk(uo)ρk(vo) + uo · ψk

(
ρ̃N

k (v)
) + vo · ψk

(
ρ̃N

k (u)
) + ψk

(
ρ̃N

k (u)
)
ψk

(
ρ̃N

k (v)
)

= ψ(u)ψ(v). �
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Thus a submanifold S is k-linearizable if and only if there is an atlas {(Uα, zα)} adapted to S

whose changes of coordinates are of the form

{
zr
β = (aβα)rs

(
z′′
α

)
zs
α + Rk+1 for r = 1, . . . ,m,

z
p
β = φ

p
αβ

(
z′′
α

) + Rk+1 for p = m + 1, . . . , n.

Remark 4.1. Camacho, Movasati and Sad in [8] defined a k-linearizable curve as a complex
curve S in a complex manifold M for which there exists an atlas adapted to S whose changes of
coordinates are of the form{

zr
β = (aβα)rs

(
z′′
α

)
zs
α + Rk+1 for r = 1,

z
p
β = φ

p
αβ

(
z′′
α

)
for p = 2, . . . , n;

they dropped the remainder term in the z′′
α variables only because they were interested in curves

with a neighbourhood fibered by (n − 1)-dimensional disks. As a consequence, our notion of
2-linearizable curves (or submanifolds) is strictly weaker than the notion of 2-linearizable curves
used in [8].

Recalling Proposition 2.2 and Corollary 3.6 we see that the obstructions for passing
from (k − 1)-linearizable to k-linearizable live in H 1(S, TS ⊗ Symk(N ∗

S )) and, for k � 2,
in H 1(S, NS ⊗ Symk(N ∗

S )). Using again Grauert’s vanishing theorem [11, Hilfssatz 1, p. 344]
we get

Corollary 4.2. Let S be an m-codimensional compact complex submanifold of an n-dimensional
manifold M , and assume that NS is negative in the sense of Grauert. Then there exists a k0 � 1
such that if S is k0-linearizable then it is k-linearizable for all k � k0.

Again, we can get similar results also assuming suitable positivity conditions on NS ; see
[9,12,16,17,22]. Furthermore, in the next section we shall be able to compute the number k0 for
curves in a complex surface.

Remark 4.2. When S is a hypersurface in M , and thus NS is a line bundle, we actually have found
that the obstructions to k-linearizability live in H 1(S, TS ⊗ (N ∗

S )⊗k) and in H 1(S, (N ∗
S )⊗k−1),

in accord with Grauert’s theory (see, again, [11] and [7]).

Remark 4.3. It is important to remark that the isomorphisms between S(k) and SN(k) obtained
in the previous corollary are compatible in the sense that if k′ > k then the restriction to S(k)

of the isomorphism between S(k′) and SN(k′) induces the given isomorphism between S(k)

and SN(k). In some sense, we have obtained an isomorphism between the formal neighbour-
hood of S in M and the formal neighbourhood of S in NS . Grauert [11] and others have given
conditions ensuring that such a formal isomorphism extends to a biholomorphism between an
actual neighbourhood of S in M to an actual neighbourhood of S in NS . In particular, applying
Grauert’s formal principle (see [7, Theorem 4.3]) we recover Grauert’s result:

Corollary 4.3. (See Grauert [11].) Let S be a compact complex hypersurface of an n-
dimensional manifold M . Assume that NS is negative in the sense of Grauert, and that S is
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
(2008), doi:10.1016/j.aim.2008.10.001
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exceptional in M (that is, it can be blown down to a point). Then there exists a k0 � 1 such that if
S is k0-linearizable then a neighbourhood of S in M is biholomorphic to a neighbourhood of S

in NS .

Remark 4.4. A compact Riemann surface S in a complex surface M is exceptional if and only
if its self-intersection S · S is negative, if and only if its normal bundle is negative in the sense of
Grauert; see [7].

Remark 4.5. The formal principle holds in several other instances too (but not always). For
instance, using [9,12,16,17,22] we can get a statement analogous to Corollary 4.3 assuming
suitable positivity conditions on NS (and arbitrary codimension).

Remark 4.6. Let S be a submanifold of a complex manifold M and denote by g : S → M the
inclusion. Then one of these cases hold:

(a) S is k-linearizable in M for all k � 1.
(b) S is k-split in M for all k � 1, but there exist mg � 1 and a mg-splitting ρ such that

S is not mg-comfortably embedded in M but it is (mg − 1)-comfortably embedded. In
this case, we can associate to the embedding S → M a non-zero cohomology class hρ ∈
H 1(S, NS ⊗ I mg+1

S /I mg+2
S ).

(c) there exists an integer kg � 1 such that S is not k-split in M , but it is (k − 1)-splitting. In
this case, given any fixed (kg − 1)-splitting ρ, we can associate to the embedding S → M

a non-zero cohomology class gkg ∈ H 1(S, TS ⊗ I kg

S /I kg+1
S ). Furthermore, we can choose

1 � mg � kg − 1 so that S is (mg − 1)-comfortably embedded (with respect to the lifting
induced by ρ) in M but not mg-comfortably embedded in M , and hence we get a non-zero

cohomology class hρ ∈ H 1(S, NS ⊗ I mg+1
S /I mg+2

S ).

It is clear by the construction that if two different embeddings of the same submanifold S have
biholomorphic neighbourhoods then the integers and the cohomology classes constructed above
must be the same in both cases. It would be interesting to know other invariants. For instance,
a consequence of Corollary 4.3 and Remark 4.4 is that two infinitely linearizable (in the sense
of Remark 4.3) embeddings of a compact Riemann surface with negative self-intersection in a
complex surface always have biholomorphic neighbourhoods. However, as far as we know, even
for curves with negative self-intersection in case (b) other invariants beside mg and hρ are not
yet known.

5. Embeddings of a smooth curve

In this section we shall use Serre duality to describe sufficient conditions for a compact curve
in a complex surface to be k-split, k-comfortably embedded and/or k-linearizable.

Let S be a non-singular, compact, irreducible curve of genus g on a surface M . In particular,
NS is a line bundle; therefore Symk(N ∗

S ) ∼= (N ∗
S )⊗k for all k � 1, and the obstruction for passing

from (k−1)-split to k-split lives in H 1(S, TS ⊗ (N ∗
S )⊗k). The Serre duality for Riemann surfaces

implies that

H 1(S, TS ⊗ (
N ∗)⊗k) ∼= H 0(S,ΩS ⊗ ΩS ⊗ N ⊗k

)
.
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Now,

deg
(
ΩS ⊗ ΩS ⊗ N ⊗k

S

) = 4g − 4 + k(S · S);
therefore

k(S · S) < 4 − 4g ⇒ H 1(S, TS ⊗ (
N ∗

S

)⊗k) = (O). (5.1)

It follows in particular that if g � 1 and S ·S < 4−4g, or g = 0 and S ·S � 0, then S is k-splitting
in M for every k � 1.

The obstruction for a split curve to be 1-comfortably embedded is in H 1(S, NS ⊗ (N ∗
S )⊗2) ∼=

H 1(S, N ∗
S ). Serre duality yields

H 1(S, N ∗
S

) ∼= H 0(S,ΩS ⊗ NS);
so, since deg(ΩS ⊗ NS) = 2g − 2 + S · S, we get

S · S < 2 − 2g ⇒ H 1(S, NS ⊗ (
N ∗

S

)⊗2) = (O). (5.2)

In particular, if g � 1 and S · S < 4 − 4g or g = 0 and S · S < 2 then S is (splitting and) 1-
comfortably embedded.

More generally, assume that S is k-split and (k − 1)-comfortably embedded. The obstruction
for S to be k-comfortably embedded lives in H 1(S, NS ⊗ (N ∗

S )⊗k+1) ∼= H 1(S, (N ∗
S )⊗k). Then

using Serre duality as before we find

k(S · S) < 2 − 2g ⇒ H 1(S, NS ⊗ (
N ∗

S

)⊗k+1) = (O). (5.3)

In particular, if g � 1 and S ·S < 2−2g then k-splitting implies k-comfortably embedded, while
if g = 0 and S · S � 0 then S is k-comfortably embedded for all k � 1.

We can summarize the content of our computations in the following

Proposition 5.1. Let S be a non-singular, compact, irreducible curve of genus g in a surface M .
Then:

(i) if g � 1 and S · S < 4 − 4g then S is k-split into M for all k � 1;
(ii) if g � 1 and S · S < 2 − 2g then S k-split implies S k-comfortably embedded into M for

any k � 1; in particular, if g � 1 and S · S < 4 − 4g then S is k-linearizable for all k � 1;
(iii) if g = 0 and S · S � 0 then S is k-linearizable for all k � 1;
(iv) if g = 0 and S · S � 1 then S is 3-split and 1-comfortably embedded into M;
(v) if g = 0 and S · S � 3 then S splits into M .

Remark 5.1. Proposition 5.1(ii) has been proved in a slightly different way in [8], where S was
assumed to be fibered imbedded into M (and thus, in particular, k-split for all k � 1).

Another way of looking at (5.1) and (5.3) yields the following

Proposition 5.2. Let S be a non-singular, compact, irreducible curve of genus g � 1 in a sur-
face M . Then:
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
(2008), doi:10.1016/j.aim.2008.10.001
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(i) if S · S < 0 and S is k0-splitting for some k0 > (4g − 4)/|S · S| then S is k-splitting for all
k � k0;

(ii) if S ·S < 0 and S is k0-comfortably embedded for some k0 > (2g−2)/|S ·S| then k-splitting
implies k-comfortably embedded for any k � k0;

(iii) if S · S < 0 and S is k0-linearizable for some k0 > (4g − 4)/|S · S| then S is k-linearizable
for all k � k0.

Recalling Remarks 4.3 and 4.4, we can apply Grauert’s formal principle [7, Theorem 4.3] to
recover, among other things, results due to Laufer and Camacho, Movasati and Sad:

Corollary 5.3. Let S be a non-singular, compact, irreducible curve of genus g in a surface M

with negative self-intersection S · S < 0. If

(a) g = 0, or
(b) g � 1, S is k0-split and k1-comfortably embedded for some k0 > (4g − 4)/|S · S| and k1 >

(2g − 2)/|S · S|, or
(c) (see Laufer [18, Chapter VI]) g � 1 and S · S < 4 − 4g, or
(d) (see [8]) g � 1, S · S < 2 − 2g and S is k0-split for some k0 > (4g − 4)/|S · S|,

then a neighbourhood of S in M is biholomorphic to a neighbourhood of the zero section of NS .

6. Another characterization of split and comfortably embedded submanifolds

In [2] we used the 1-comfortably embedded condition to build partial holomorphic connec-
tions on the normal bundle, and we wondered why this condition appeared to be the right one
for such constructions. In this section we give an answer of sort to this question, showing that
a submanifold is 1-comfortably embedded if and only if it exists an infinitesimal holomorphic
connection on the normal bundle.

Let us begin with a definition.

Definition 6.1. Let S be a complex subvariety of a complex manifold M . The sheaf of holomor-
phic differentials on S(1) is given by

ΩS(1) = ΩM/
(

I 2
SΩM + dI 2

S

);
its dual TS(1) = HomOS(1)

(ΩS(1), OS(1)), where OS(1) = OM/I 2
S as usual, is the holomorphic

tangent sheaf of S(1). The map d(1) : OS(1) → ΩS(1) given by d(1)([f ]2) = π1(df ), where π1 :
ΩM → ΩS(1) is the natural projection, is the canonical differential. We refer to [18, Chapter VI]
for properties of differentials on an analytic space with nilpotents.

Proposition 1.3 yields a characterization of splitting manifolds in terms of ΩS(1):

Proposition 6.1. Let S be a submanifold of a complex manifold M . Then S splits into M if and
only if there exists a surjective OS(1)-morphism

X(1) : ΩS(1) → IS/I 2
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such that X(1) ◦d(1) ◦ i1 = id, where i1 : IS/I 2
S → OM/I 2

S is the natural inclusion. Furthermore,
if ρ : OS → OS(1) is a first order lifting, and ρ̃ : OS(1) → IS/I 2

S is the associated left splitting
morphism, then ρ̃ = X(1) ◦ d(1).

Proof. By Proposition 1.3, S splits in M if and only if there exists a θ1-derivation ρ̃ : OS(1) →
IS/I 2

S such that ρ̃ ◦ i1 = id.
Assuming ρ̃ given, the universal property of differentials yields a OS(1)-morphism X(1) :

ΩS(1) → IS/I 2
S such that X(1) ◦ d(1) = ρ̃; in particular, X(1) ◦ d(1) ◦ i1 = id.

Conversely, given X(1) then ρ̃ = X(1) ◦ d(1) is a θ1-derivation such that ρ̃ ◦ i1 = id, and thus S

splits into M . �
To give the announced characterization of 1-comfortably embedded submanifolds we need a

last definition and a last proposition.

Definition 6.2. Let S be a submanifold of a complex manifold M . Assume that S splits in M

and denote by X(1) : ΩS(1) → IS/I 2
S the OS(1)-morphism associated to the choice of a first order

lifting by Proposition 6.1. An infinitesimal normal connection along X(1) on a OS(1)-module E
on S is a C-linear map X̃(1) : E → IS/I 2

S ⊗OS(1)
E satisfying the Leibniz rule

X̃(1)(gs) = X(1)

(
d(1)(g)

) ⊗ s + gX̃(1)(s)

for all local sections g of OS(1) and s of E .

Remark 6.1. Any locally free OS -module E can be considered as a locally free OS(1)-module
endowing it with the structure obtained by restriction of the scalars via the first order lifting ρ.
However, for the application we have in mind we shall need a locally free OS(1)-module which
is not obtained in this way.

Remark 6.2. In this section, indices like a, b, c, d will run from 1 to rk(E ).

Proposition 6.2. Let S be a submanifold of a complex manifold M . Assume that S splits in M ,
with first order lifting ρ : OS → OS(1) and associated OS(1)-morphism X(1) : ΩS(1) → N ∗

S . Let
E be a locally free OS(1)-module on S. Then the obstruction to the existence of an infinitesimal
normal connection on E along X(1) is the class δρ(E ) ∈ H 1(S, IS/I 2

S ⊗ End(E )) represented, in
an atlas U = {(Uα, zα)} adapted to ρ and trivializing E , by the 1-cocycle

[
(Φβα)ca

]
2

[
∂(Φαβ)dc

∂zr
α

zr
α

]
2
⊗ e∗a

β ⊗ ed,β,

where eb,α (for b = 1, . . . , rk E ) is a local frame for E over Uα ∩ S, e∗b
α is the dual frame, and

[(Φαβ)bc ]2 ∈ OS(1) are the transition functions of E .

Proof. Let X̃(1) : E → IS/I 2
S ⊗OS

E be an infinitesimal normal connection along X(1), and
define an element ηb

c,α ∈ H 0(Uα ∩ S, IS/I 2
S) by the formula

X̃(1)(ec,α) = ηb ⊗ eb,α.
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Now, if Uα ∩ Uβ ∩ S �= ∅ we have eb,α = [(Φαβ)db ]2ed,β ; so

ηb
c,α ⊗ [

(Φαβ)db
]

2 ed,β = X̃(1)(ec,α) = X̃(1)

([
(Φαβ)dc

]
2 ed,β

)
= X(1)

(
d(1)

[
(Φαβ)dc

]
2

) ⊗ ed,β + [
(Φαβ)bc

]
2 · ηd

b,β ⊗ ed,β .

But

X(1)

(
d(1)

([
(Φαβ)dc

]
2

)) = ρ̃
([

(Φαβ)dc
]

2

) =
[

∂(Φαβ)dc

∂zr
α

zr
α

]
2
,

by Remark 1.8, and hence

[
(Φαβ)db

]
2 · ηb

c,α =
[
∂(Φαβ)dc

∂zr
α

zr
α

]
2
+ [

(Φαβ)bc
]

2 · ηd
b,β .

If we define the 0-cocycle k = {kα} ∈ H 0(US, IS/I 2
S ⊗ E ∗ ⊗ E ) by setting

kα = ηb
c,α ⊗ e∗c

α ⊗ eb,α,

we get

kα − kβ = ηb
c,α ⊗ e∗c

α ⊗ eb,α − ηb
c,β ⊗ e∗c

β ⊗ eb,β

= [
(Φβα)bd

]
2

([
∂(Φαβ)dc

∂zr
α

zr
α

]
2
+ [

(Φαβ)ac
]

2 · ηd
a,β

)
⊗ [

(Φβα)cd
]

2e
∗d
β ⊗ [

(Φαβ)db
]

2ed,β

− ηb
c,β ⊗ e∗c

β ⊗ eb,β

=
[
∂(Φαβ)dc

∂zr
α

zr
α

]
2
⊗ [

(Φβα)ca
]

2e
∗a
β ⊗ ed,β,

and thus δρ(E ) = O .

Conversely, assume that [(Φβα)ca]2[ ∂(Φβα)dc
∂zr

α
]2[zr

α]2 ⊗ e∗a
β ⊗ ed,β = kα − kβ with kα ∈

H 0(US, IS/I 2
S ⊗ E ∗ ⊗ E ). Writing kα = ηb

c,α ⊗ e∗,c
α ⊗ eb,α , it is easy to check that setting

X̃(1)(ec,α) = ηb
c,α ⊗ eb,α

we define an infinitesimal normal connection on E . �
If S splits into M , and U = {(Uα, zα)} is a splitting atlas, then it is easy to check that the

position

(Φαβ)rs =
[
∂zr

β

∂zs
α

]
2

defines a 1-cocycle with coefficients in GL(m, OS(1)), and hence a locally free OS(1)-module
on S that, with a slight abuse of notations, we shall denote by NS . One of the reasons justifying
Please cite this article in press as: M. Abate et al., Embeddings of submanifolds and normal bundles, Adv. Math.
(2008), doi:10.1016/j.aim.2008.10.001
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this notation is that the 1-cocycle of the locally free OS(1)-module IS/I 2
S is the inverse transposed

of the 1-cocycle of NS , and thus N ∗
S

∼= IS/I 2
S as OS(1)-modules too. Notice, however, that (1.11)

implies that this NS is not the locally free OS(1)-module obtained by restriction of the scalars
via ρ starting from the usual normal sheaf on S (as described in Remark 6.1) unless S is 1-
comfortably embedded in M .

We finally have the promised characterization of 1-comfortably embedded submanifolds:

Proposition 6.3. Let S be a submanifold of a complex manifold M . Assume that S splits in M ,
with first order lifting ρ : OS → OS(1) and associated OS(1)-morphism X(1) : ΩS(1) → IS/I 2

S .
Then S is 1-comfortably embedded into M if and only if there exists an infinitesimal normal
connection on NS .

Proof. Let U = {(Uα, zα)} be an atlas adapted to ρ, and denote by {∂r,α} and {[zr
α]2} the induced

local frames on NS and IS/I 2
S as locally free OS(1)-modules. Proposition 6.2 says that there

exists an infinitesimal holomorphic connection on NS along X(1) if and only if the 1-cocycle
δρ(NS) in H 1(S, (IS/I 2

S)⊗2 ⊗ NS) given by

[
∂zr

α

∂zs
β

]
2

[
∂2zt

β

∂zu
α∂zr

α

]
2

[
zu
α

]
2 ⊗ [

zs
β

]
2 ⊗ ∂t,β =

[
∂2zt

β

∂zu
α∂zv

α

]
1

[
zu
α

]
2 ⊗ [

zv
α

]
2 ⊗ ∂t,β

vanishes.
Now, δρ(NS) clearly belongs to H 1(S,Sym2(IS/I 2

S) ⊗ NS). Since Sym2(IS/I 2
S) is a

direct summand of (IS/I 2
S)⊗2, a 1-cocycle in H 1(S,Sym2(IS/I 2

S) ⊗ NS) vanishes in
H 1(S, (IS/I 2

S)⊗2 ⊗ NS) if and only if it vanishes in H 1(S,Sym2(IS/I 2
S) ⊗ NS). Since

Sym2(IS/I 2
S) ∼= I 2

S/I 3
S , the assertion follows from Corollary 3.6. �

Remark 6.3. Assume S splits into M and let X(1) : ΩS(1) → N ∗
S be the corresponding OS(1)-

morphism. Then one can adapt the notion (see [4]) of first jet bundle and associate to any OS(1)-
module E an OS(1)-module J 1

NS
E , the sheaf of normal first jets of E , and an exact sequence of

OS(1)-modules

O → N ∗
S ⊗ E → J 1

NS
E → E → O (6.1)

in such a way that if E is locally free than J 1
NS

E is locally free too, and the class δρ(E ) in-
troduced in Proposition 6.2 is exactly the class associated to the extension (6.1). In particular,
Proposition 6.3 implies that the sequence (6.1) splits if and only if S is 1-comfortably embedded.
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