Geometria e Topologia Differenziale

Secondo compitino A.A. 2006/07

Nome e Cognome:

1) Sia $\psi: \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione

$$\psi(u, v) = (u + v, \sinh v, u^2 - v^2),$$

poniamo $S=\psi(\mathbb{R}^2)$ e sia $p=(1,0,1)\in\mathbb{R}^3$. Sia poi $\sigma:\mathbb{R}\to\mathbb{R}^3$ la curva definita da $\sigma(t)=(1,-\sinh t,2t+1)$.

- (i) Dimostra che S è una superficie regolare chiusa di \mathbb{R}^3 , di cui ψ è una parametrizzazione globale. (ii) Determina $\sigma_o : \mathbb{R} \to \mathbb{R}^2$ tale che $\sigma = \psi \circ \sigma_o$, e deduci che il sostegno di σ è contenuto in S.
- (iii) Osserva che $\sigma(0) = p$, e scrivi il versore tangente a σ in p come combinazione della base $\{\partial_1, \partial_2\}$ del piano tangente T_pS a S in p indotta da ψ .
- (iv) Determina un'equazione cartesiana di T_pS .
 - 2) Sia $S \subset \mathbb{R}^3$ la superficie con parametrizzazione globale $\varphi : \mathbb{R} \times (0, \infty) \to \mathbb{R}^3$ data da

$$\varphi(\theta, t) = (t\cos\theta, t\sin\theta, \theta - t).$$

- (i) Determina i coefficienti metrici di S rispetto a φ .
- (ii) Trova un campo di versori normali su S, e determina i coefficienti di forma di S rispetto a φ .
- (iii) Calcola la curvatura media e la curvatura Gaussiana di S.