Geometria e Topologia Differenziale

Terzo scritto dell'A.A. 2003-04 — 20 settembre 2004

Nome e Cognome:

- 1) Sia $\sigma: I \to \mathbb{R}^3$ una curva biregolare parametrizzata rispetto alla lunghezza d'arco, di curvatura κ , torsione τ e riferimento di Frenet $\{\mathbf{t}, \mathbf{n}, \mathbf{b}\}$. Indichiamo con $\beta: I \to \mathbb{R}^3$ la curva tracciata dal versore normale, cioè $\beta(s) = \mathbf{n}(s)$ per ogni $s \in I$.
- (i) Dimostra che β è parametrizzata rispetto alla lunghezza d'arco se e solo se $\kappa^2 + \tau^2 \equiv 1$.
- (ii) Supponi che β sia parametrizzata rispetto alla lunghezza d'arco, e sia $\theta: I \to \mathbb{R}$ di classe C^{∞} tale che $\kappa(s) = \cos \theta(s)$ e $\tau(s) = \sin \theta(s)$. Dimostra che β è biregolare e che la curvatura κ_{β} e la torsione τ_{β} di β sono dati da

$$\kappa_{\beta} = \sqrt{1 + \dot{\theta}^2}$$
 e $\tau_{\beta} = \frac{\ddot{\theta}}{1 + \dot{\theta}^2}.$

2) Sia $S \subset \mathbb{R}^3$ data da

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid 4x^2 + y^2 + z^2 - 4z = 0\}.$$

- (i) Dimostra che S è una superficie regolare di \mathbb{R}^3 .
- (ii) Calcola la seconda forma fondamentale di S nell'origine.
- (iii) Sia $C \subset S$ una curva biregolare contenuta in S, passante per l'origine, tangente nell'origine all'asse y e avente nell'origine versore binormale $\mathbf{b} = (\frac{\sqrt{3}}{2}, 0, \frac{1}{2})$. Calcola la curvatura di C nell'origine.
 - 3) Siano $f, g: \mathbb{R} \to \mathbb{R}$ due funzioni di classe C^{∞} , e sia $S \subset \mathbb{R}^3$ la superficie

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid z = f(x) + g(y)\}.$$

- (i) Calcola prima e seconda forma fondamentale e la curvatura Gaussiana di S.
- (ii) Dato $a \in \mathbb{R}$ sia $\sigma_a : \mathbb{R} \to S$ la riparametrizzazione rispetto alla lunghezza d'arco della curva

$$\gamma_a(t) = (t, a, f(t) + g(a)).$$

Calcola la curvatura geodetica di σ_a , e dimostra che se g'(a) = 0 allora σ_a è una geodetica.

(iii) Prese $f(t) = g(t) = \cos t$, sia $R \subset S$ la regione regolare data da

$$R = \{(x, y, \cos x + \cos y) \in S \mid 0 \le x, y \le \pi\}.$$

Dimostra che

$$\int_R K \, d\nu = 0.$$