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Conjugacy helps
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Leau-Fatou flower theorem (1897, 1919): 
f(z) = z + arzr+...

dynamical flower with r–1 petals

Camacho (1978): 
f is locally topologically conjugated to

 g(z) = z + zr 

and formally conjugated to
 h(z) = z + zr + cz2r–1

Écalle, Voronin (1981): 
(very complicated) holomorphic classification
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One complex variable
Elliptic: |∏|=1, ∏=e2πiθ, θ∈ Q

Siegel-Bryuno (1942, 1965): 
if ∏∈ B (full-measure subset of S1) then all

f(z) = ∏z+arzr+...

are holomorphically linearizable.

Cremer-Yoccoz (1927, 1988): 
if ∏∈ B (dense uncountable subset of S1) then 

f(z) = ∏z+z2

is not holomorphically linearizable.
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f(z) = Az+Pr(z)+... ,

f(O)=O, dfO=A

 Hyperbolic: sp(A)⊂ C*\S1

 Superattracting: A=O 
 Parabolic (tangent to identity): A = I
 Elliptic...
 Mixed cases...

sp(A): multipliers
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Perron-Hadamard Stable Manifold Theorem (≥1928): 
Es: sum of gen. eigenspaces of attracting eigenvalues
Eu: sum of gen. eigenspaces of repelling eigenvalues 

Then there are complex manifolds Ws/u 

tangent to Es/u at the origin such that 
fk(z)→O iff z ∈ Ws and f–k(z)→O iff z ∈ Wu

Similarities

Grobman-Hartman (1959-60): 
f is locally topologically conjugated to Az
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Hyperbolic: sp(A)⊂ C*\S1

 Resonances prevent formal linearization 
 Poincaré (1893): if f is attracting/repelling, then 

f is holomorphically linearizable iff it is formally 
linearizable
 Poincaré-Dulac (1912): f is formally conjugated to 

a map with only resonant monomials
 Small divisors prevent holomorphic linearization 

Differences
In general, f is not locally holomorphically conjugated to Az

(∏1)k1... (∏n)kn –∏j



Aside (by popular demand):

Fatou-Bieberbach domains



Aside (by popular demand):

Fatou-Bieberbach domains
Take f globally defined on Cn. 



Aside (by popular demand):

Fatou-Bieberbach domains
Take f globally defined on Cn. 
Assume attracting, no resonances: we get a local 
holomorphic linearization φ.



Aside (by popular demand):

Fatou-Bieberbach domains
Take f globally defined on Cn. 
Assume attracting, no resonances: we get a local 
holomorphic linearization φ.
Extend φ to basin of attraction B= Cn: the 
image is Cn.



Aside (by popular demand):

Fatou-Bieberbach domains
Take f globally defined on Cn. 
Assume attracting, no resonances: we get a local 
holomorphic linearization φ.
Extend φ to basin of attraction B= Cn: the 
image is Cn.
No critical points of f in B implies no critical 
points of φ in B.



Aside (by popular demand):

Fatou-Bieberbach domains
Take f globally defined on Cn. 
Assume attracting, no resonances: we get a local 
holomorphic linearization φ.
Extend φ to basin of attraction B= Cn: the 
image is Cn.
No critical points of f in B implies no critical 
points of φ in B.
n=1: φ covering of C, impossible.



Aside (by popular demand):

Fatou-Bieberbach domains
Take f globally defined on Cn. 
Assume attracting, no resonances: we get a local 
holomorphic linearization φ.
Extend φ to basin of attraction B= Cn: the 
image is Cn.
No critical points of f in B implies no critical 
points of φ in B.
n=1: φ covering of C, impossible.
n>1 and f globally invertible: B is biholomorphic 
to Cn but not Cn!
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Fatou-Bieberbach domains
Take f globally defined on Cn. 
Assume attracting, no resonances: we get a local 
holomorphic linearization φ.
Extend φ to basin of attraction B= Cn: the 
image is Cn.
No critical points of f in B implies no critical 
points of φ in B.
n=1: φ covering of C, impossible.
n>1 and f globally invertible: B is biholomorphic 
to Cn but not Cn!

f(z,w)=(w/2–z2,z)
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Several complex variables
Superattracting: A=O

Differences

In general, f is not locally topologically 
conjugated to Pr(z)

Topological, holomorphic, formal classifications: 
wide open, as well as local dynamics.

(Some results by Hubbard, Favre-Jonsson).
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It can be (asymptotically) tangent to v.
Écalle-Hakim (1985, 1998): if v is a non-degenerate 
characteristic direction, then there is a Fatou flower 
for f tangent to v.
A. (2001): if n=2 and O isolated fixed point, then 
there is a Fatou flower for f.
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Parabolic (tangent to identity): f(z) = z+Pr(z)+...

Differences

In general, parabolic curves are 1-dimensional 
only.

Topological, holomorphic, formal classifications: 
wide open, as well as local dynamics.
(Some results by Écalle, A.-Tovena).
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Similarities

ω(m)=inf{|(∏1)k1... (∏n)kn –∏j|; 2≤k1+...+ kn≤m} 

Brjuno (1971): if –Σm2–m log ω(2–m–1)<+1 (Brjuno 
condition) then f is holomorphically linearizable
 Pöschel (1986): partial linearization results
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Several complex variables

Differences

Not known if Brjuno condition is necessary.

Elliptic...: f(z) = Az+Pr(z)+...

Convergence of a Poincaré-Dulac normal form?
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