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Leau-Fatou flower theorem (1897, 1919):
f(z) = z + arzr+-
dynamical flower with -1 peftals

Camacho (1978):
/ is locally topologically conjugated to
gie) =z B
and formally conjugated to
h(z) = z + z& + cz?r!

Ecalle, Voronin (1981):
(very complicated) holomorphic classification
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Siegel-Bryuno (1942, 1965):
if A¢ B (full-measure subset of S') then all
f(z) = Aztarzr+-
are holomorphically linearizable.

Cremer-Yoccoz (1927, 1988):
if A¢ B (dense uncountable subset of S!) then

f(z) = Aztz?
IS not holomorphically linearizable.
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Perron-Hadamard Stable Manifold Theorem (21928):

E#: sum of gen. eigenspaces of attracting eigenvalues
Ev: sum of gen. eigenspaces of repelling eigenvalues

Then there are complex manifolds Ws/u
tangent to Es/v at the origin such that
fi(2)—0O iff z € W5 and f*(2)—O0 iff z € W
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Perron-Hadamard Stable Manifold Theorem (21928):

E#: sum of gen. eigenspaces of attracting eigenvalues
Ev: sum of gen. eigenspaces of repelling eigenvalues

Then there are complex manifolds Ws/u
tangent to Es/v at the origin such that
fi(2)—0O iff z € W5 and f*(2)—O0 iff z € W

Grobman-Hartman (1959-60):
fis locally topologically conjugated to Az
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Several complex variables
sp(A)C C\ St
Differences

In general, fis locally holomorphically conjugated to Az

(A)kr (An)kn—A,

@ Resonances prevent formal linearization
@ Poincare (1893): if fis attracting/repelling, then
f is holomorphically linearizable iff it is formally
linearizable
@ Poincare-Dulac (1912): fis formally conjugated to
a map with only resonant monomials

@ Small divisors prevent holomorphic linearization
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Fatou-Bieberbach domains

@ Take f globally defined on Cn.

@ Assume attracting, no resonances: we get a local

holomorphic linearization ¢.
@ Extend ¢ to basin of attraction B# Cm: the

image is C~.

@ No critical points of f in B implies no critical
points of ¢ in B.

o n=1: ¢ covering of C, impossible.

e n>1 and f globally invertible: B is biholomorphic
to C» but not Cn!

flzw)=(w/2-222)
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A=0

Differences

In general, fis locally topologically
conjugated to P.(z)

Topological, holomorphic, formal classifications:
wide open, as well as local dynamics.
(Some results by Hubbard, Favre-Jonsson).
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Several complex variables

f() = 2+P(2)+-
Similarities

@ Characteristic direction: P.(v)=cv

@ Degenerate: c=0; Non-degenerate otherwise.
@ (Orbit tangent to v implies characteristic.)

@ Parabolic curve: 1-dimensional holomorphic f-invariant

curve, attracted by O.
@ It can be (asymptotically) tangent to w.

@ Ecalle-Hakim (1985, 1998): if v is a non-degenerate
characteristic direction, then there is a Fatou flower
for f tangent to w.

@A. (2001): if n=2 and O isolated fixed point, then
there is a Fatou flower for f.
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Several complex variables
f(2) = z+P(2)+

Differences

In general, parabolic curves are 1-dimensional

Topological, holomorphic, formal classifications:
wide open, as well as local dynamics.
(Some results by Ecalle, A.-Tovena).
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Several complex variables
f(z) = Az+P(2)+

Similarities

@ Brjuno (1971): if —Xn2mlog w(2™1)<+o0 (Brjuno

condition) then f is holomorphically linearizable
@ Poschel (1986): partial linearization results
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f(z) = Az+P(2)+

Differences

Not known if Brjuno condition is necessary.

Convergence of a Poincare-Dulac normal form?
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