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A Unified Approach to Abstract Linear Nonautonomous
Parabolic Equations.

PAOLO ACQUISTAPACE - BRUNELLO TERRENI (*)

SUMMARY - We consider the linear nonautonomous Cauchy problem of para-
bolic type in a Banach space .E. Our assumptions provide a unified treat-
ment which applies to many situations where the domains of the operators
may change with t. We study, existence, uniqueness and maximal regu-
larity of strict and classical solutions, by means of a representation for-
mula which does not make use of fundamental solutions. Comparisons
with the available literature are also given.

0. Introduction.

Let .E be a Banach space. We are concerned with the linear pa-
rabolic Cauchy problem

where and f : [0, T] - E are prescribed data and is

a family of closed linear operators in .E which are generators of analytic
semigroups, y and whose domain may change with t and be not
dense in E: thus the semigroups {exp may be not strongly
continuous at s = 0.

We consider strict and classical solutions (see Definition 1.5 below),
i.e. continuously differentiable solutions of Problem (0.1), studying

(*) Indirizzo degli AA.: P. ACQUISTAPACE: Scuola Normale Superiore,
Piazza dei Cavalieri, 7 - 56100 Pisa; B. TERRENI: Dipartimento di Matematica,
Universita di Pisa, Via Filippo Buonarroti, 2 - 56100 Pisa.
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their existence, uniqueness and maximal regularity: this means that
for a solution u the functions u’ and A( ~ ) ~c( ~ ) turn out to be as

smooth as the right member f is, provided (possibly) a suitable com-
patibility condition involving the vectors x and f(0) holds. We prove
maximal regularity results both in time and in space: time regularity
means H61der continuity with values in E, whereas space regularity
means continuity with values in .E and boundedness with values in
suitable subspaces of .E. Thus the regularity properties for the solu-
tion of (0.1) will turn out to be exactly the same as those known for
the solutions of the autonomous version of (0.1) (see Sinestrari [16]).

Several authors have studied Problem (0.1) in the parabolic case
under different assumptions. In this paper we try to provide a
unified treatment of the subject: our hypotheses are generally weaker
than those known in the literature. A detailed comparison with such
different kinds of assumptions is made in Section 7, which we also
refer to for the related references.

Our proof does not require the construction of the fundamental
solution of (0.1). We find a suitable representation formula for

A( ~ ) ~( ~ ), where u is a solution of (0.1) (assumed to exist); next, by an
approximation procedure we are able to show that if the data x, f
are smooth enough, then our formula indeed yields the unique solu-
tion of (0.1). From a technical point of view, this argument is a refine-
ment of the one used in Acquistapace-Terreni [5], where we only
studied strict solutions, assuming in addition the constancy, for some
9 e]0,1[, of the interpolation spaces with respect to t.

Here we study also classical solutions and try to get very precise
results: for this reason we are forced to introduce some special Banach
spaces, the so-called Z and Z* spaces (see Definition 1.4 below), con-
sisting of functions which are singular at t = 0, and being endowed
with certain weighted uniform or H61der norms. The use of such

spaces allows us to obtain very sharp and concise existence and re-
gularity results: of course a price must be paid in terms of tedious
technicalities.

Here (as well as in [5]) our method is inspired by the more ab-
stract theory of sums of noncommuting linear operators due to Da
Prato-Grisvard [8]. However our technique is different, since it is
based on a modified version of that theory, recently performed by
Labbas-Terreni [14]; in the latter paper a heuristic derivation of the
analogue of our representation formula in this more general setting
can also be found.
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It is to be noted that when the abstract theory of [14] is specialized
to parabolic evolution equations, it just covers the case of strict solu-
tions of (0.1) with homogeneous initial datum (i.e. x = o) : thus for
the case of classical solutions, or of strict ones with x ~ 0, our
theorems cannot be deduced by that theory. However even in the

former case our results are more precise than the corresponding ones
which can be obtained by [14].

Let us describe now the subject of the next sections. Section 1

contains some notations and assumptions, as well as some preliminary
results; we also derive (just formally) our representation formula.
The properties of each component (operators and functions) of this
formula are analyzed in Section 2, whereas the properties of the func-
tion in itself, as defined by the formula, are summarized in Section 3,
where we also prove uniqueness. Section 4 is devoted to the study of
certain problems which approximate Problem (0.1) and are useful
in the proof of existence; in Section 5 we prove the convergence as
n - oo of the solutions un of the approximating problems. In Sec-
tion 6 we present our existence and maximal regularity theorems for
strict and classical solutions; finally in Section 7 we compare our as-
sumptions and results with those available in the literature.

We finish this section by noting that the results of the present
paper were partially announced in Acquistapace-Terreni [6].

1. Notations, assumptions and preliminaries.

Let E be a Banach space, fix T &#x3E; 0 and let Y - E be another
Banach space. We will use the following Banach function spaces:

(a) B( Y) _ ~ f : ]0, T] ~ Y strongly measurable and bounded},
and C( Y) = T], Y), = Ga( [0, T], Y) (a E ]0, 1[),

= C~([0, T], Y), L1 ( Y) = L1(o, T, Y) with their usual
norms;

(b) for any p E [0, oo[, ]0, T] - Y: t 
E BII( Y) continuous} with their obvious norms

(thus, in particular, Bo( Y) = B( Y) but C( Y) ;
(c) for p E [0, oo[,
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with norm given by

(1.2) I

b

(1.3) sup 0  

a

It is clear that (1.2) defines a norm in 1,(Y); in Lemma 1.7 below we
will show that I&#x3E;(Y) is indeed a Banach space. If 

we set by definition (with abuse of notation):

We will also use the function spaces B+(Y) ft: ]0, T] - Y strongly
measurable: flE.,T3 is bounded in Y Va E ]0, T[l, and C+( Y), 
C+( Y) which are defined similarly.

Let A: DA C E - B be a closed linear operator, generating a
bounded analytic semigroup {exp (not necessarily strongly
continuous at s = 0). Then in particular when it is endowed

with the graph norm. We consider the real interpolation spaces

(DA, E)~,~ (fl E ]0,1[) introduced by Lions-Peetre [15].
DEFINITION 1.1. We set for # E ]0, 1[

It is plain that

The following characterizations hold (see Butzer-Berens [7] for
the dense-domain case, Sinestrari [16] for the general case):
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moreover the corresponding norms

are all equivalent to the usual norm of oo) as an interpolation
space. Thus we will denote by any of the norms

(1.7 ) ~ and seminorms defined in (1.6 ) i . When fl = 0 or fl = I the
characterizations (1.6)i still make sense, and one gets oo) = E
and (without equality in general). However we will

use the following convention:

CONVENTION 1.2. We set DA(01 oo) _ .E, oo) = DA.

Let us list now our assumptions. From now on, Hypotheses I
and II below will be assumed throughout.

Hypothesis I. For each t E [0, T], A(t): DA(t) ç: E - E is a closed

linear operator and there exist ]if2, a[, M &#x3E; 0 such that

Hypothesis II. There exist B &#x3E; 0, 1~ E 1~+, ... , ak, ... , 7 flk with
ai c 2, such that

We also assume (which is not restrictive)

REMARK 1.3. By Hypothesis I, each operator A(t) generates a
bounded analytic semigroup {exp the domains DA~t) may
change with t and be not dense in E, so that the semigroups may be
not strongly continuous at 0 (but this is necessarily true if .E is locally
sequentially weakly compact: see Kato [10]). However the resolvent
sets e(A(t) ) are assumed to contain a common sector So.. Hypothesis II
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provides some regularity in the dependence on t of the operators A(t).
Further comments on Hypotheses I, II, as well as comparisons with
the assumptions of other papers will be made in Section 7.

In the next sections we will need some other Banach function
spaces. Namely for fl E ]0, 1] we set (with a slight abuse of notation):

similarly we define the Banach spaces oo) )
and 00)) (a E ]0, 1[, p E [0, oo[).

We also define the function spaces 
oo) ) (a E ]0, 1[) similarly to what we did before (compare

with the paragraph after (1.4)).
Finally, y we have:

The norms of Z,,,,6(E) and are given by
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the norms of and cxJ)) are given by

It is easy to see that the above spaces are alla Banach spaces (the last
two in view of Lemma 1.7 below).

EXAMPLE 1.5. Fix y E E and set

by using (1-6), it is readily seen that g E 00)), whereas a
tedious but elementary calculation shows that f E Z,,,O(B); finally, it

is easy to see that h E Ip(E).
Let us define now strict and classical solutions of Problem (0.1).

DEFINITION 1.6. We say is a strict (resp. 
solutions of (0.1) if r’1 C(D,) (resp. u E C’(E) f’1 and

For the sake of simplicity, here and from now on we write (improperly)
Au and instead of A(.)u(.), A(.))u(.).

We start with some preliminary results.

LEMMA 1.7. Let Y ~ E be ac Banach space. For each It E [0, oo[
the space I,~( Y) defined by (1.1) is ac Banach spacce with respect to the
norm (1. 2) - (1.3).
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PROOF. be a Cauchy sequence in then it converges
in Bg(Y) to some f E B/l( Y), and we have to show that

For each 8 &#x3E; 0 there exists n, EN such that

as n - oo we deduce that

T

Now take m = n,,,.: Since converges in Y as a - 0+,
a

there exists 6, &#x3E; 0 such that

Hence

and (1.15) is proved. Finally, by (1.16), in 1,,(Y).0
Let us recall now some properties of the operators We recall

the well-known representation of the semigroup {exp 
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where y = y- u yo u y+ and

(with fixed 0e]yr/2,0o[). As a consequence we have:

LEMMA 1.8. Fix t E [ o, T], f3 E ] o, 1 [ . 

PROOF. (i)-(ii) See [16, Propositions 1.13-1.14 and 1.2 (i)].

(iii) Easy consequence of (1.6)1.

(iv) Easy consequence of (i) and (1.6)3. N

In the preceding lemma and from now on, we denote by C any absolute
constant occurring in our estimates; dependence on known quantities,
if any, will be specified when necessary.

PROOF. - (i) It is a straightforward computation.

(ii) It follows by (i), Hypothesis II and (1.6),. o

LEMMA 1.10 E [0, 1] and T hen &#x3E; 0 and
m E 1®T we have:
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PROOF. (i) Easy consequence of (1.17) and Lemma 1.9 (ii).

(ii) If m = 0 the result is obvious; if fl = 0 it is Lemma 1.8 (i).
Otherwise it follows easily by (i) and Lemma 1.8 (i). ·

LEMMA 1.11..Let and Then f or ~ &#x3E; 0
and m we have:

PROOF. Part (ii) follows easily by Lemma 1.9 (i) and Hypothesis II.
To prove part (i) write for each q &#x3E; 0:

the result follows by part (ii), Hypothesis II and (1.S)2. ·

We finish this section with a heuristic derivation of the representa-
tion formula for the strict solution u of Problem (0.1). Fix t E ]0, T]
and set

Then for each
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Integrate over ]o, ~[ and apply A(t) to both sides: the result is

where we have set

The integral equation (1.18) in the unknown Au is of Volterra type,
with integrable kernel (see Lemma 2.3 (i) below); thus if we set

we can invert (1.18), obtaining for u the representation formula

This argument is just formal: in particular, for f E C(E) and x E 
the function (1.20) is not meaningful in general; however we will see
in Section 3 that under suitable assumptions and the data x, f the
function L(f, x) makes sense and the above argument works, leading
to the representation formula (1.22) fro strict and classical solu-
tions of (0.1).

2. Technicalities, I.

We analyze here the properties of the operator Q and the function
L(f, x), respectively defined by (1.21) and (1.20). As already remarked,
Hypothesis I and II are always assumed; in particular the number 6
is defined by (1.8). We also recall that the spaces 
Z~,~(.L), 00)) were introduced in Definition 1.4.
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(a) The function L( f, x)

PROPOSITION 2.1.

PROOF. - For each statement we have to split conveniently
E(f, x)(t) into several terms, and to estimate each one separately.

(i) We write
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All terms but In can be easily estimated by Lemma 1.10 (i)-(ii). Thus
we get:

and (i) follows by Lemma 1.8 (iii). More precisely we have

by Lemma 1.10 (i)-(ii) we get
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and (ii) follows by Lemma 1.8 (iv) and (1.6)2. More precisely we obtain

(iii) The fact that x) E C+(E) will follow by (iv); thus we have
just to prove continuity at t = 0. We have instead of (2.1):

By Lemmata 1.10 (i)-(ii) and 1.8 (ii) it is easily seen that

on the other hand by Lemma 1.10 (i)

and this clearly implies that L( f, x)(t) - A(0)x as t - 0+.

Moreover by (2.10) below and by Convention 1.2 it will follow that
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(iv) Similarly to (2.1) we write

hence (1.9) and Lemma 1.10 (ii) yield

Next, I if by (2.7) similarly to (2.2) we get:
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consequently by Lemma 1.10 (i)-(ii) and (1.11) we deduce, recal-

ling (2.8),

and (iv) is proved.
(v) Similarly to (2.4) we write for and for each

~&#x3E;0:

now Lemma 1.10 (ii) and (2.8) easily lead to

which proves (v).
(vi) If similarly to (2.7) we have

hence by Lemma 1.10 (ii) we obtain
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Next, if we have by (2.13)

where 14, are the same terms occurring in (2.9); thus denot-
ing by J1, ... , J7 the remaining terms above we have

Now some attention must be paid in extimating J4 ~~ E : indeed,
we have by Lemma 1.10 (ii)
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the other terms are easily estimated by Lemma 1.10 (i)-(ii). Summing
up, and recalling (2.14), we get

By (1.13) it remains to show that L(f, x) E 1,(E), i.e. (by (2.14) ~ that
there exists

Now both 12 and 1. are absolutely convergent integrals, so that using
Fubini’s Theorem it is not difficult to see that:
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in the last equality we have used again Fubini’s Theorem. Summing
up, we easily get
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and consequently by Lemma 1.10 (i)-(ii) we deduce

thus recalling Lemma 1.8 (ii) we conclude that

moreover we also get

which, together with (2.15), implies

(vii) By (2.13) if 0  tf2  s  t  T we have for each $ &#x3E; 0 similarly
to (2.11): 

"



67

hence Lemma 1.10 (ii) yields

This, together with (2.14), shows that

recalling (2.17), we deduce that

The proof of Proposition 2.1 is complete.

PROPOSITION E ]o, ~] . E DA(o), f E B(DA(fl, oo)), then:

PROOF. It is quite analogous to the proof of Proposition 2.1:

the required splittings are just slightly different from the corresponding
ones in that proof, and again only Lemmata 1.10 and 1.8 have to be
applied. Thus we omit the details, writing down only the precise
inequalities that can be obtained for each statement:
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(b) The operator Q.

We start with the following lemma, y concerning the kernel Q(t, g)
defined in (1.19).

LEMMA 2.3. W e have

PROOF. (i) Trivial consequence of Lemma 1.11 (i).
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and the result follows easily by Lemma 1.11 (i)-(ii).
(iii) Similar to (ii) (with the « dual » splitting and using again

Lemma 1.11 (i)-(ii) ).
(iv) It follows by integrating (2.26) over ]a, c~[ with the use of

Lemma 1.11 (i)-(ii).
(v) By (2.26) we can write:

The sum can be estimated by Lemma 1.11 (i) as follows:
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the other terms are easily estimated by Lemma 1.11 (i)-(ii) and the
result follows.

PROPOSITION 2.4. We have:

and consequently by Lemma 2.3 (i)-(ii) we easily get

which clearly implies (since Qg(0) = 0)
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then Lemma 2.3 (i)-(ii)-(iv) yields

(iii) Let g E Assume first ~c E [0, ~[: then by (2.27) and
Lemma 2.3 (i)-(ii) we have

on the other hand if p E [6, 1[ by Lemma 2.3 (i) we readily obtain

hence by Lemma 2.3 (i)-(ii) it is easy to deduce

which, together with (2.30) or (2.31), clearly implies
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then by Lemma 2.3 (i)-(ii)-(iv) and recalling (2.30) or (2.31) we con-
clude that

(v) Let g E first It E [0, ~[: then Lemma 1.11 (i)
easily leads to

on the other hand if /t E [6, 1[ as in (iii) we have (2.31). Next, if 0 
we have for each ~ &#x3E; 0:

so that by Lemma 1.11 (i)

this, together with (2.35) or (2.31), shows that

and by Lemma 2.3 (i)-(iii) we get
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Next, 9 if we replace in (2.32) Is by

so that by Lemma 2.3 (i)-(ii)-(v) we find

this, recalling (2.38), implies

(vii) Let As in the proof of (vi) we have (2.38).
Next, if 0  we replace in (2.32) 12 by (2.39) and Is by

Now 2i and the terms in (2.39) can be estimated as in the proof of (vi),
whereas the terms replacing I3 can be estimated by Lemma 2.3 (ii)-(iv),
obtaining

Thus by (2.38) we conclude that

(viii) Let As in the proof of (vi) we have (2.38).
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Moreover for 0  t/2 c ~’ ~ ~ ~ T and for each $ &#x3E; 0 we have, starting
from (2.36):

Now by Lemma 1.11 (i)-(ii) we easily get

hence recalling (2.38) we find

The proof of Proposition 2.4 is complete..

(c) The operator (1- Q)-l.

We need the following elementary lemma :

LEMMA 2.5. Let ex, fl, y, e E [0, 1 [ with and y -f - 1 - a - fl -
- 9 &#x3E; 0 . Then:
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PROOF. Tedious but easy. t

PROPOSITION 2.6. We have:

(iii) E(X) where X is any o f the following spaees :

where ~8 E ]0, ~], fl E [0, 1[, and

e ]0~],~ c [1, 1 + 6[. 

~ 

PROOF. ( i ) For each a) &#x3E; 0 introduce in B&#x3E;(E) the following norm:

which is obviously equivalent to the usual one. We will show that
for sufficiently large co

this will prove that exists in L(B03BC(E)). Now (2.44)
"=0

follows easily by Lemma 2.3 (i) and Lemma 2.5 (ii) (with O = 0,
a=y=03BC, B=1-d).
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where () · ~~~,,Bu~~~ is defined in (2.43) and

Again we have to show that for large (o

Now if 0  t T we have

hence by Lemma 2.3 (i)-(iii) we check

so that by Lemma 2.5 (i)-(ii) we deduce for large co
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Next, if we have by (2.46) and Lemma 2.3 (i)-(iii) :

which easily implies for large (o

by (2.47) and (2.48) we obtain (2.45).
(iii) This is a simple corollary of (i), (ii) and the statements of

Proposition 2.4. Indeed, let h = (1- Q)-lg; then, by definition h
solves the equation

Thus to prove (a) and (b) we have the following chains of implications
(the last of which is due to (2.49)):

The proof of the remaining statements of (iii) is analogous and can
be omitted. This completes the proof of Proposition 2.6.

3. The representation formula. Uniqueness.

The technical results of the preceding section allow us to give sense
to the heuristic argument used at the end of Section 1, and to intro-
duce the representation formula for strict and classical solutions of (0.1).
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As a consequence we will obtain some uniqueness results for such solu-
tions. To begin with, set (just formally)

where x E E and f : ]0, T] -~ E are prescribed data and Q, L( f, x) are
defined by (1.21)-(1.19) and (1.20). The following result summarizes
the cases in which the function w is well defined.

PROPOSITION 3.1. Let 6 be defined by (1.8). 6], we have:

PROOF. It is a straightforward consequence of (3.1) and Propo-
sitions 2.1, 2.2 and 2.4..

We need the following property of classical solutions :

LEMMA 3.2. Let x E E, f E C+(E) and let u be a classical solution

of ( 0.1 ) . If f satisfies in addition

then Au has the sacme property.
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PROOF. We have for each a E ]0, T]

as u E C(E) and u(0) = x we get

Let us make precise the heuristic argument given at the end of
Section 1.

THEOREM 3.3. E ]0, 6], fl E [1, 1 + 2 E [1, 1 -f- 6[; fix
x E DA(o), , U Zg(D 00)) and moreover suppose 
I f u is a classical solution o f (0.1) such that u E 1;.(DA)’ then we have
Au = w with w defined by (3.1 ), i.e. the representation formula (1.22)
holds.

PROOF. Fix t E ]0, T] and set v(s) = exp [(t - s)A(t)]u(s), s E [0, t].
Write down v’(s), pick 8 E ]0, t[ and integrate v’(s) in [8, t]: it is easy
to see that

which can be rewritten as
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Since Au E and f E Ll(E), by Lemmata 3.2 and 2.3 (i)-(iii) as
8 -~ 0+ we deduce that

finally, operating with A(t), we get Au = Q(Au) + L(f, x), and the
result follows.

COROLLARY 3.4. E ]0, å], It E [1, 1 + ¡3[; f ix x E f E C(E’).
If u is a strict solution o f (0.1 ), then we have Au = w with w defined
by (3.1). 0

THEOREM 3.5. For each x E E and /e C+(E), the classical solution
o f (0.1) in the class lJ is unique.

03BCE[0,1+d[

PROOF. Trivial consequence of Theorem 3.3. ·

COROLLARY 3.6. For and f E C(E) the strict solution
of (0.1) ~ unique . ·

Concerning existence of strict and classical solutions, y a necessary
condition is given by:

PROPOSITION 3.7. (i) If a strict solution u o f (0.1) exists, then f E C(E),
x E DA(o) and A(0) x + f (0) E 

(ii) I f a ctassicaZ sotution n o f (0.1) exists in the class U B03BC(DA),
___ 

then x E 

PROOF. - (i) Obviously f E C(E) and x E DA(o): Next, clearly we have

on the other hand we can write
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Moreover by Lemma 1.9 (ii) and Hypothesis II we get

hence by (3.2) and (3.3)

which evidently yields the result.
(ii) Let ft E [0, 1 + 3[ be such that Au E Write

obviously u(t) - J1 == J2 E Now by Lemma 1.9 (ii) we get

We will see in Section 6 that the compatibility conditions of the preced-
ing proposition are also sufficient for existence of strict, or classical,
solutions of provided the data x, f are slightly more regular:
in fact the function u = with w defined by (3.1), will turn out
to solve Problem (0.1). We will obtain u as the limit as n - oo, in
suitable norms, y of functions un solving certain problems which in
some sense approach Problem (0.1) as n - oo. Such problems have
the same form as (0.1), with A(t) replaced by the bounded operator

.d(t)) (its Yosida approximation). This will be done in the
next sections.
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4. The approximating problems.

We consider here the problems

where n c-N+, An(t) = A(t) ) is the Yosida approximation of
A(t), xn = is an element of .E and f : ]0, T] - E is
a fixed function. This section starts with a survey of the main prop-
erties of the operators An(t) ; next, we prove existence and uniqueness
of the solution of (4.1)n and a representation formula for it (see (4.2)n
below), provided the data are sufhciently regular.

PROOF. Tedious but elementary.
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PROOF. Straightforward.

LEMMA 4.3. Let 8 E ]ij2, 00[, fix f3 E [0, 1], # E [0, oo[, m eN. Then

f or ~ &#x3E; 0, n and t E [0, T] we have:

PROOF. (i) Easy consequence of Lemmata 4.2 (iv) and 4.1.

(ii) Easy consequence of Lemma 4.2 (iii), (1.6)3 and Lemma 4.1.

(iii) Fix 8 &#x3E; 0 and select z E such that ~, y - z ~~ E C E. Then

setting B = An(t)m exp [~.~.,n(t)~ - A(t)m exp [$A(t)] and using (i)-(ii) and
Lemma 1.10 (ii) we get

so that

(iv) Fix ee]0y T[ and choose (18) 0 such that
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and (iv) follows readily.

(v) Easy consequence of Lemma 4.2 (v), (1.6)3 and Lem-
ma 4.1..

LEMMA 4.4. Let 0 E ]n/2, 80[ and f ix m E N+. Then 0, n EN+,
OcrcsctcT we have:

PROOF. (i) It follows by Lemmata 4.2 (iv) and 4.1.

(ii) It follows by Lemmata 4.2 (iii) and 4.1.

(iii) It follows by Lemmata 4.2 (v) and 4.1. ·

We are now ready to prove existence of the solution of Pro-
blem (4.1 ) n and a representation formula for it.

PROPOSITION 4.5. Set xn = nB(n, A (0))x with x E .E and i E C(E)
(resp. with ,u E ~0,1 ~, Then for each Pro-
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blem (4.1)n has a unique solution Un E C(E) such that u’ E (resp.
u~ E u. E LItE) ) ; moreover Un is given by

where the operator Qn acnd the function Ln(f, xn) are de f ined by :

PROOF. For fixed Lemma 1.9 (i) yields

and consequently by the method of successive approximations we get
existence and uniqueness of the solution of (4.1)n. Formula (4.2)n
follows by the same argument of the proof of Theorem 3.3 (in an
even simpler way).

5. Technucalities, II.

In this section we study the regularity and convergence prop-
erties of the functions Ln( f, xn) and the operators Qn defined by (4.5)n
and (4.3)n-(4.4)n. We recall that xn = nR(n, A(O))x.

(a) The functions Ln(l, rn).

PROPOSITION 5.1. xn) E C(E) whenever xn E E, f E 

PROOF. It is quite easy since, for fixed

are continuous functions with values in ~(E).
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PROOF. We write

we will split and V in different ways.

and by Lemma 4.3 (ii)

Concerning V, we and distinguish two cases:

In case (b), we split
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and as xn-x = A(0))x, by Lemma 5.2 (i)-(ii) and (1.6)3
we deduce

in case (a) we write

so that by Lemmata 4.3 (ii)-(v) and 1.10 (i)-(ii) we check

Consequently we get

and (i) is proved.

(ii) Fix again q E ]0, We write now U as follows :
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It is easy to show that

the estimate of I2 is more delicate: if a E ]0, (3 + + 3 + by
Lemmata 4.3 (ii)-(v) and 1.10 (i) we have

On the other hand, exactly as in the proof of (i), we obtain (5.5):
summing up, we again get (5.6), which yields the result.

(iii) E ]0, 1 -E- ~ -,u[. For I~ we use (5.2), easily obtaining
by Lemma 4.3 (ii)

For V we again write (5.3) and (5.4) in cases t E [~, T] and t E ]0, E[
respectively: hence proceeding as in the proof of (iii) we get (5.5)
(with It = 1) and finally (5.6), i.e.

Next, we have to show that
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We start from (2.1f ), which clearly holds similarly for 1,(f, xn)(t),
obtaining

where V has been introduced in (5.1).
Now, proceeding as in (5.8), if a E ]0, 61(l + 6)[ we easily have

moreover by Lemma 4.3 (iv)

Finally, y concerning J4, T[ and suppose first b E ]0, 8]; then
by using (5.4) and Lemmata 4.3 (ii)-(v) and 1.10 (i)-(ii) we easily have:
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so that Lemma 4.3 (iii) yields

Suppose now b E ]ê, T] ; then if 0  we split

and the first integral can be estimated by (5.14). Thus we can as-
sume that 8 and writing

by Lemma 4.3 (i)-(ii) we obtain

which, together with (5.12) implies

By (5.12), (5.13), (5.15) and (5.11) we have (5.10), and recalling (5.9)
the result follows.

(iv) In order to estimate U (see (5.1)) we use (5.7): by Lem-
mata 4.3 (ii) (with 17 E ]0, ~[~, 4.3 (v) and 1.10 (i), proceeding as in
the proof of (ii) we deduce that

so that

For V we still have (5.5) (with ,u = 1) which, together with (5.16),
yields (5.9).
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Finally we have to prove (5.10) ; but the argument used in (iii)
still works, since we just used there the fact that f E BJ.l(E) r’1 .L1 (E) :
this proves (iv). Proposition 5.2 is completely proved..

(b) The operators Qn .

LEMMA 5.3. Let Q,,(t7 s) be defined by (4.4)n, and fix 0 E ]n/2, 80[.
Then we have:

PROOF. (i) It follows by Lemma 4.4 (i).

(ii) Exactly as in the proof of Lemma 2.3 (ii) (cfr. (2.26)), using
Lemma 4.4 (i)-(iii).

(iii) Exactly as in the proof of Lemma 2.3 (iii), using Lemma 4.4
(i)-(iii).

(iv) It follows by Lemma 4.4 (ii).

(v) By (iii)-(iv) and Lemma 2.3 (iii) we have easily:
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PROPOSITION 5.4. For c [0, 1[ and I E [1, 1 + 3[ we have
r1 and

PROOF. The first part is obvious by Proposition 2.4, since the
kernels Qn(t,8) have the same properties as Q(t, s). Next, if g E Bp(B)
we have by Lemma 5.3 (iv) (with q = ~~2) :

this shows that Qn - Q in as n --~ oo.

On the other hand if g E Ip,(E) we can write

so that by Lemma 5.3 (iv)-(v) 6/2 and a E ](I -1)~~, 1[)
it is not difficult to check

this shows that Qn -+ Q in £(Bg(E)) as n - oo. Finally we have to
verify that

now by (5.17) and Lemma 5.3 (iv)-(v) (with r~ _ ~~2 and a E
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and (5.18) is proved..

(c) The operators (1 - 

PROPOSITION 5.5. We have:

PROOF. (i)-(ii) Exactly as in the proof of Proposition 2.6 (i)-(ii),
using Lemma 5.3 instead of Lemma 2.3.

(iii) We have

and the result follows by (i)-(ii) and Propositions 5.4 and 2.6 (i)-(ii).

6. Strict and classical solutions.

We are now ready to show that the function u(t) = 
with w defined by (3.1), is in fact the strict, or classical, solution of
Problem (0.1) under suitable assumptions on the data x, f ; we will
also prove the maximal regularity properties of such solutions. Since
the right number of (0.1) can be chosen to be regular in time as well
as in space, for each kind of solution we have two distinct results.
We start with strict solutions.

THEOREM x E f E O(E) F3 acnd

suppose that A(O)x + f(0) E Then: 
’
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( i ) the f unction u = A-1w, with W de f ined by (3.1 ), is the unique
strict solution o f ( 0.1 ) ;

PROOF. (i) Set zn= nR(n, A(O)) x, By Prop. 4.5, Pro-

blem (4.1)n has a unique solution un E 01(E), which is given by (4.2)n.
By Proposition 5.2 (i) and 5.5 (iii), and taking into account that

A(t)-1- lln, we deduce that in B~(E) as n ~ oo,
for each n E ]0, On the other hand, as un = Anun + f, by (4.2)n
and Propositions 5.2 (i) and 5.5 (iii) we also get u’ n - w + f in 
as n - o, for eachq E ]0, This implies that u = A-lw E C~(-E7) and

But Prop 3.1 (ii) yields Au + f E C(E) and [Au + f ]t=o = A(0)z + f(0)
hence by (6.3) it is easily verified that

As, clearly, u(0) = x, this shows that u is a strict solution of (0.1).
Uniqueness follows by Corollary 3.6.

(ii) By (6.3) and Prop. 3.1 (v) we get Au, u’ E Zo,,3(E). On the
other hand, Proposition 2.1 (v) and 2.6 (iii) yield (1-Q)-1(.L( f, x) + f ) E
E ZO(DA(fJ, 00)); hence
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so that u’ E cxJ)) by Propositions 2.6 (iii) and (2.4) (iv),
and (ii) is proved. Estimate (6.1) follows by (6.3), (6.4), (2.10), (2.12),
Propositions 2.6 (iii)-2.4 (iv) and (2.37).

(iii) By Prop. 3.1 (i) and (6.3), we have u’, C°(E) if and only
if A(0)x -~- f (0) E 00). In addition, bu Propositions 2.1 (ii) and
2.6 (iii), (1- Q)-1(.L( f, x) + f ) E 00)) if and only if A(O)x +
-~- f (0) E DA(o)«(3, 00); by (6.4) and Propositions 2.6 (iii) and 2.4 (v),
this is also equivalent to u’ E oo)). Finally, estimate (6.2)
follows by (6.3), (6.4), (2.3), (2.5), Propositions 2.6 (iii)-2.4 (v)
and (2.37)..

THEOREM E ]0, 61, E f E C(E) F3 
and suppose that A(0) x -~- f (0) E DA(O). Then:

(i) the f unction u A-1w, with w de f ined by (3.1), is the unique
strict solution 0f ( 0.1 ) ;

(ii) u’ E ZO(DA(IJ, 00)) and Au E 00)) n Zo,p(E); in ad-

dition

Let now f E B(D~(~, oo)). Then:

PROOF. Quite similar to the proof of Theorem 6.1.

Let us consider now classical solutions. We start with the case
of solutions which are weakly singular at t = 0 (i.e. such that

Au E for some p, E [0, 1[).
THEOREM 6.3. Fix f3 E ]0, ~], Iz E [0, 1[ and let x E - IA, oo),

1 E Zl,,,O(B). Then:

( i ) the function u = A-1 w, with w de f ined by (3.1 ), is a cZassicacZ
solution o f (0.1 ) and is unique in the class U 

011+d
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PROOF. (i) Set xn = nR(n, and let un E C1(E) be the solu-
tion of Problem (4.1)n, given by Prop. 4.5. By Propositions 5.2 (i)
and 5.5. (iii) we have, as n - oo, and u’ = An 2cn + 
-w + f in B03BC+n(E) for each N E ]0, (1-03BC)AB[. Hence we get
~c E C+(E) and (6.3) holds. Moreover we get

so that u E C(E) and, clearly, = x. Uniqueness follows by
Theorem 3.5.

(ii) Quite similar to the proof of Theorem 6.1 (ii). ·

THEOREM 6.4. Fix fl E ]0, ~], ,u E [0, 1[, and let x E DA(o)(1 - 00),
f E 00)). Then:

(i) the f unction u = A-1w, with w defined by (3.1), is a classical
solution of (0.1) and is unique in the class ~J 

003BC1+d

dition

PROOF. Quite similar to that of Theorems 6.3 (i) and 6.2 (ii).
Finally we treat the case of strongly singular classical solutions

(i.e. such that Au E I~(E) for some ¡.t E [1, 1 -~- ~[).
THEOREM 6.5. ,u E [1, 1 + ¡3[ and let x E DA(o),

f E r1 L1(E). T hen :
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( i ) the function u = A-1 w, with w defined by (3.1 ), is a classical
solution o f (0.1) and is unique in the class U Itt(DA);

003BC1+d

PROOF. (i) The solution un E of (4.1)n satisfies, as n - oo,
un - and u’ - w + f in for each n E ]0, 1 + 
(Propositions 5.2 (iii) and 5.5 (iii)). Thus we have once more (6.3).
Next, as Au E 1,1+,(E), we have

so that u E O(E) and, clearly ~c(O) = x. Uniqueness follows again by
Theorem 3.5.

(ii) Similar to the proof of Theorem 6.1 (ii). o

THEOREM 6.6. Fix (3 E ]0, d], It E [1, 1 +,8[ and let x E DA(o),
f E 00)) f1 Li(E) . Then:

(i) the function u - A-1 w, with w de f ined by (3.1 ), is a classical
solution of (0.1) and is unique in the class U Ip(DA);

003BC1+d

dition

PROOF. Quite similar to that of Theorems 6.5 (i) and 6.2 (ii).

REMARK 6.7. All results of this section can be improved in the fol-
lowing way. First of all, if A is the generator of a bounded analytic
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semigroup, we consider the «continuous interpolation spaces » 
introduced by Da Prato-Grisvard [9] (see also Butzer-Berens [7]),
and characterized, in analogy with (1.6 ) 1, (1.6)2’ (1.6)3’ by

It is known that coincides with the closure of DA in the norm of
D.A(fJ, oo) (see e.g. Sinestrari [16, prop. 1.8]). Introduce moreover the
« little-Hölder » spaces, which are defined by

Replace now the inequality of Hypothesis II by the stronger one

where w: [0, T] - [0, oo[ is a non-decreasing, continuous function

satisfying m(0) = 0.
Then we can improve all results of this section by performing, in

each statement, the following modifications: instead of

read:

where the spaces Z, Z’~ are obtained by the corresponding spaces Z, Z*
by replacing in Definition 1.4, similarly, y C~ and B, B+ by C, C+.
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The proof of these results needs a series of technicalities which are
closely related to those of Section 2, 4 and 5; we do not go into further
details. The corresponding results in the case of constant domains
(i.e. under Hypotheses I and 7.1 below) are explicitly stated and
proved in Acquistapace-Terreni [2], [3].

7. Comparisons and examples.

As remarked in the Introduction, Problem (0.1) in the parabolic
case (i.e. under Hypothesis I) has been studied by several authors,
with different assumptions in place of our Hypothesis II. Let us

shortly recall the main kinds of assumptions used in the literature.
The simpler situation is the constant-domain case (Tanabe [18],

Sobolevskii [17], Acquistapace-Terreni [2], [3]):
HYPOTHESIS 7.1. (i) DA(t) = DA(o) Vt E [0, T],

(ii) there exist B &#x3E; 0, a E ]0, 1[ such that

If the domains are not constant, many situations may occur. In some
cases, the domains vary with t, but there are some intermediate spaces
between D,(,) and E which do not change; more precisely, it can be
assumed (Kato [11], [12]) that the domain of some fractional power
of - A(t) is constant:

HYPOTHESIS 7.2. (i) There exists e E ]0, 1[ such that

On the other hand, it can be supposed (Acquistapace-Terreni [5])
that some interpolation space oo) is independent of t:

HYPOTHESIS 7.3. (i) There exists ~O E ]0, 1[ such that (with uni-
formly equivalent norms)
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In the case of totally variable domains, several kinds of assumptions
can be made. First of all we have (Kato-Tanabe [13], Acquistapace-
Terreni [1]):

HYPOTHESIS 7.4. (i) VA e 

(ii) there exist K &#x3E; 0 and o E ]0, 1[ such that

Next, one can suppose (Tanabe [19]):
HYPOTHESIS 7.5. (i) t H A(t)-1 E 

(ii) there exists e E ]0, 1[ such that .

(iii) there exists B &#x3E; 0 such that

Further, y another possible assumption is (Yagi [21]) :
HYPOTHESIS 7.6. (i) t H A(t)-1 E 

(ii) there exist B &#x3E; 0 and e E ]0, 1[ such that

Finally it can be assumed the following (Yagi [22]) :
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HYPOTHESIS 7.7. (i) t ~ A(t)~ E E Boo;

(ii) there exist ~ &#x3E; 0 and ~O E ]0, 1[ such that

(iii) there exist B &#x3E; 0, and such

that

and

REMARK 7.8. It is easily seen, by (1.6)3 and the inclusions

(see Triebel [20, formulae 1.15.2 (3) and 1.13.2 (3a)]), that Hyp. 7.5
implies Hyp. 7.6 and, conversely, Hyp. 7.6 implies Hyp. 7.5 with e
replaced by any smaller ar. Similarly it is easy to show that Hyp. 7.4,
as well as Hyp. 7.5, is stronger than Hyp. 7.7. Finally we note that
Hyp. 7.6 implies Hyp. 7.4 (i)-(ii) (but not (iii)), in view of the identity

In order to analyze the connections between Hypotheses 7.1, ... , 7.7
and our Hypothesis II, we divide such assumptions into two classes,
(.~) and (B) : class (A) consists of Hypotheses 7.1, 7.2, 7.3, 7.5 and 7.6,
whereas class (B) contains Hypotheses 7.4 and 7.7. We have the fol-
lowing result:

THEOREM 7.9. Assume Hypothesis I. Then Hypothesis II is weaker
than any assumption f rom clags (A), and is independent o f any assumption
f rom class (B).
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PROOF. Clearly, Hyp. 7.1 is stronger than Hypothesis II in view of

Assume now Hyp. 7.2, set m = e-1 and write

as ~ DA(t)(e, 00), by (1.6)3 and (7.2) we easily obtain for each
xEE

Similarly it is clear that Hyp. 7.3 implies

Finally, by Remark 7.8, Hyp. 7.5 is stronger than Hyp. 7.6; on the
other hand if Hyp. 7.6 holds, then we can write:
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and hence by Hyp. 7.4 (ii) (which is true because of (7.1)) we get

The first part of the proof is complete.
In order to prove the second statement, we need two lemmata.

LEMMA 7.10. Under Hypotheses I, II, i f in addition t 1-+ A.(t)-1 E
E 01(C(E)) then the range o f satis fies

PROOF. Let For -~- hT we have:

and it is easy to see, by Lemma 1.9 (ii) and Hypothesis II, that

whereas, clearly, Thus we get

A similar and even simpler argument leads to the same result when
t = T..
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LEMMA 7.11. Let z E C, f E C( [0, 1], C), (3 E C( [0, T], ]0, For
each t E [0, T], Oo E ]nl2, n[ and A E 800 there exists a unique solution
u E C2( [0, 1], C) o f the problem

moreover we have (denoting by 11 1B 00 the usual sup-norm~ :

where C depends on 8o and but is independent o f t, and

PROOF. See Acquistapace-Terreni [4, Prop. 3.1].

We are now ready to prove the second part of Theorem 7.9. Let

us show that Hypothesis II does not imply Hyp. 7.7. Take in (7.3)

then if we set

then Problem 7.3 is a particular case of (0.1) and, by Lemma 7.11,
Hypothesis I is fulfilled. In order to verify that Hypothesis II holds
too, fix pick 1 E E and set
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Then it is easily seen that v and u solve respectively

v" = f in [o, 1 ] in [0, 1]
~ v(O) = 0 U(O) = 0

v(1) + (3(s)v’(l) = 0 , + = 0 ,

consequently the function

w = A(t))[A(t)-1- f = v - u

solves

Hence by Lemma 7.11 and (7.4) we deduce that

so that Hypothesis II is fulfilled.
On the other hand, as (3 is not differentiable it is easy to see that

t C1(~(E) ), since

In view of Remark 7.8, this shows that no assumption from class (B)
can hold.

Conversely, let us show that Hyp 7.4 (and hence Hyp. 7.7 too)
does not imply Hypothesis II. Choose = t, and let E, ~A(t)~ be
given by (7.5), (7.6). By (7.7) it is clear that
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so that Hypothesis 7.4 (iii) holds with any q E ]0, 1[; by Acquistapace-
Terreni [4, Prop. 3.2] we get Hypothesis 7.4 (i)-(ii) (with p = 2). Now
suppose by contradiction that Hypothesis II also holds: then by Lem-
ma 7.10 we get

but if we take f === 1, then (7.8) yields

and this function does not belong to D A(O) .
Theorem 7.9 is completely proved.

REMARK 7.12. Although the assumptions from class (B) are inde-
pendent of ours, it is to be noted that they always require continuous
differentiability for the map t - A(t)), so that from this point
of view our hypotheses are indeed less restrictive. In addition, as
we have already remarked, Hypotheses I and II make it possible to
use a unified method for solving (0.1) in any situation (i.e. constant
domains, variable domains, intermediate cases), with minor smooth-
ness assumptions on the resolvent operator.
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