Hölder Classes with Boundary Conditions as Interpolation Spaces

Paolo Acquistapace¹ and Brunello Terreni²

¹ Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56100 Pisa, Italia

² Dipartimento di Matematica, Università di Pisa, Via Filippo Buonarroti 2, I-56100 Pisa, Italia

Mathematische

Zeitschrift © Springer-Verlag 1987

§0. Introduction

This paper is concerned with the characterization of certain real interpolation spaces between the domain of an elliptic differential operator A, with general boundary conditions, and the Banach space E of continuous functions in which the domain is imbedded.

The interpolation spaces considered here are the classes $(D_A, E)_{\alpha,\infty}$ introduced by Lions (see Lions-Peetre [14]) and the "continuous interpolation spaces" $(D_A, E)_{\alpha}$ defined by Da Prato-Grisvard [9]; however, following Grisvard [11], we denote such spaces respectively by $D_A(\theta, \infty)$ and $D_A(\theta)$ (where $\theta = 1 - \alpha$), and introduce them by means of an abstract characterization (see Definition 2.1 below) which is valid under suitable hypotheses concerning the behaviour of the resolvent operator $(\lambda - A)^{-1}$.

Such assumptions are satisfied when, in particular, A is the infinitesimal generator of an analytic semigroup. In this situation, the spaces $D_A(\theta, \infty)$ and $D_A(\theta)$ are of great importance in the theory of abstract evolution equations, because of their "maximal regularity" property. Maximal regularity means the following: if f is continuous with values in a Banach space Y, then the evolution problem

$$u'(t) - Au(t) = f(t), \quad t \in [0, T]; \quad u(0) = 0$$

has a unique C^1 -solution u such that u' and Au are continuous with values in Y. This property is not true in a general Banach space Y (see Baillon [8]), but it holds when $Y=D_A(\theta)$, where A is the infinitesimal generator of an analytic semigroup in some other Banach space E. Note that we cannot replace $D_A(\theta)$ by $D_A(\theta, \infty)$ (see Da Prato-Grisvard [9]); however a similar property holds for $D_A(\theta, \infty)$ (with A as before), i.e. if f is continuous with values in E and bounded with values in $D_A(\theta, \infty)$, then the same is true for u' and Au. For a proof of these facts see Sinestrari [18].

Thus when A generates an analytic semigroup the spaces $D_A(\theta, \infty)$ and $D_A(\theta)$ have been estensively used in the theory of abstract parabolic equations, in

order to obtain existence and sharp regularity results (see, among others [1, 2, 4, 9, 11, 13, 16, 17, 18]. On the other hand in concrete situations the abstract regularity results have to be interpreted, and this in turn requires the characterization of these spaces in such concrete cases. Now, when $E = L^{P}(\Omega)$ and $A = A(\cdot, D)$ is an elliptic operator of order 2m, whose domain is determined by a set of *m* general boundary differential operators $\{B_{j}(\cdot, D)\}_{1 \le j \le m}$ satisfying the usual assumptions (Agmon [6]), the spaces $D_{A}(\theta, \infty)$ and $D_{A}(\theta)$ are known to be the functions *f* belonging to the Besov-Nikolskii spaces $B_{p,\infty}^{2m\theta}(\Omega)$ and $h_{p,\infty}^{2m\theta}(\Omega)$ which satisfy $B_{j}(\cdot, D)f=0$ on $\partial\Omega$ whenever it makes sense ([11, 9]). Here we treat instead the case $E = C(\overline{\Omega})$, and we obtain as $D_{A}(\theta, \infty)$ and $D_{A}(\theta)$ which satisfy, as before, the boundary conditions whenever they are meaningful.

Let us conclude with the description of the subject of the next sections. Section 1 is devoted to preliminaries; in Sect. 2 we state our main result, which is proved in Sects. 3 and 4; finally Sect. 5 contains some remarks and generalizations.

§ 1. Notations, Assumptions and Preliminary Results

If β , $\gamma \in \mathbb{N}^n$ and $z \in \mathbb{C}^n$, $n \ge 1$ we set as usual

$$|\beta| := \sum_{i=1}^{n} \beta_i, \qquad \beta! := \prod_{i=1}^{n} \beta_i!, \qquad {\beta \choose \gamma} := \prod_{i=1}^{n} {\beta_i \choose \gamma_i}, \qquad z^{\beta} := \prod_{i=1}^{n} z_i^{\beta_i}$$

whereas D_{β} stands for $\frac{\partial^{|\beta|}}{\partial x_{1}^{\beta_{1}} \dots \partial x_{n}^{\beta_{n}}}$.

Let Ω be an open set of \mathbb{R}^n ; we list now some Banach spaces which will be used throughout. If $k \in \mathbb{N}$ and $\alpha > 0$, $\alpha \notin \mathbb{N}$, we set:

$$C^{k}(\overline{\Omega}) := \{ f : \overline{\Omega} \to \mathbb{C} : D^{\beta} f \text{ is uniformly continuous and bounded } \forall \beta \in \mathbb{N}^{n}$$
with $|\beta| \leq k \}$

$$C^{\alpha}(\overline{\Omega}) := \{ f \in C^{[\alpha]}(\overline{\Omega}) : D^{\beta} f \text{ is } (\alpha - [\alpha]) \text{-Hölder continuous and bounded } \forall \beta \in \mathbb{N}^{n} \text{ with } |\beta| = [\alpha] \},$$

where $[\alpha]$ is the greatest integer less than α . The spaces $C^k(\overline{\Omega})$, $C^{\alpha}(\overline{\Omega})$ are endowed with the norms

$$\|f\|_{C^{k}(\bar{\Omega})} := \sum_{|\beta| \leq k} \|D^{\beta}f\|_{C^{0}(\bar{\Omega})}, \quad \|f\|_{C^{\alpha}(\bar{\Omega})} := \|f\|_{C^{[\alpha]}(\bar{\Omega})} + \sum_{|\beta| = [\alpha]} [D^{\beta}f]_{C^{\alpha-[\alpha]}(\bar{\Omega})},$$

where $\|\cdot\|_{C^{0}(\bar{\Omega})}$ and, for $\eta \in]0, 1[, [\cdot]_{C^{\eta}(\bar{\Omega})}$ are the usual sup-norm and Hölder-seminorm:

$$\|g\|_{C^{0}(\overline{\Omega})} := \sup\left\{|g(x)|: x \in \overline{\Omega}\right\}, \quad [g]_{C^{\eta}(\overline{\Omega})} := \sup\left\{\frac{|g(x) - g(y)|}{|x - y|^{\eta}}: x, y \in \overline{\Omega}, x \neq y\right\}.$$

If k = 0, we write simply $C(\overline{\Omega})$ instead of $C^{0}(\overline{\Omega})$.

The spaces $C^k(\partial \Omega)$, $k \in \mathbb{N}$, are defined similarly, clearly involving only tangential derivatives.

Hölder Classes as Interpolation Spaces

If $x_0 \in \overline{\Omega}$, the open ball of center x_0 and radius r is denoted by $B(x_0, r)$. We set

(1.1)
$$\Omega(x_0, r) := \Omega \cap B(x_0, r), \quad x_0 \in \overline{\Omega}, r > 0.$$

If $\alpha > 0$ and $\alpha \notin \mathbb{N}$ we also set

(1.2)
$$h^{\alpha}(\bar{\Omega}) := \{ f \in C^{\alpha}(\bar{\Omega}) : \lim_{r \to 0^+} \sup_{x_0 \in \bar{\Omega}} [D^{\beta} f]_{C^{\alpha - \lceil \alpha \rceil}(\overline{\Omega(x_0, r)})} = 0 \ \forall \beta \in \mathbb{N}^n$$

with $|\beta| = \lceil \alpha \rceil \};$

thus if $\alpha \in]0, 1[$ we have $g \in h^{\alpha}(\overline{\Omega})$ if and only if

$$\lim_{r \to 0^+} \sup \left\{ \frac{|g(x) - g(y)|}{|x - y|^{\alpha}} : x, y \in \overline{\Omega}, 0 < |x - y| < r \right\} = 0.$$

The space $h^{\alpha}(\overline{\Omega})$ is a closed subspace of $C^{\alpha}(\overline{\Omega})$, and hence it is a Banach space with the norm of $C^{\alpha}(\overline{\Omega})$. We also need the usual Sobolev spaces: if $\beta \in [1, \infty[$, $k \in \mathbb{N}^+$, we set

$$L^{p}(\Omega) := \{ f : \Omega \to \mathbb{C} : f \text{ is measurable and } p \text{-integrable} \},\$$
$$W^{k,p}(\Omega) := \{ f \in L^{p}(\Omega) : D^{\beta} f \in L^{p}(\Omega) \forall \beta \in \mathbb{N}^{n} \text{ with } |\beta| \leq k \}$$

(here the derivatives are in the sense of distributions), with the obvious norms

$$\|f\|_{L^{p}(\Omega)} := \{ \int_{\Omega} |f(x)|^{p} dx \}^{1/p}, \quad \|f\|_{W^{k,p(\Omega)}} := \{ \sum_{|\alpha| \leq k} \|D^{\beta}f\|_{L^{p}(\Omega)}^{p} \}^{1/p}.$$

Let now Ω be a bounded open set of \mathbb{R}^n , $n \ge 1$, with boundary $\partial \Omega$ of class C^{2m} , $m \ge 1$. We introduce the differential operators

(1.3)
$$A(x, D) := \sum_{|\alpha| \leq 2m} a_{\alpha}(x) D^{\alpha}, \quad x \in \overline{\Omega},$$

(1.4)
$$B_j(x, D) := \sum_{|\beta| \le m_j} b_{j\beta}(x) D^{\beta}, \quad x \in \partial \Omega, \quad j = 1, \dots, m$$

under the following assumptions:

(1.5)
$$a_{\alpha} \in C(\overline{\Omega}), \quad |\alpha| \leq 2m; \quad b_{j\beta} \in C^{2m-m_j}(\partial \Omega), \quad |\beta| \leq m_j, \quad j=1,\ldots,m$$

(uniform ellipticity). There exist $\eta \in [0, 2\pi[, v > 0 \text{ such that}]$

(1.6)
$$v(|\xi|^{2m}+t^{2m}) \leq |\sum_{|\alpha|=2m} a_{\alpha}(x) \xi^{\alpha} - (-1)^{m} e^{i\eta} t^{2m}| \quad \forall x \in \overline{\Omega}, \ \forall \xi \in \mathbb{R}^{n}, \ \forall t \in \mathbb{R}.$$

(root condition). If $x \in \partial \Omega$, $\xi \in \mathbb{R}^n$, $t \in \mathbb{R}$ and $(\xi, t) \neq (0, 0)$, $(\xi | v(x)) = 0$ the polynomial

(1.7)
$$\zeta \to \sum_{|\alpha|=2m} a_{\alpha}(x)(\xi+\zeta v(x))^{\alpha} - (-1)^{m} e^{i\eta} t^{2m}$$

has exactly *m* roots $\zeta_j^+(x, \xi, t)$ with positive imaginary part (here v(x) is the unit outward normal vector at x and $(\cdot|\cdot)$ is the scalar product in \mathbb{R}^n).

(complementing condition). If $x \in \partial \Omega$, $\xi \in \mathbb{R}^n$, $t \in \mathbb{R}$ and $(\xi, t) \neq (0, 0)$, $(\xi | v(x)) = 0$ the *m* polynomials

(1.8)
$$\zeta \to \sum_{|\beta|=m_j} b_{j\beta}(x) (\xi + \zeta v(x))^{\beta}$$

are linearly independent modulo the polynomial (see (1.7))

$$\zeta \to \prod_{j=1}^m (\zeta - \zeta_j^+(x,\,\xi,\,t)).$$

(normality) $m_j \in \mathbb{N}, j = 1, ..., m, 0 \leq m_j < m_i \leq 2m - 1$ if j < i, and

(1.9)
$$\sum_{|\beta|=m_j} b_{j\beta} v(x)^{\beta} \neq 0 \quad \forall x \in \partial \Omega, \ j=1, \ldots, m$$

Let $A(\cdot, D)$ and $B_j(\cdot, D)$ be defined by (1.3) and (1.4). Then we consider the non-homogeneous problem

(1.10)
$$\lambda u - A(\cdot, D) u = f \text{ in } \Omega,$$
$$B_j(\cdot, D) u = g_j \text{ on } \partial \Omega, \quad j = 1, ..., m$$

with prescribed data f, g_1, \ldots, g_m .

The following result is well known (Agmon [6]):

Theorem 1.1. Suppose that (1.5), ..., (1.9) hold. Then there exists $\lambda_0 \ge 0$ such that if $|\lambda| > \lambda_0$ and $\arg \lambda = \eta$ (η is defined in (1.6)) then for each $f \in L^p(\Omega)$ and $g = (g_1, ..., g_m) \in \prod_{j=1}^m W^{2m-m_j-1/p,p}(\partial \Omega), p \in]1, \infty[$, problem (1.10) has a unique solution $u \in W^{2m,p}(\Omega)$; moreover there exists $M_p > 0$ such that

(1.11)
$$\sum_{k=0}^{2m} |\lambda - \lambda_0|^{1 - \frac{k}{2m}} \|D^k u\|_{L^p(\Omega)}$$
$$\leq M_p \left\{ \|f\|_{L^p(\Omega)} + \sum_{j=1}^m \sum_{k=0}^{2m-m_j} |\lambda - \lambda_0|^{1 - \frac{m_j + k}{2m}} \|D^k \tilde{g}_j\|_{L^p(\Omega)} \right\},$$

where \tilde{g}_j is any function in $W^{2m-m_j,p}(\Omega)$ satisfying $\tilde{g}_j|_{\partial\Omega} = g_j$.

Proof. For the estimate see e.g. Tanabe [21, Lemma 3.8.1]; a proof of existence is in Triebel [22, Theorems 5.5.2–4.9.1].

Theorem 1.1 is basic in order to get an estimate similar to (1.11) in $C(\overline{\Omega})$. Namely we have (Stewart [20]):

Theorem 1.2. Suppose that (1.5), ..., (1.9) hold. Then there exists $\lambda_1 \ge 0$ such that if $|\lambda| > \lambda_1$ and $\arg \lambda = \eta$, then for each $f \in C(\overline{\Omega})$ and $g = (g_1, ..., g_m) \in \prod_{j=1}^m C^{2m-m_j}(\partial \Omega)$

problem (1.10) has a unique solution $u \in \bigcap_{p \in]1, \infty[} W^{2m, p}(\Omega)$; moreover for each p > nthere exists $N_p > 0$ such that $p \in]1, \infty[$

$$(1.12) \quad \sum_{k=0}^{2m-1} |\lambda - \lambda_1|^{1-\frac{k}{2m}} \|D^k u\|_{C(\bar{\Omega})} + |-\lambda_1|^{\frac{n}{2mp}} \sup_{x_0 \in \bar{\Omega}} \|D^{2m} u\|_{L^p(\Omega(x_0, |\lambda - \lambda_1|^{-1/2m}))} \\ \leq N_p \left\{ \|f\|_{C(\bar{\Omega})} + \sum_{j=1}^m \sum_{k=0}^{2m-m_j} |\lambda - \lambda_1|^{1-\frac{m_j+k}{2m}} \|D^k \tilde{g}_j\|_{C(\partial\Omega)} \right\},$$

where \tilde{g}_j is any function in $C^{2m-m_j}(\bar{\Omega})$ satisfying $\tilde{g}_j|_{\partial\Omega} = g_j$.

Proof. See the Appendix below. \Box

We need two further basic results. The first is the well-known Sobolev's imbedding theorem, the second yields a method for extending functions defined on subsets of \mathbb{R}^n .

Proposition 1.3. Suppose that Ω is bounded and has Lipschitz boundary $\partial \Omega$; let q > n and $\alpha = 1 - n/q$. Then $W^{1,q}(\Omega) \hookrightarrow h^{\alpha}(\overline{\Omega})$; moreover there exist $K_1, K_2 > 0$ such that for each $x_0 \in \overline{\Omega}$, r > 0 and $u \in W^{1,q}(\Omega)$ we have:

- (i) $||u||_{C(\overline{\Omega(x_0,r)})} \leq K_1 r^{-n/q} \{ ||u||_{L^q(\Omega(x_0,r))} + r ||Du||_{L^q(\Omega(x_0,r))} \},$
- (ii) $[u]_{C^{\alpha}(\Omega(x_0,r))} \leq K_2 \|Du\|_{L^q(\Omega(x_0,r))}.$

Proof. See e.g. Adams [5, Lemmata 5.15 and 5.17].

Proposition 1.4. (i) Let F be a closed set of \mathbb{R}^n , let $k \in \mathbb{N}$. There exists a mapping $E_k: C(F) \to C(\mathbb{R}^n)$ such that

- (a) $E_k(f)|_F \equiv f$,
- (b) $||E_k(f)||_{C^{\alpha}(\mathbb{R}^n)} \leq M_k ||f||_{C^{\alpha}(F)} \forall f \in C^{\alpha}(F), \forall \alpha \in [0, k],$

where M_k is independent of the closed set F and of $\alpha \in [0, k]$.

(ii) Let Ω be a bounded open set with Lipschitz boundary $\partial \Omega$. There exists a mapping $E: L^1(\Omega) \to L^1(\mathbb{R}^n)$ such that

(a) $E(f)|_{\Omega} \equiv f$,

(b) $||E(f)||_{W^{k,p}(\mathbb{R}^n)} \leq M_{k,\Omega} ||f||_{W^{k,p}(\Omega)} \forall f \in W^{k,p}(\Omega), \forall k \in \mathbb{N}, \forall p \in [1, \infty[,$

where $M_{k,\Omega}$ is independent of $p \in [1, \infty[$.

Proof. Part (i) is due to Whitney; for a proof see Stein [19, Chap. VI, Sect. 2].

The result of (ii) goes back to Calderon, and is also proved in [19, Chap. VI, Sect. 3]. \Box

We finish this section with the following

Definition 1.5. Let $\{B_j(\cdot, D)\}$ be defined by (1.4). If $p \in [1, \infty[, k=0, 1, ..., 2m and \alpha \in]0, 2m]$ we set:

$$\begin{split} W^{k,p}_{B}(\Omega) &:= \left\{ u \in W^{k,p}(\Omega) \colon B_{j}(\cdot, D) \ u = 0 \text{ on } \partial \Omega \text{ for } m_{j} < k - 1/p \right\} \\ C^{k}_{B}(\overline{\Omega}) &:= \left\{ u \in C^{k}(\overline{\Omega}) \colon B_{j}(\cdot, D) \ u = 0 \text{ on } \partial \Omega \text{ for } m_{j} \leq k \right\} \\ C^{\alpha}_{B}(\overline{\Omega}) &:= C^{\alpha}(\overline{\Omega}) \cap C^{[\alpha]}_{B}(\overline{\Omega}), \end{split}$$

 $h_B^{\alpha}(\overline{\Omega}) := h^{\alpha}(\overline{\Omega}) \cap C_B^{[\alpha]}(\overline{\Omega}).$

Remark 1.6. Let $f \in C_B^{\alpha}(\overline{\Omega})$ and let $m_j < \alpha$. Then, if we extend, via Proposition 1.4, the coefficients of $B_j(\cdot, D)$ to the whole $\overline{\Omega}$, we have $B_j(\cdot, D) f \in C^{\alpha - m_j}(\overline{\Omega})$. Hence the condition $B_j(\cdot, D) f = 0$ on $\partial \Omega$ means in particular that

$$||B_{j}(\cdot, D)f||_{C^{r}(\partial\Omega)} = 0, \quad r = 0, 1, ..., [\alpha - m_{j}].$$

§ 2. The Main Result

Let *E* be a Banach space and let $A: D_A \hookrightarrow E \to E$ be a closed linear operator whose domain D_A is possibly not dense in *E*. We assume that the resolvent $\rho(A)$ of *A* contains a fixed half-line $R_{\eta,\omega} := \{z \in \mathbb{C} : \arg z = \eta, |z| > \omega\}$; more precisely, we suppose that there exist $\omega \ge 0, \eta \in [0, 2\pi[$ and M > 0 such that:

(2.1)
$$\rho(A) \supseteq R_{\eta,\omega}, \quad \|R(z,A)\|_{\mathscr{L}(E)} \leq \frac{M}{|z-\omega|} \quad \forall z \in R_{\eta,\omega};$$

here $R(z, A) := (z - A)^{-1}$. By replacing possibly A with $e^{i\eta}(A - \omega)$, it is not restrictive to assume, instead of (2.1), that:

(2.2)
$$\rho(A) \supseteq R_{0,0} =]0, \infty[, ||R(s, A)||_{\mathscr{L}(E)} \le \frac{M}{s} \quad \forall s > 0.$$

Then in particular for $s \in [1, \infty)$ we have

$$\|AR(s, A)x\|_{E} \leq M \|x\|_{E} \qquad \forall x \in E,$$

$$s\|AR(s, A)x\|_{E} \leq M \|x\|_{D_{A}} \qquad \forall x \in D_{A},$$

where $\|\cdot\|_{D_A}$ is the graph norm. Thus, following Grisvard [11], we are led to define the intermediate spaces $D_A(\theta, \infty)$ and $D_A(\theta), \theta \in [0, 1[, by:$

Definition 2.1. We set:

$$D_A(\theta, \infty) := \{ x \in E : \sup_{s \ge 1} s^{\theta} \| AR(s, A) x \|_E < \infty \},\$$
$$D_A(\theta) := \{ x \in D_A(\theta, \infty) : \lim_{s \to \infty} s^{\theta} \| AR(s, A) x \|_E = 0 \}$$

A norm in $D_A(\theta, \infty)$ is the following:

(2.3)
$$\|x\|_{D_{A}(\theta,\infty)} := \|x\|_{E} + \sup_{s \ge 1} s^{\theta} \|AR(s,A)x\|_{E}.$$

Clearly $D_A \hookrightarrow D_A(\theta) \hookrightarrow D_A(\theta, \infty) \hookrightarrow D_A(\sigma) \hookrightarrow \overline{D_A}$ if $0 < \sigma < \theta < 1$. Moreover $D_A(\sigma)$ is a closed subspace of $D_A(\theta, \infty)$: indeed, it coincides with the closure of D_A with respect to the norm (2.3) (a proof is readily obtained by adapting that of [11, Lemme 2.5]).

Proposition 2.2. $D_A(\theta, \infty)$ and $D_A(\theta)$ are real interpolation spaces between D_A and E, namely:

$$D_A(\theta, \infty) = (D_A, E)_{1-\theta, \infty}, \quad D_A(\theta) = (D_A, E)_{1-\theta}.$$

(For the precise definition and more properties of the spaces $(D_A, E)_{\alpha,\infty}$ see Lions-Peetre [14] or Triebel [22]; for the spaces $(D_A, E)_{\alpha}$ see Da Prato-Grisvard [9].)

Proof. See [11, Prop. 5.5] and [9, Théorème 2.5].

After these preparations, we are ready to state our main result. Let Ω be a bounded open set of \mathbb{R}^n , $n \ge 1$, with boundary $\partial \Omega$ of class C^{2m} , $m \ge 1$; let $A(\cdot, D)$, $\{B_j(\cdot, D)\}_{1 \le j \le m}$ be the differential operators defined by (1.3), (1.4) and suppose that (1.5), ..., (1.9) hold. If we set $E = C(\overline{\Omega})$, by Theorem 1.2 the operator A, defined by

$$D_A := \{ u \in \bigcap_{p \ge 1} W^{2m, p}(\Omega) \colon A(\cdot, D) \ u \in C(\overline{\Omega}), B_j(\cdot, D) \ u = 0 \text{ on } \partial\Omega, j = 1, \dots, m \}$$

 $(2.4) \quad A u := A(\cdot, D) u$

fulfills (2.1) for some $\omega \ge 0$, $\eta \in [0, 2\pi[$ and M > 0. We will prove the following result:

Theorem 2.3. Let A be defined by (2.4) and suppose that (2.1) holds. If $\theta \in]0, 1[$ and $2m\theta$ is not an integer, then

$$D_A(\theta, \infty) = C_B^{2m\theta}(\overline{\Omega}), \quad D_A(\theta) = h_B^{2m\theta}(\overline{\Omega}),$$

with equivalence of norms.

(The spaces $C_B^{\alpha}(\overline{\Omega})$ and $h_B^{\alpha}(\overline{\Omega})$ were introduced in Definition 1.5.)

The proof of the first equality is contained in Sects. 3 and 4 below; the proof of the second one is quite similar and will be sketched in Sect. 5.

§ 3. The First Inclusion

Let A be defined by (2.4) and suppose that (2.1) holds. Then, considering $e^{i\eta}(A - \omega)$ in place of A, we can assume that (2.2) is true. Then we prove the following:

Theorem 3.1. If $\theta \in [0, 1[$ and $2m\theta$ is not an integer, then

$$C^{2m\theta}_{B}(\overline{\Omega}) \hookrightarrow D_{A}(\theta, \infty).$$

Proof. It suffices to show that

(3.1)
$$\sup_{s \ge 1} s^{\theta} \|AR(s, A)f\|_{C(\bar{\Omega})} \le C \|f\|_{C^{2m\theta}(\bar{\Omega})} \,\forall f \in C^{2m\theta}_{B}(\bar{\Omega}).$$

This will be done by constructing, for each fixed $f \in C_B^{2m\theta}(\overline{\Omega})$, a function w: $[1, \infty] \to C(\overline{\Omega})$ such that:

(3.2)
$$\|w(s) - f\|_{C(\bar{\Omega})} \leq c \, s^{-\theta} \|f\|_{C^{2m\theta}(\bar{\Omega})} \quad \forall s \geq 1$$

$$(3.3) ||AR(s, A) w(s)||_{C(\bar{\Omega})} \leq c s^{-\theta} ||f||_{C^{2m\theta}(\bar{\Omega})} \forall s \geq 1:$$

this will imply (3.1) since

P. Acquistapace and B. Terreni

$$\|AR(s, A)f\|_{C(\bar{\Omega})} \leq \|AR(s, A)\|_{\mathscr{L}(C(\bar{\Omega}))} \cdot \|f - w(s)\|_{C(\bar{\Omega})} + \|AR(s, A)w(s)\|_{C(\bar{\Omega})}$$
$$\leq c s^{-\theta} \|f\|_{C^{2m\theta}(\bar{\Omega})}.$$

Let $f \in C_B^{2m\theta}(\overline{\Omega})$, and consider an extension $F \in C^{2m\theta}(\mathbb{R}^n)$ of f (Prop. 1.4(i)), satisfying

(3.4)
$$||F||_{C^{2m\theta}(\mathbb{R}^n)} \leq c ||f||_{C^{2m\theta}(\mathbb{R}^n)}$$

Define an auxiliary function $v_0: [0, 1] \rightarrow C(\mathbb{R}^n)$ by

(3.5)
$$v_0(t)(x) \equiv v_0(t, x) := \int_{\mathbb{R}^n} \phi(z) F(x-tz) dz = t^{-n} \int_{\mathbb{R}^n} \phi\left(\frac{x-y}{t}\right) F(y) dy,$$

where $\phi \in C^{\infty}(\mathbb{R}^n)$ is a real-valued function such that $0 \leq \phi \leq 1$, $\phi \equiv 0$ outside B(0, 1), $\int \phi(z) dz = 1$, and ϕ is even in each variable. Rn

We have the following lemma, whose proof is straightforward:

Lemma 3.2. (i) $\lim_{t \to 0^+} ||v_0(t) - F||_{C(\mathbb{R}^n)} = 0$, i.e. $v_0(0) = f$,

(ii)
$$v_0 \in C^{\infty}(]0, 1] \times \mathbb{R}^n$$
 and

$$\sup_{t\in]0,1]} \left\| \frac{\partial^h v_0(t)}{\partial t^h} \right\|_{\mathcal{C}(\mathbb{R}^n)} \leq c \|F\|_{\mathcal{C}^h(\mathbb{R}^n)}, \quad h=0, 1, \dots, [2m\theta]. \square$$

Let us define now

(3.6)
$$v(t)(x) \equiv v(t, x) := \sum_{h=0}^{\lfloor 2m\theta \rfloor} (-1)^h \frac{\partial^h v_0}{\partial t^h}(t, x) \frac{t^h}{h!}, \quad t \in]0, 1], x \in \mathbb{R}^n.$$

Then clearly $v \in C^{\infty}([0, 1] \times \mathbb{R}^n)$ and we have the following result:

Lemma 3.3. For each $t \in [0, 1]$ we have:

- (i) $||v(t) F||_{C(\mathbb{R}^n)} \leq c t^{2m\theta} ||F||_{C^{2m\theta}(\mathbb{R}^n)}$
- (ii) $\|D^{\gamma}v(t) D^{\gamma}F\|_{C(\mathbb{R}^{n})} \leq c t^{2m\theta |\gamma|} \|F\|_{C^{2m\theta}(\mathbb{R}^{n})} \forall \gamma \in \mathbb{N}^{n} \text{ with } |\gamma| \leq [2m\theta]$ (iii) $\|D^{\gamma}v(t)\|_{C(\mathbb{R}^{n})} \leq c t^{-(|\gamma| 2m\theta)} \|F\|_{C^{2m\theta}(\mathbb{R}^{n})} \forall \gamma \in \mathbb{N}^{n} \text{ with } |\gamma| > 2m\theta.$

Proof. (i) Let us compute $\frac{\partial^h v_0}{\partial t^h}(t)$ for $h \leq [2m\theta]$: it is easily seen that

(3.7)
$$\frac{\partial^n v_0}{\partial t^h}(t, x) = \int_{\mathbb{R}^n} \phi(z) \sum_{|\beta|=h} D^\beta F(x-tz)(-z)^\beta \frac{h!}{\beta!} dz$$

and consequently

$$v(t, x) = \int_{\mathbb{R}^n} \phi(z) \sum_{|\beta| \le \lfloor 2m\theta \rfloor} \frac{D^{\rho} F(x - tz)}{\beta!} z^{\beta} t^{|\beta|} dz$$

On the other hand for each $z \in \mathbb{R}^n$ and $t \in [0, 1]$ we have by Taylor's formula

$$F(x) = \sum_{|\beta| \le \lfloor 2m\theta \rfloor} \frac{D^{\beta} F(x-tz)}{\beta!} z^{\beta} t^{|\beta|} + \sum_{|\beta| = \lfloor 2m\theta \rfloor} \frac{D^{\beta} F(\xi)}{\beta!} z^{\beta} t^{\lfloor 2m\theta \rfloor}$$

where $\xi = \xi(t, z, x)$ is a suitable point in the segment joining x and x - tz; hence we get

$$v(t, x) - F(x) = \int_{\mathbb{R}^n} \phi(z) \left\{ \sum_{|\beta| \le \lfloor 2m\theta \rfloor} \frac{D^{\beta} F(x - t z)}{\beta!} z^{\beta} t^{|\beta|} - F(x) \right\} dz$$
$$= \int_{\mathbb{R}^n} \phi(z) \sum_{|\beta| = \lfloor 2m\theta \rfloor} \left[D^{\beta} F(x - t z) - D^{\beta} F(\xi) \right] \frac{z^{\beta} t^{\lfloor 2m\theta \rfloor}}{\beta!} dz$$

and finally

$$\begin{aligned} \|v(t) - F\|_{C(\mathbb{R}^n)} &\leq c \int_{\mathbb{R}^n} \phi(z) |z|^{2m\theta} t^{2m\theta} dz \sum_{|\beta| = [2m\theta]} [D^{\beta} F]_{C^{2m\theta} - [2m\theta](\mathbb{R}^n)} \\ &\leq c t^{2m\theta} \|F\|_{C^{2m\theta}(\mathbb{R}^n)}. \end{aligned}$$

(ii) Fix $\gamma \in \mathbb{N}^n$ with $|\gamma| \leq [2m\theta]$ and compute $D^{\gamma} \frac{\partial^h v_0(t)}{\partial t^h}$ for $h \leq [2m\theta]$. If $|\gamma| + h \leq [2m\theta]$, by (3.7) we get:

(3.8)
$$D^{\gamma} \frac{\partial^{h} v_{0}(t, x)}{\partial t^{h}} = \int_{\mathbb{R}^{n}} \phi(z) \sum_{|\beta|=h} D^{\beta+\gamma} F(x-tz)(-z)^{\beta} \frac{h!}{\beta!} dz,$$

if $|\gamma| + h \leq [2m\theta].$

On the other hand if $|\gamma| + h > 2m\theta$ we choose $\gamma_1, \gamma_2 \in \mathbb{N}^n$ such that

$$|\gamma_1| = [2m\theta] - h, \quad |\gamma_2| = |\gamma| - [2m\theta] + h, \quad \gamma_1 + \gamma_2 = \gamma;$$

note that $|\gamma_2| \ge 1$. Hence using (3.8) we can write

$$\begin{split} D^{\frac{\gamma}{2}} \frac{\partial^{h} v_{0}}{\partial t^{h}} (t, x) &= D^{\frac{\gamma_{2}}{2}} \left(D^{\frac{\gamma_{1}}{2}} \frac{\partial^{h} v_{0}}{\partial t^{h}} (t, x) \right) \\ &= D^{\frac{\gamma_{2}}{2}} \left(\int_{\mathbb{R}^{n}} \phi(z) \sum_{|\beta|=h} D^{\beta+\frac{\gamma_{1}}{2}} F(x-tz) (-z)^{\beta} \frac{h!}{\beta!} dz \right) \\ &= D^{\frac{\gamma_{2}}{2}} \left(t^{-n} \int_{\mathbb{R}^{n}} \sum_{|\beta|=h} D^{\beta+\frac{\gamma_{1}}{2}} F(y) \frac{h!}{\beta!} \phi\left(\frac{x-y}{t}\right) \left(\frac{y-x}{t}\right)^{\beta} dy \right) \\ &= t^{-n} \int_{\mathbb{R}^{n}} \sum_{|\beta|=h} D^{\beta+\frac{\gamma_{1}}{2}} F(y) \frac{h!}{\beta!} \left[D^{\frac{\gamma_{2}}{2}} (\phi(\zeta)(-\zeta)^{\beta}) \right]_{\zeta=\frac{x-y}{t}} \cdot t^{-\frac{\gamma_{2}}{2}} dy \\ &= t^{-\frac{\gamma_{2}}{2}} \int_{\mathbb{R}^{n}} \sum_{|\beta|=h} D^{\beta+\frac{\gamma_{1}}{2}} F(x-tz) \frac{h!}{\beta!} D^{\frac{\gamma_{2}}{2}} (\phi(z)(-z)^{\beta}) dz, \end{split}$$

and, since $\int_{\mathbb{R}^n} D^{\gamma_2}(\phi(z)(-z)^{\beta}) dz = 0$, we obtain

$$D^{\gamma} \frac{\partial^{h} v_{0}}{\partial t^{h}}(t, x) = t^{-(|\gamma| - [2m\theta] + h)} \int_{\mathbb{R}^{n}} \sum_{|\beta| = h} [D^{\beta + \gamma_{1}} F(x - tz) - D^{\beta + \gamma_{1}} F(x)]$$
$$\cdot \frac{h!}{\beta!} D^{\gamma_{2}}(\phi(z)(-z)^{\beta}) dz;$$

this implies

(3.9)
$$\left\| D^{\gamma} \frac{\partial^{h} v_{0}}{\partial t^{h}}(t) \right\|_{C(\mathbb{R}^{n})}$$

$$\leq c t^{-(|\gamma| - [2m\theta] + h)} \sum_{|\beta| = [2m\theta]} [D^{\beta} F]_{C^{2m\theta} - [2m\theta](\mathbb{R}^{n})} t^{2m\theta - [2m\theta]}$$

$$\leq c t^{-(|\gamma| + h - 2m\theta)} \|F\|_{C^{2m\theta}(\mathbb{R}^{n})}, \quad \text{if } |\gamma| + h > 2m\theta.$$

Now by (3.6) we have:

$$\begin{split} \|D^{\gamma} v(t) - D^{\gamma} F\|_{C(\mathbb{R}^{n})} &\leq \left\| \sum_{h=0}^{[2m\theta]-|\gamma|} (-1)^{h} D^{\gamma} \frac{\partial^{h} v_{0}}{\partial t^{h}}(t) \frac{t^{h}}{h!} - D^{\gamma} F \right\|_{C(\mathbb{R}^{n})} \\ &+ \left\| \sum_{h=[2m\theta]-|\gamma|+1}^{[2m\theta]} (-1)^{h} D^{\gamma} \frac{\partial^{h} v_{0}}{\partial t^{h}}(t) \frac{t^{h}}{h!} \right\|_{C(\mathbb{R}^{n})} = I_{1} + I_{2}. \end{split}$$

We estimate I_1 as in (i), by using (3.8) and Taylor's formula for $D^{\gamma}F$ of order $[2m\theta] - |\gamma| - 1$, centered at x - tz:

$$\begin{split} I_{1} &= \left\| \int_{\mathbb{R}^{n}} \phi(z) \left[\sum_{|\beta| \leq [2m\theta] - |\gamma|} \frac{D^{\gamma+\beta} F(x-tz)}{\gamma!} z^{\beta} t^{|\beta|} - D^{\gamma} F(x) \right] dz \right\|_{C(\mathbb{R}^{n})} \\ &= \left\| \int_{\mathbb{R}^{n}} \phi(z) \sum_{|\beta| = [2m\theta] - |\gamma|} \left[D^{\gamma+\beta} F(x-tz) - D^{\gamma+\beta} F(\zeta) \right] \frac{z^{\gamma}}{\gamma!} t^{[2m\theta] - |\gamma|} dz \right\|_{C(\mathbb{R}^{n})} \\ &\leq c \sum_{|\beta| = [2m\theta]} \left[D^{\beta} F \right]_{C^{2m\theta} - [2m\theta](\mathbb{R}^{n})} t^{2m\theta - |\gamma|} \leq c t^{2m\theta - |\gamma|} \|F\|_{C^{2m\theta}(\mathbb{R}^{n})} . \end{split}$$

In order to estimate I_2 we just use (3.9):

$$I_2 \leq \sum_{h=\lfloor 2m\theta \rfloor - |\gamma|+1}^{\lfloor 2m\theta \rfloor} \left\| D^{\gamma} \frac{\partial^h v_0}{\partial t^h}(t) \right\|_{C(\mathbb{R}^n)} \frac{t^h}{h!} \leq c t^{2m\theta - |\gamma|} \|F\|_{C^{2m\theta}(\mathbb{R}^n)}.$$

This we obtain

$$\|D^{\gamma} v(t) - D^{\gamma} F\|_{C(\mathbb{R}^{n})} \leq I_{1} + I_{2} \leq c t^{2m\theta - |\gamma|} \|F\|_{C^{2m\theta}(\mathbb{R}^{n})},$$

and (ii) follows.

(iii) Let $\gamma \in \mathbb{N}^n$ be such that $|\gamma| \ge 2m\theta$. By using again (3.9) we have:

$$\|D^{\gamma} v(t)\|_{\mathcal{C}(\mathbb{R}^n)} \leq \sum_{h=0}^{\lfloor 2m\theta \rfloor} \left\|D^{\gamma} \frac{\partial^h v_0}{\partial t^h}(t)\right\|_{\mathcal{C}(\mathbb{R}^n)} \frac{t^h}{h!} \leq c t^{-(|\gamma|-2m\theta)} \|F\|_{\mathcal{C}^{2m\theta}(\mathbb{R}^n)},$$

and the proof is complete. \Box

The desired function w: $[1, \infty[\rightarrow C(\overline{\Omega}) \text{ satisfying (3.2) and (3.3) is now}]$

(3.10)
$$w(s)(x) \equiv w(s, x) := v(s^{-1/2m}, x), \quad s \ge 1, \ x \in \overline{\Omega};$$

its main properties are summarized as follows:

460

Hölder Classes as Interpolation Spaces

Corollary 3.4. We have:

- (i) $w \in C^{\infty}([1, \infty[\times \overline{\Omega}),$
- (ii) $||w(s) f||_{C(\bar{\Omega})} \leq c s^{-\theta} ||f||_{C^{2m\theta}(\bar{\Omega})},$ (iii) $||D^{\gamma}w(s) D^{\gamma}f||_{C(\bar{\Omega})} \leq c s^{-(\theta |\gamma|/2m)} ||f||_{C^{2m\theta}(\bar{\Omega})} \forall \gamma \in \mathbb{N}^{n}$ with $|\gamma| \leq [2m\theta],$
- (iv) $\|D^{\gamma}w(s)\|_{C(\overline{\Omega})} \leq c s^{|\gamma|/2m-\theta} \|f\|_{C^{2m\theta}(\overline{\Omega})} \forall \gamma \in \mathbb{N}^n \text{ with } |\gamma| > 2m\theta.$

Proof. It is an immediate consequence of (3.4) and Lemma 3.3.

By Corollary 3.4(ii) we have shown (3.2). Concerning (3.3) we set:

(3.11)
$$u(s) := s R(s, A) w(s), \quad s \ge 1,$$

and observe that

(3.12)
$$AR(s, A) w(s) = u(s) - w(s), s \ge 1.$$

Now u(s) satisfies:

$$u(s) \in \bigcap_{p \ge 1} W^{2m, p}(\Omega)$$

$$s u(s, x) + [\lambda_0 - A(x, D)] u(s, x) = s w(s, x) \text{ in } \Omega,$$

$$B_j(x, D) u(s, x) = 0, \quad j = 1, ..., m, \text{ on } \partial \Omega.$$

Hence u(s) - w(s) is the unique solution of:

$$\begin{split} & u(s) - w(s) \in \bigcap_{p \ge 1} W^{2m, p}(\Omega), \\ & s [u(s, x) - w(s, x)] + [\lambda_0 - A(x, D)] [u(s, x) - w(s, x)] \\ & = [A(x, D) - \lambda_0] w(s, x) \quad \text{in } \Omega \\ & B_j(x, D) [u(s, x) - w(s, x)] = -B_j(x, D) w(s, x), \quad j = 1, ..., m, \quad \text{on } \partial \Omega. \end{split}$$

Thus by Theorem 1.2 we obtain:

(3.13)
$$\|u(s) - w(s)\|_{C(\bar{\Omega})} \leq c \, s^{-1} \|[A(\cdot, D) - \lambda_0] w(s)\|_{C(\bar{\Omega})}$$

$$+ c \sum_{j=1}^{m} \sum_{k=0}^{2m-m_j} s^{-\frac{m_j+k}{2m}} \|B_j(\cdot, D) w(s)\|_{C^k(\partial\Omega)}$$

$$= J_1 + J_2.$$

We estimate J_1 by using Corollary 3.4(iii)–(iv) and recalling that $s \ge 1$:

(3.14)
$$J_{1} \leq c \, s^{-1} \sum_{|\beta| \leq 2m} \|D^{\beta} \, w(s)\|_{C(\bar{\Omega})}$$
$$\leq c \, s^{-1} \left\{ 1 + \sum_{h=[2m\theta]+1}^{2m} s^{(h/2m)-\theta} \right\} \|f\|_{C^{2m\theta}(\bar{\Omega})}$$
$$\leq c \, s^{-\theta} \|f\|_{C^{2m\theta}(\bar{\Omega})}.$$

To estimate J_2 we split it into three terms. Set

$$j_0 := \max\{j \leq m : m_j < 2m\theta\};$$

then

(3.15)
$$J_{2} = \left(\sum_{j=1}^{j_{0}} \sum_{k=0}^{\lfloor 2m\theta \rfloor - m_{j}} + \sum_{j=1}^{j_{0}} \sum_{k=\lfloor 2m\theta \rfloor - m_{j}+1}^{2m-m_{j}} + \sum_{j=j_{0}+1}^{m} \sum_{k=0}^{2m-m_{j}}\right) \cdot \|B_{j}(\cdot, D) w(s)\|_{C^{k}(\partial\Omega)} = J_{21} + J_{22} + J_{23};$$

now by Corollary 3.4(iii)-(iv) we get

$$(3.16) \quad J_{22} \leq c \sum_{j=1}^{j_0} \sum_{k=\lfloor 2m\theta \rfloor - m_j+1}^{2m-m_j} s^{-(m_j+k)/2m} \|w(s)\|_{C^k + m_j(\partial \Omega)} \leq c s^{-\theta} \|f\|_{C^{2m\theta}(\bar{\Omega})},$$

and similarly

(3.17)
$$J_{23} \leq c \sum_{j=j_0+1}^{m} \sum_{k=0}^{2m-m_j} s^{-\frac{m_j+k}{2m}} \|w(s)\|_{C^{k+m_j}(\partial\Omega)} \leq c s^{-\theta} \|f\|_{C^{2m\theta}(\bar{\Omega})}.$$

Finally, concerning J_{21} we use Remark 1.6 and Corollary 3.4(iii), obtaining

(3.18)
$$J_{21} = \sum_{j=1}^{j_0} \sum_{k=0}^{[2m\theta]-m_j} \|B_j(\cdot, D)[w(s)-f]\|_{C^k(\partial\Omega)}$$
$$\leq c \sum_{j=1}^{j_0} \sum_{k=0}^{[2m\theta]-m_j} \|w(s)-f\|_{C^k+m_j(\partial\Omega)} \leq c s^{-\theta} \|f\|_{C^{2m\theta}(\bar{\Omega})}$$

Collecting (3.13), ..., (3.18) we get

$$\|u(s) - w(s)\|_{C(\bar{\Omega})} \leq c \, s^{-\theta} \|f\|_{C^{2m\theta}(\bar{\Omega})}$$

and recalling (3.12) we have proved (3.3).

As (3.1) follows by (3.2) and (3.3), the proof of Theorem 3.1 is complete. \Box

§4. The Second Inclusion

Again, let A be defined by (2.4) and, after the usual modifications, assume that (2.2) holds. We have to prove:

Theorem 4.1. If $\theta \in]0, 1[$ and $2m\theta$ is not an integer, then

$$D_A(\theta, \infty) \hookrightarrow C_B^{2m\theta}(\overline{\Omega}).$$

Proof. We will construct a function $u:]0, 1] \to D_A$ such that $u(t) \to f$ in $C_B^{[2m\theta]}(\overline{\Omega})$ as $t \to 0^+$: this will imply that $f \in C_B^{[2m\theta]}(\overline{\Omega})$; next, we will show that $f \in C^{2m\theta}(\overline{\Omega})$ by using the approximating function u(t), evaluated at suitable points t.

We start with defining

(4.1)
$$u(t)(x) \equiv u(t, x) := t^{-1} [R(t^{-1}, A) f](x), \quad t \in]0, 1], \ x \in \overline{\Omega}.$$

462

Remark 4.2. Clearly $u \in C^1([0, 1], C(\overline{\Omega}))$, and it is readily seen that

(4.2)
$$u'(t) = t^{-2} R(t^{-1}, A) A R(t^{-1}, A) f, \quad t \in]0, 1].$$

Thus in particular $u, u' \in C([0, 1], D_A)$, which implies

$$u(t), u'(t) \in \bigcap_{p \ge 1} W^{2mp}(\Omega) \hookrightarrow \bigcap_{\alpha \in]0, 1[} C^{2m\alpha}(\overline{\Omega})$$

$$B_j(\cdot, D) u(t) = B_j(\cdot, D) u'(t) = 0 \quad \text{on } \partial\Omega$$

$$\forall t \in]0, 1].$$

As a consequence we have for $|\beta| \leq 2m - 1$

$$\frac{\partial}{\partial t} D^{\beta} u(t, x) = D^{\beta} \frac{\partial}{\partial t} u(t, x)$$
 in the sense of $C(]0, 1] \times \overline{\Omega}$,

and for $|\beta| = 2m$

$$\frac{\partial}{\partial t} D^{\beta} u(t, x) = D^{\beta} \frac{\partial}{\partial t} u(t, x) \text{ in the sense of } \bigcap_{p \ge 1} L^{p}(]0, 1] \times \Omega.$$

We have the following key lemma:

Lemma 4.3. For each p > n there exists $C_p > 0$ such that:

(i)
$$\sum_{h=1}^{2m-1} t^{-\left(1-\frac{h}{2m}\right)} \sum_{\substack{|\beta|=h}} \|D^{\beta} u(t)\|_{C(\bar{\Omega})} + t^{-\frac{n}{2mp}} \sup_{x_0 \in \bar{\Omega}} \left\{ \sum_{\substack{|\beta|=2m}} \|D^{\beta} u(t)\|_{L^p(\Omega(x_0, t^{1/2m}))} \right\} \leq C_p t^{-1} \|f\|_{C(\bar{\Omega})},$$

(ii)
$$\sum_{h=1}^{2m-1} t^{-\left(1-\frac{h}{2m}\right)} \sum_{\substack{|\beta|=h}} \|D^{\beta} u'(t)\|_{C(\bar{\Omega})} + t^{-\frac{n}{2mp}} \sup_{x_{0}\in\bar{\Omega}} \left\{ \sum_{\substack{|\beta|=2m}} \|D^{\beta} u'(t)\|_{L^{p}(\Omega(x_{0},t^{1/2}m))} \right\} \leq C_{p} t^{-(2-\theta)} \|f\|_{D_{A}(\theta,\infty)}.$$

Proof. (i) It follows readily by (4.1) and Theorem 1.2 with $\lambda = \lambda_0 + t^{-1}$.

(ii) It follows by (4.2), Theorem 1.2 with $\lambda = \lambda_0 + t^{-1}$ and the fact that

$$\|AR(t^{-1},A)f\|_{C(\bar{\Omega})} \leq c t^{\theta} \|f\|_{D_{A}(\theta,\infty)}. \quad \Box$$

The next Lemma is a consequence of Lemma 4.3.

Lemma 4.4. We have:

- (i) $\lim_{t \to 0^+} ||u(t) f||_{C(\bar{\Omega})} = 0.$
- (ii) $\|D^{\beta} u(r) D^{\beta} u(s)\|_{C(\overline{\Omega})} \leq c \|r s\|^{\theta \frac{\|\beta\|}{2m}} \|f\|_{D_{A}(\theta,\infty)}$ $\forall r, s \in]0, 1], \forall \beta \in \mathbb{N}^{n} with \|\beta| \leq [2m\theta];$
- (iii) $\|D^{\beta} u(t)\|_{C(\bar{\Omega})} \leq c t^{-\left(\frac{|\beta|}{2m}-\theta\right)} \|f\|_{D_{A}(\theta,\infty)}$ $\forall t \in]0, 1]. \forall \beta \in \mathbb{N}^{n} \text{ with } 2m\theta < |\beta| \leq 2m-1;$

(iv) for each
$$p > \frac{n}{2m(1-\theta)}$$
 there exists $C_p > 0$ such that

$$\sup_{x_0 \in \overline{\Omega}} \|D^{\beta} u(t)\|_{L^p(\Omega(x_0, t^{1/2m}))}$$

$$\leq C_p t^{-(1-\theta-\frac{n}{2mp})} \|f\|_{D_A(\theta,\infty)} \forall t \in]0, 1], \forall \beta \in \mathbb{N}^n \quad with \quad |\beta| = 2m;$$

(v) for each $\alpha \in]0, 1[$ there exists $c_{\alpha} > 0$ such that

$$\sup_{x_0\in\bar{\Omega}} [D^{\beta} u(t)]_{C^{\alpha}(\overline{\Omega}(x_0,t^{1/2m}))}$$

$$\leq c_{\alpha} t^{\frac{1-\alpha}{2m}+\theta-1} \|f\|_{D_A(\theta,\infty)} \forall t\in]0,1], \forall \beta\in\mathbb{N}^n \quad with \quad |\beta|=2m-1.$$

Proof. (i) We have

$$\|u(t)-f\|_{C(\bar{\Omega})} = \|AR(t^{-1}, A)f\|_{C(\bar{\Omega})} \leq c t^{\theta} \|f\|_{D_{A}(\theta, \infty)}.$$

(ii) If $|\beta| \le [2m\theta]$ and $0 < s < r \le 1$ we have by Lemma 4.3(ii) (with any fixed p > n):

$$\begin{split} \|D^{\beta} u(r) - D^{\beta} u(s)\|_{C(\bar{\Omega})} &\leq \int_{s} \|D^{\beta} u'(\sigma)\|_{C(\bar{\Omega})} \, d\sigma \\ &\leq c \int_{s}^{r} \sigma^{-1+\theta-(|\beta|/2m)} \, d\sigma \, \|f\|_{D_{A}(\theta,\infty)} \\ &\leq c (r-s)^{\theta-|\beta|/2m} \, \|f\|_{D_{A}(\theta,\infty)} \, . \end{split}$$

(iii) If
$$2m\theta < |\beta| \le 2m - 1$$
 and $t \in]0, 1]$ we write:

(4.3)
$$\|D^{\beta} u(t)\|_{C(\bar{\Omega})} \leq \int_{t}^{1} \|D^{\beta} u'(\sigma)\|_{C(\bar{\Omega})} d\sigma + \|D^{\beta} u(1)\|_{C(\bar{\Omega})}.$$

Now by Lemma 4.3(i) (again with any fixed p > n)

(4.4)
$$\|D^{\beta} u(1)\|_{C(\bar{\Omega})} \leq c \|f\|_{C(\bar{\Omega})},$$

whereas by Lemma 4.3(ii)

(4.5)
$$\int_{t}^{1} \|D^{\beta} u'(\sigma)\|_{C(\bar{\Omega})} d\sigma \leq c \int_{t}^{1} \sigma^{-1+\theta-\frac{|\beta|}{2m}} d\sigma \|f\|_{D_{A}(\theta,\infty)} \leq c t^{\theta-\frac{|\beta|}{2m}} \|f\|_{D_{A}(\theta,\infty)}.$$

As $t \leq 1$, by (4.3), (4.4) and (4.5) we get

$$\|D^{\beta} u(t)\|_{C(\bar{\Omega})} \leq c t^{\theta - \frac{|\beta|}{2m}} \|f\|_{D_{A}(\theta,\infty)}.$$

(iv) If
$$p > \frac{n}{2m(1-\theta)}$$
, $|\beta| = 2m$ and $x_0 \in \overline{\Omega}$, we write:
(4.6) $\|D^{\beta} u(t)\|_{L^p(\Omega(x_0, t^{1/2}m))} \leq \int_t^1 \|D^{\beta} u'(\sigma)\|_{L^p(\Omega(x_0, t^{1/2}m))} d\sigma$

+
$$\|D^{\beta} u(1)\|_{L^{p}(\Omega(x_{0},t^{1/2}m))};$$

now Lemma 4.3(i) yields

(4.7)
$$\sup_{x_0\in\bar{\Omega}} \|D^{\beta} u(1)\|_{L^p(\Omega(x_0,t^{1/2}m))} \leq c_p \|f\|_{C(\bar{\Omega})}$$

whereas by Lemma 4.3(ii)

(4.8)
$$\sup_{x_{0}\in\bar{\Omega}} \int_{t}^{1} \|D^{\beta} u'(\sigma)\|_{L^{p}(\Omega(x_{0},t^{1/2m}))} d\sigma \leq c_{p} \int_{t}^{1} \sigma^{-2+\theta+\frac{n}{2mp}} d\sigma \|f\|_{D_{A}(\theta,\infty)}$$
$$\leq c_{p} t^{-1+\theta+\frac{n}{2mp}} \|f\|_{D_{A}(\theta,\infty)}.$$

As $1 - \theta - \frac{n}{2mp} > 0$, by (4.6), (4.7) and (4.8) we conclude that

$$\sup_{x_0\in\bar{\Omega}} \|D^{\beta} u(t)\|_{L^p(\Omega(x_0,t^{1/2}m))} \leq C_p t^{-1+\theta+\frac{n}{2mp}} \|f\|_{D_A(\theta,\infty)}.$$

(v) Let
$$\alpha \in]0, 1[, |\beta| = 2m - 1$$
, and set $q := \frac{n}{1 - \alpha}$. By Proposition 1.3(ii)

(4.9)
$$[D^{\beta} u(t)]_{C^{\alpha}(\overline{\Omega(x_{0},t^{1/2m})})} \leq C_{\alpha} \sum_{|\gamma|=2m} \|D^{\gamma} u(t)\|_{L^{q}(\Omega(x_{0},t^{1/2m}))}$$

Now pick $p > \max\left\{q, \frac{n}{2m(1-\theta)}\right\}$: by (4.9), Hölder's inequality and part (iv) we get:

$$\begin{split} [D^{\beta} u(t)]_{C^{\alpha}(\Omega(x_{0}, t^{1/2m}))} &\leq C_{\alpha} \sum_{|\gamma| = 2m} \|D^{\gamma} u(t)\|_{L^{p}(\Omega(x_{0}, t^{1/2m}))} t^{\frac{n}{2m}(\frac{1}{q} - \frac{1}{p})} \\ &\leq C_{\alpha, p} t^{\frac{n}{2mp} + \theta - 1 + \frac{n}{2m}(\frac{1}{q} - \frac{1}{p})} \|f\|_{D_{A}(\theta, \infty)} \\ &= C_{\alpha} t^{\frac{1 - \alpha}{2m} + \theta - 1} \|f\|_{D_{A}(\theta, \infty)}. \quad \Box \end{split}$$

By Lemma 4.4(i)–(ii) we deduce that $u(t) \to f$ in $C^{[2m\theta]}(\overline{\Omega})$ as $t \to 0^+$; as $B_j(\cdot, D) u(t) = 0$ on $\partial \Omega$ for j = 1, ..., m, when $t \to 0^+$ we get $B_j(\cdot, D) f = 0$ on $\partial \Omega$ if $m_j \leq [2m\theta]$, i.e. $f \in C_B^{[2m\theta]}(\overline{\Omega})$. In addition we get

(4.10)
$$\|f\|_{C^{[2m\theta]}(\bar{\Omega})} \leq \|f - u(1)\|_{C^{[2m\theta]}(\bar{\Omega})} + \|u(1)\|_{C^{[2m\theta]}(\bar{\Omega})} \\ \leq c \|f\|_{D_{\mathcal{A}}(\theta,\infty)}.$$

Thus it remains to show that $D^{\beta} f \in C^{2m\theta - \lfloor 2m\theta \rfloor}(\overline{\Omega})$ if $|\beta| = \lfloor 2m\theta \rfloor$. We distinguish two cases: (a) $\lfloor 2m\theta \rfloor < 2m-1$, (b) $\lfloor 2m\theta \rfloor = 2m-1$. In case (a), let $|\beta| = \lfloor 2m\theta \rfloor < 2m-1$, and choose $t := |x-y|^{2m}$ where $x, y \in \overline{\Omega}$ and $|x-y| \leq 1$. Then

$$\begin{aligned} |D^{\beta} f(x) - D^{\beta} f(y)| \\ &\leq |D^{\beta} f(x) - D^{\beta} u(t, x)| + |D^{\beta} u(t, x) - D^{\beta} u(t, y)| + |D^{\beta} u(t, y) - D^{\beta} f(y)| \\ &\leq 2 \|D^{\beta} f - D^{\beta} u(t)\|_{C(\bar{\Omega})} + C \sum_{|y| = [2m\theta] + 1} \|D^{\gamma} u(t)\|_{C(\bar{\Omega})} |x - y|, \end{aligned}$$

and by Lemma 4.4(ii)-(iii)

(4.11)
$$|D^{\beta} f(x) - D^{\beta} f(y)| \\ \leq c t^{\theta - \frac{[2m\theta]}{2m}} ||f||_{D_{\mathcal{A}}(\theta,\infty)} + c t^{\theta - \frac{[2m\theta]+1}{2m}} |x-y| ||f||_{D_{\mathcal{A}}(\theta,\infty)} \\ \leq c ||x-y||^{2m\theta - [2m\theta]} ||f||_{D_{\mathcal{A}}(\theta,\infty)}.$$

In case (b), let $|\beta| = [2m\theta] = 2m-1$ and choose, as before, $t := |x-y|^{2m}$ where $x, y \in \overline{\Omega}$ and $|x-y| \le 1$. Then

$$|D^{\beta} f(x) - D^{\beta}(y)| \le 2 \|D^{\beta} f - D^{\beta} u(t)\|_{C(\bar{\Omega})} + [D^{\beta} u(t)]_{C^{2m\theta - [2m\theta]}(\overline{\Omega(x, t^{1/2\bar{m}}))}} \|x - y\|^{2m\theta - [2m\theta]},$$

and by Lemma 4.4(ii)-(v)

(4.12)
$$|D^{\beta} f(x) - D^{\beta} f(y)| \\ \leq c t^{\theta - \frac{2m-1}{2m}} ||f||_{D_{A}(\theta, \infty)} \\ + c t^{\frac{1 - 2m\theta + [2m\theta]}{2m} + \theta - 1} |x - y|^{2m\theta - [2m\theta]} ||f||_{D_{A}(\theta, \infty)} \\ \leq c |x - y|^{2m\theta - [2m\theta]} ||f||_{D_{A}(\theta, \infty)}.$$

By (4.11) and (4.12) we conclude that if $|\beta| = [2m\theta]$ then $D^{\beta} f \in C^{2m\theta - [2m\theta]}(\overline{\Omega})$; moreover recalling (4.10) we also obtain

$$\|f\|_{C^{2m\theta}(\bar{\Omega})} \leq c \|f\|_{D_{\mathcal{A}}(\theta,\infty)},$$

and the proof of Theorem 4.1 is complete. \Box

§ 5. Improvements and Remarks

By Theorems 3.1 and 4.1 the first equality of Theorem 2.3 is established. In order to check the second one, just a few remarks are needed.

Concerning the first inclusion, we proceed as in Sect. 3. There is only a difference in the basic Lemma 3.3: namely, it turns out that the right-hand sides of the inequalities in (i)-(ii)-(iii) have to be multiplied by o(1) (as $t \to 0^+$), due to the fact that $F \in h^{2m\theta}(\mathbb{R}^n)$. Consequently, the right-hand sides of the inequalities of Corollary 3.4 should also be multiplied by o(1) (as $s \to \infty$). As a result one obtains, instead of (3.2),

(5.1)
$$\lim_{s \to \infty} s^{\theta} \|w(s) - f\|_{C(\bar{\Omega})} = 0.$$

Continuing as in Sect. 3, one then arrives to

(5.2)
$$\lim_{s \to \infty} s^{\theta} \|AR(s, A) w(s)\|_{C(\bar{\Omega})} = 0$$

which replaces (3.3). Finally, recalling (3.12), by (5.1) and (5.2) it follows that

$$\lim_{s\to\infty}s^{\theta}\|AR(s,A)f\|_{C(\bar{\Omega})}=0,$$

i.e. $f \in D_A(\theta)$.

466

Hölder Classes as Interpolation Spaces

The second inclusion is easier: we already know that $D_A(\theta) \hookrightarrow D_A(\theta, \infty) = C_B^{2m\theta}(\overline{\Omega})$; hence if $f \in D_A(\theta)$ we have only to show that $f \in h^{2m\theta}(\overline{\Omega})$. Now, recalling that $D_A(\theta)$ is the closure of D_A in $D_A(\theta, \infty)$, we take a sequence $\{u_n\} \subseteq D_A$ such that $u_n \to f$ in $D_A(\theta, \infty)$, i.e. in $C^{2m\theta}(\overline{\Omega})$, as $n \to \infty$. But $D_A \hookrightarrow h^{2m\theta}(\overline{\Omega})$ by Prop. 1.3, and consequently we get $\{u_n\} \subseteq h^{2m\theta}(\overline{\Omega})$. Thus $f \in h^{2m\theta}(\overline{\Omega})$ since $h^{2m\theta}(\overline{\Omega})$ is a closed subspace of $C^{2m\theta}(\overline{\Omega})$. The proof of Theorem 2.3 is now complete. \Box

Remark 5.1. Theorem 2.3 can be generalized in several directions. Following Amann [7], one can consider elliptic systems of differential operators as in [7, Sects. 12–13], in a possibly unbounded open set Ω which is supposed to be uniformly regular of class C^{2m} ([7, Sect. 11]). The analogue of Theorem 1.1 is proved by Geymonat-Grisvard [10, Sect. 5] and Amann [7, Theorem 12.2], whereas the analogue of Theorem 1.2 can be proved by the same method used in the Appendix below; the arguments of Sects. 3 and 4 then still work.

Remark 5.2. The critical cases $2m\theta \in \mathbb{N}$ are not covered by our theorem: they will be the object of a further paper. However in the case m=1 the "critical" spaces $D_A(\frac{1}{2}, \infty)$ and $D_A(\frac{1}{2}, \infty)$ are known. The (single) boundary operator $B(\cdot, D)$ has then one of the following forms:

(a) B(x, D) = I (Dirichlet problem), or

(b) $B(x, D) = \alpha(x) I + \sum_{i=1}^{n} \beta_i(x) D_i$ (oblique derivative problem), where $(\beta(x)|v(x)) > 0 \forall x \in \partial \Omega$.

Denote by $C^{*,1}(\overline{\Omega})$ and $h^{*,1}(\overline{\Omega})$ the Zygmund spaces defined by:

$$C^{*,1}(\overline{\Omega}) := \left\{ u \in C(\overline{\Omega}) : \sup \left\{ \frac{\left| u(x) + u(y) - 2u\left(\frac{x+y}{2}\right) \right|}{|x-y|} : x, y, \frac{x+y}{2} \in \overline{\Omega}, x \neq y \right\} < \infty \right\}$$
$$h^{*,1}(\overline{\Omega}) := \left\{ u \in C(\overline{\Omega}) : \lim_{r \to 0^+} \sup_{x_0 \in \overline{\Omega}} \left| \frac{u(x) + u(y) - 2u\left(\frac{x+y}{2}\right) \right|}{|x-y|} : x, y, \frac{x+y}{2} \in \overline{\Omega(x_0, r)}, x \neq y \right\} = 0 \right\};$$

then in case (a) (Lunardi [15]) we have

 $D_A(\frac{1}{2},\infty) = \{ u \in C^{*,1}(\overline{\Omega}) : u = 0 \text{ on } \partial \Omega \}, \quad D_A(\frac{1}{2}) = \{ u \in h^{*,1}(\overline{\Omega}) : u = 0 \text{ on } \partial \Omega \},$

whereas in case (b) (Acquistapace-Terreni [3]) we obtain

$$D_{A}(\frac{1}{2}, \infty) = \left\{ u \in C^{*,1}(\overline{\Omega}): \sup \left\{ \frac{|u(x - \sigma \beta(x)) - u(x)|}{\sigma}: x \in \partial \Omega, \sigma > 0, x - \sigma \beta(x) \in \overline{\Omega} \right\} < \infty \right\},$$

P. Acquistapace and B. Terreni

$$D_{A}(\frac{1}{2}) = \left\{ u \in h^{*,1}(\overline{\Omega}) : \lim_{\sigma \to 0^{+}} \frac{u(x - \sigma \beta(x)) - u(x)}{\sigma} = \alpha(x) f(x) \ \forall x \in \partial \Omega \right\}.$$

Remark 5.3. The method employed in the proof of Theorem 2.3 still works in different situations. For instance if we choose $E = L^p(\Omega)$, $1 , then we find again Grisvard's characterizations of <math>D_A(\theta, \infty)$ and $D_A(\theta)$ in this case ([11, 9]), needing on the other hand much less regularity on the coefficients of the differential operator. Even more, we can study by the same method the spaces $D_A(\theta, q)$, $1 \le q < \infty$, where

$$D_A(\theta, q) = \left\{ x \in E : \int_0^\infty \|s^\theta A R(s, A) x\|_E^q \frac{ds}{s} < \infty \right\};$$

also in this case we find again old results by Grisvard (see [12] or [22, Theorem 4.3.3(a)]) as well as new results. More details will be published elsewhere.

Appendix: Proof of Theorem 1.2

Let $f \in C(\overline{\Omega})$, $g = (g_1, ..., g_m) \in \prod_{\substack{j=1 \\ p>1}}^m C^{2m-m_j}(\partial \Omega)$. As, clearly, $f \in \bigcap_{p>1} L^p(\Omega)$ and, for $j=1, ..., m, g_j \in \bigcap_{p>1} W^{2m-m_j-\frac{1}{p},p}(\partial \Omega)$, by Theorem 1.1 for each $p \in]1, \infty[$ problem (1.10) has a unique solution $u_p \in W^{2m,p}(\Omega)$; hence if q > p we have $u_p = u_q$ and consequently $u_p \in \bigcap_{q>1} W^{2m,q}(\Omega)$ and is independent of p. Thus a unique solution $u \in \bigcap_{p>1} W^{2m,p}(\Omega)$ of problem (1.10) does exist.

We have to prove (1.12). Fix p > n, choose $\lambda_1 = \lambda_0 + 1$ (λ_0 is given in Theorem 1.1) and fix $\lambda \in C$ with $|\lambda| > \lambda_1$ and $\arg \lambda = \eta$; fix also $x_0 \in \overline{\Omega}$ and let $\mu > 2$ to be chosen later. Select a function $\phi(x) \equiv \phi(x_0, \lambda, \mu, x)$ with the following properties:

(A.1)
$$\begin{aligned} \phi \in C^{\infty}(\mathbb{R}^{n}), \quad \phi \equiv 1 \quad \text{on } B(x_{0}, \rho), \quad \phi \equiv 0 \quad \text{outside } B(x_{0}, \mu \rho), \\ \|D^{h}\phi\|_{C(\mathbb{R}^{n})} \leq c_{h} \rho^{-h} (\mu - 1)^{-h}, \quad h = 1, \dots, 2m, \end{aligned}$$

where we have set

$$(A.2) \qquad \qquad \rho := |\lambda - \lambda_0|^{-1/2m}.$$

(Note that $\rho < 1$.) The function $v(x) := u(x) \cdot \phi(x)$ solves

(A.3)
$$\lambda v(x) - \sum_{|\alpha| \le 2m} a_{\alpha}(x) D^{\alpha} v(x) = \phi(x) f(x) + F(x), \quad x \in \overline{\Omega},$$
$$\sum_{|\beta| \le m_j} b_{j\beta}(x) D^{\beta} v(x) = \phi(x) g_j(x) + G_j(x), \quad x \in \partial \Omega, \ j = 1, \dots, m,$$

/ \

where

(A.4)
$$F(x) = \sum_{|\alpha| \le 2m} a_{\alpha}(x) \sum_{\gamma < \alpha} {\alpha \choose \gamma} D^{\beta} u(x) D^{\alpha - \gamma} \phi(x),$$

468

Hölder Classes as Interpolation Spaces

(A.5)
$$G_j(x) = \sum_{|\beta| \le m_j} b_{j\beta}(x) \sum_{\delta < \beta} \begin{pmatrix} \beta \\ \delta \end{pmatrix} D^{\delta} u(x) D^{\beta - \delta} \phi(x), \quad j = 1, \dots, m.$$

By Theorem 1.1 we have (denoting again by g_j any $W^{2m-m_j,p}$ -extension of g_j to the whole Ω):

$$\sum_{k=0}^{2m} |\lambda - \lambda_0|^{1 - \frac{k}{2m}} \|D^k v\|_{L^p(\Omega)}$$

$$\leq M_p \left\{ \|\phi f + F\|_{L^p(\Omega)} + \sum_{j=1}^m \sum_{k=0}^{2m-m_j} |\lambda - \lambda_0|^{1 - \frac{m_j + k}{2m}} \|D^k (\phi g_j + G_j)\|_{L^p(\Omega)} \right\},$$

and hence

(A.6)

$$\sum_{k=0}^{2m} |\lambda - \lambda_0|^{1 - \frac{k}{2m}} \|D^k v\|_{L^p(\Omega)}$$

$$\leq M_p \left\{ \|f\|_{L^p(\Omega(x_0, \mu\rho))} + \|F\|_{L^p(\Omega(x_0, \mu\rho))} + \sum_{j=1}^{m} \sum_{k=0}^{2m-m_j} |\lambda - \lambda_0|^{1 - \frac{m_j + k}{2m}} \cdot \left[\|D^k(\phi g_j)\|_{L^p(\Omega(x_0, \mu\rho))} + \|D^k G_j\|_{L^p(\Omega(x_0, \mu\rho))} \right] \right\}.$$

Now by (A.4) and (A.1) we get:

(A.7)
$$\|F\|_{L^{p}(\Omega(x_{0},\mu\rho))} \leq c \sum_{k=0}^{2m-1} \|D^{k}u\|_{C(\bar{\Omega})} \cdot \rho^{-2m+k+n/p} \mu^{n/p} (\mu-1)^{-1};$$

moreover if $k = 0, 1, ..., 2m - m_j$ it is easily seen that

$$|D^{k}G_{j}| \leq c \sum_{h=0}^{k+m_{j}-1} |D^{h}u| \cdot \sum_{r=1}^{k+m_{j}-h} |D^{r}\phi|,$$

and therefore (A.1) yields

(A.8)
$$\|D^{k} G_{j}\|_{L^{p}(\Omega(x_{0},\mu\rho))}$$
$$\leq c \sum_{h=0}^{k+m_{j}-1} \|D^{h} u\|_{C(\bar{\Omega})} \cdot \rho^{h-k-m_{j}+n/p} \mu^{n/p} (\mu-1)^{-1},$$
$$k=0, 1, \dots, 2m-m_{j}.$$

Finally, again by (A.1) it follows that

(A.9)
$$\|D^{k}(\phi g_{j})\|_{L^{p}(\Omega(x_{0},\mu\rho))}$$
$$\leq c \sum_{h=0}^{k} \|D^{h}g_{j}\|_{L^{p}(\Omega(x_{0},\mu\rho))} \cdot \rho^{h-k}(\mu-1)^{h-k},$$
$$k=0, 1, \dots, 2m-m_{j}.$$

By (A.6), (A.7), (A.8) and (A.9), recalling (A.2) we easily get:

(A.10)
$$\sum_{k=0}^{2m} |\lambda - \lambda_0|^{1 - \frac{k}{2m}} \|D^k v\|_{L^p(\Omega)}$$
$$\leq c_p \left\{ \|f\|_{L^p(\Omega(x_0, \mu\rho))} + \sum_{j=1}^m \sum_{k=0}^{2m-m_j} |\lambda - \lambda_0|^{1 - \frac{m_j + k}{2m}} \|D^k g_j\|_{L^p(\Omega(x_0, \mu\rho))} + \sum_{k=0}^{2m-1} |\lambda - \lambda_0|^{1 - \frac{k}{2m} - \frac{n}{2mp}} \mu^{n/p} (\mu - 1)^{-1} \|D^k u\|_{C(\bar{\Omega})} \right\}.$$

On the other hand, by Proposition 1.3(i) and (A.2),

(A.11)
$$\sum_{k=0}^{2m-1} |\lambda - \lambda_0|^{1-\frac{k}{2m}} \|D^k u\|_{C(\overline{\Omega(x_0,\rho)})} + |\lambda - \lambda_0|^{\frac{n}{2mp}} \|D^{2m} u\|_{L^p(\Omega(x_0,\rho))}$$
$$\leq c |\lambda - \lambda_0|^{\frac{n}{2mp}} \sum_{k=0}^{2m} |\lambda - \lambda_0|^{1-\frac{k}{2m}} \|D^k v\|_{L^p(\Omega)}.$$

Now choose as x_0 a point of maximum for the (real) function $\Lambda \in C(\overline{\Omega})$ defined by

$$\Lambda(x) = \sum_{k=0}^{2m-1} \rho^k |D^k u(x)| + \rho^{2m-n/p} ||D^{2m} u||_{L^p(\Omega(x,\rho))}, \quad x \in \overline{\Omega};$$

then we have clearly

(A.12)
$$|\lambda - \lambda_0| \|A\|_{C(\bar{\Omega})} \leq \sum_{k=0}^{2m-1} |\lambda - \lambda_0|^{1-\frac{k}{2m}} \|D^k u\|_{C(\bar{\Omega})}$$
$$+ |\lambda - \lambda_0|^{\frac{n}{2mp}} \sup_{x \in \bar{\Omega}} \|D^{2m} u\|_{L^p(\Omega(x,r))}$$
$$\leq (2m+1) |\lambda - \lambda_0| \|A\|_{C(\bar{\Omega})}.$$

Choose now μ so large that

$$c_p \mu^{n/p} (\mu - 1)^{-1} \leq (4m + 2)^{-1};$$

then by (A.10), (A.11) and (A.12) we conclude that

$$(2m+1)^{-1} \left\{ \sum_{k=0}^{2m-1} |\lambda - \lambda_0|^{1-\frac{k}{2m}} \|D^k u\|_{C(\bar{\Omega})} + |\lambda - \lambda_0|^{\frac{n}{2mp}} \sup_{x\in\bar{\Omega}} \|D^{2m} u\|_{L^p(\Omega(x,\rho))} \right\}$$

$$\leq |\lambda - \lambda_0| \Lambda(x_0) \leq C_p |\lambda - \lambda_0|^{\frac{n}{2mp}} \left\{ \|f\|_{L^p(\Omega(x_0,\mu\rho))} + \sum_{j=1}^{m} \sum_{k=0}^{2m-m_j} |\lambda - \lambda_0|^{1-\frac{m_j+k}{2m}} \|D^k g_j\|_{L^p(\Omega(x_0,\mu\rho))} \right\}$$

$$+ (4m+2)^{-1} \sum_{k=0}^{2m-1} |\lambda - \lambda_0|^{1-\frac{k}{2m}} \|D^k u\|_{C(\bar{\Omega})},$$

which clearly implies (1.12). The proof of Theorem 1.2 is complete. $\hfill\square$

References

- 1. Acquistapace, P.: Existence and maximal time regularity for linear parabolic integrodifferential equations. J. Integral Equations 10, 5-43 (1985) (Supplement)
- Acquistapace, P., Terreni, B.: Some existence and regularity results for abstract non-autonomous parabolic equations. J. Math. Anal. Appl. 99, 9-66 (1984)
- 3. Acquistapace, P., Terreni, B.: Characterization of Hölder and Zygmund classes as interpolation spaces. Pubbl. Dip. di Mat. Univ. Pisa, n. 61 (1984)
- 4. Acquistapace, P., Terreni, B.: A unified approach to abstract linear non-autonomous parabolic equations. Rend. Sem. Mat. Univ. Padova (to appear).
- 5. Adams, R.A.: Sobolev spaces. New York: Academic Press 1985
- 6. Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Commun. Pure Appl. Math. 15, 119–147 (1962)
- 7. Amann, H.: Existence and regularity for semilinear parabolic evolution equations. Ann. Scuola Norm. Sup. Pisa (4) 11, 593–676 (1984)
- Baillon, J.B.: Caractére borné de certains générateurs de semigroups linéaires dans les espaces de Banach. C.R. Acad. Sci. Paris 290, 757–760 (1980)
- 9. Da Prato, G., Grisvard, P.: Equations d'évolution abstraites non linéaires de type parabolique. Ann. Mat. Pura Appl. (4) **120**, 329–396 (1979)
- Geymonat, G., Grisvard, P.: Alcuni risultati di teoria spettrale per i problemi ai limiti lineari ellittici. Rend. Sem. Mat. Univ. Padova 38, 121-173 (1967)
- 11. Grisvard, P.: Equations différentielles abstraites. Ann. Sci. Ec. Norm. Super. (4) 2, 311-395 (1969)
- 12. Grisvard, P.: Equations opérationnelles abstraites et problèmes aux limites dans les domaines non réguliers, Actes Congrés Inter. Math. (Nice 1970), 2, 731–736. Paris: Gauthier-Villars 1971
- 13. Labbas, R., Terreni, B.: Somme d'opérateurs linéaires de type parabolique. Boll. Un. Mat. Ital. (to appear)
- Lions, J.L., Peetre, J.: Sur une classe d'espaces d'interpolation. Inst. Hautes Études Sc. Publ. Math. 19, 5–68 (1964)
- Lunardi, A.: Interpolation spaces between domains of elliptic operators and spaces of continuous functions with applications to nonlinear parabolic equations. Math. Nachr. 121, 295–318 (1985)
- 16. Lunardi, A.: Abstract quasilinear parabolic equations. Math. Ann. 267, 395-415 (1984)
- Lunardi, A., Sinestrari, E.: Fully nonlinear integrodifferential equations in general Banach space. Math. Z. 190, 225-248 (1985)
- Sinestrari, E.: On the abstract Cauchy problem of parabolic type in spaces of continuous functions. J. Math. Anal. Appl. 107, 16–66 (1985)
- Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton: Princeton University Press 1970
- Stewart, H.B.: Generation of analytic semigroups by strongly elliptic operators under general boundary conditions. Trans. Am. Math. Soc. 259, 299-310 (1980)
- 21. Tanabe, H.: Equations of evolution. London/S. Francisco/Melbourne: Pitman 1979
- 22. Triebel, H.: Interpolation theory, function spaces, differential operators. Amsterdam/New York/ Oxford: North-Holland 1978

Received May 12, 1986