Hölder Classes with Boundary Conditions as Interpolation Spaces

Paolo Acquistapace ${ }^{1}$ and Brunello Terreni ${ }^{2}$
${ }^{1}$ Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56100 Pisa, Italia
${ }^{2}$ Dipartimento di Matematica, Università di Pisa, Via Filippo Buonarroti 2, I-56100 Pisa, Italia

§ 0. Introduction

This paper is concerned with the characterization of certain real interpolation spaces between the domain of an elliptic differential operator A, with general boundary conditions, and the Banach space E of continuous functions in which the domain is imbedded.

The interpolation spaces considered here are the classes $\left(D_{A}, E\right)_{\alpha, \infty}$ introduced by Lions (see Lions-Peetre [14]) and the "continuous interpolation spaces" $\left(D_{A}, E\right)_{\alpha}$ defined by Da Prato-Grisvard [9]; however, following Grisvard [11], we denote such spaces respectively by $D_{A}(\theta, \infty)$ and $D_{A}(\theta)$ (where $\theta=1-\alpha$), and introduce them by means of an abstract characterization (see Definition 2.1 below) which is valid under suitable hypotheses concerning the behaviour of the resolvent operator $(\lambda-A)^{-1}$.

Such assumptions are satisfied when, in particular, A is the infinitesimal generator of an analytic semigroup. In this situation, the spaces $D_{A}(\theta, \infty)$ and $D_{A}(\theta)$ are of great importance in the theory of abstract evolution equations, because of their "maximal regularity" property. Maximal regularity means the following: if f is continuous with values in a Banach space Y, then the evolution problem

$$
u^{\prime}(t)-A u(t)=f(t), \quad t \in[0, T] ; \quad u(0)=0
$$

has a unique C^{1}-solution u such that u^{\prime} and $A u$ are continuous with values in Y. This property is not true in a general Banach space Y (see Baillon [8]), but it holds when $Y=D_{A}(\theta)$, where A is the infinitesimal generator of an analytic semigroup in some other Banach space E. Note that we cannot replace $D_{A}(\theta)$ by $D_{A}(\theta, \infty)$ (see Da Prato-Grisvard [9]); however a similar property holds for $D_{A}(\theta, \infty)$ (with A as before), i.e. if f is continuous with values in E and bounded with values in $D_{A}(\theta, \infty)$, then the same is true for u^{\prime} and $A u$. For a proof of these facts see Sinestrari [18].

Thus when A generates an analytic semigroup the spaces $D_{A}(\theta, \infty)$ and $D_{A}(\theta)$ have been estensively used in the theory of abstract parabolic equations, in
order to obtain existence and sharp regularity results (see, among others [1, $2,4,9,11,13,16,17,18]$. On the other hand in concrete situations the abstract regularity results have to be interpreted, and this in turn requires the characterization of these spaces in such concrete cases. Now, when $E=L^{P}(\Omega)$ and A $=A(\cdot, D)$ is an elliptic operator of order $2 m$, whose domain is determined by a set of m general boundary differential operators $\left\{B_{j}(\cdot, D)\right\}_{1 \leqq j \leqq m}$ satisfying the usual assumptions (Agmon [6]), the spaces $D_{A}(\theta, \infty)$ and $D_{A}(\theta)$ are known to be the functions f belonging to the Besov-Nikolskii spaces $B_{p, \infty}^{2 m \theta}(\Omega)$ and $h_{p, \infty}^{2 m \theta}(\Omega)$ which satisfy $B_{j}(\cdot, D) f=0$ on $\partial \Omega$ whenever it makes sense ($[11,9]$). Here we treat instead the case $E=C(\bar{\Omega})$, and we obtain as $D_{A}(\theta, \infty)$ and $D_{A}(\theta)$ the functions of the Hölder and "little Hölder" classes $C^{2 m \theta}(\bar{\Omega})$ and $h^{2 m \theta}(\bar{\Omega})$ which satisfy, as before, the boundary conditions whenever they are meaningful.

Let us conclude with the description of the subject of the next sections. Section 1 is devoted to preliminaries; in Sect. 2 we state our main result, which is proved in Sects. 3 and 4; finally Sect. 5 contains some remarks and generalizations.

§ 1. Notations, Assumptions and Preliminary Results

If $\beta, \gamma \in \mathbb{N}^{n}$ and $z \in \mathbb{C}^{n}, n \geqq 1$ we set as usual

$$
|\beta|:=\sum_{i=1}^{n} \beta_{i}, \quad \beta!:=\prod_{i=1}^{n} \beta_{i}!, \quad\binom{\beta}{\gamma}:=\prod_{i=1}^{n}\binom{\beta_{i}}{\gamma_{i}}, \quad z^{\beta}:=\prod_{i=1}^{n} z_{i}^{\beta_{i}}
$$

whereas D_{β} stands for $\frac{\partial^{|\beta|}}{\partial x_{1}^{\beta_{1}} \ldots \partial x_{n}^{\beta_{n}}}$.
Let Ω be an open set of \mathbb{R}^{n}; we list now some Banach spaces which will be used throughout. If $k \in \mathbb{N}$ and $\alpha>0, \alpha \notin \mathbb{N}$, we set:

$$
\begin{aligned}
C^{k}(\bar{\Omega}):= & \left\{f: \bar{\Omega} \rightarrow \mathbb{C}: D^{\beta} f \text { is uniformly continuous and bounded } \forall \beta \in \mathbb{N}^{n}\right. \\
& \text { with }|\beta| \leqq k\} \\
C^{\alpha}(\bar{\Omega}):= & \left\{f \in C^{[\alpha]}(\bar{\Omega}): D^{\beta} f \text { is }(\alpha-[\alpha]) \text {-Hölder continuous and bounded } \forall \beta \in \mathbb{N}^{n}\right. \\
& \text { with }|\beta|=[\alpha]\},
\end{aligned}
$$

where $[\alpha]$ is the greatest integer less than α. The spaces $C^{k}(\bar{\Omega}), C^{\alpha}(\bar{\Omega})$ are endowed with the norms

$$
\|f\|_{C^{k}(\bar{\Omega})}:=\sum_{|\beta| \leqq k}\left\|D^{\beta}\right\|_{C^{0}(\bar{\Omega})}, \quad\|f\|_{C^{\alpha}(\bar{\Omega})}:=\|f\|_{\mathbf{C}^{\alpha \alpha]}(\bar{\Omega})}+\sum_{|\beta|=[\alpha]}\left[D^{\beta} f\right]_{C^{\alpha-[\alpha]}[\bar{\Omega})}
$$

where $\|\cdot\|_{C^{0}(\bar{\Omega})}$ and, for $\left.\eta \in\right] 0,1\left[,[\cdot]_{C^{\eta}(\Omega)}\right.$ are the usual sup-norm and Hölderseminorm:

$$
\|g\|_{C^{0}(\bar{\Omega})}:=\sup \{|g(x)|: x \in \bar{\Omega}\}, \quad[g]_{C^{n}(\bar{\Omega})}:=\sup \left\{\frac{|g(x)-g(y)|}{|x-y|^{\eta}}: x, y \in \bar{\Omega}, x \neq y\right\} .
$$

If $k=0$, we write simply $C(\bar{\Omega})$ instead of $C^{0}(\bar{\Omega})$.
The spaces $C^{k}(\partial \Omega), k \in \mathbb{N}$, are defined similarly, clearly involving only tangential derivatives.

If $x_{0} \in \bar{\Omega}$, the open ball of center x_{0} and radius r is denoted by $B\left(x_{0}, r\right)$. We set

$$
\begin{equation*}
\Omega\left(x_{0}, r\right):=\Omega \cap B\left(x_{0}, r\right), \quad x_{0} \in \bar{\Omega}, r>0 . \tag{1.1}
\end{equation*}
$$

If $\alpha>0$ and $\alpha \notin \mathbb{N}$ we also set

$$
\begin{align*}
h^{\alpha}(\bar{\Omega}):=\{ & \left\{f \in C^{\alpha}(\bar{\Omega}): \lim _{r \rightarrow 0^{+}} \sup _{x_{0} \in \bar{\Omega}}\left[D^{\beta} f\right]_{C^{\alpha-[\alpha]}\left(\overline{\left.\Omega\left(x_{0}, r\right)\right)}\right.}=0 \forall \beta \in \mathbb{N}^{n}\right. \tag{1.2}\\
& \text { with }|\beta|=[\alpha]\} ;
\end{align*}
$$

thus if $\alpha \in] 0,1\left[\right.$ we have $g \in h^{\alpha}(\bar{\Omega})$ if and only if

$$
\limsup _{r \rightarrow 0^{+}}\left\{\frac{|g(x)-g(y)|}{|x-y|^{\alpha}}: x, y \in \bar{\Omega}, 0<|x-y|<r\right\}=0 .
$$

The space $h^{\alpha}(\bar{\Omega})$ is a closed subspace of $C^{\alpha}(\bar{\Omega})$, and hence it is a Banach space with the norm of $C^{\alpha}(\bar{\Omega})$. We also need the usual Sobolev spaces: if $\beta \in[1, \infty[$, $k \in \mathbb{N}^{+}$, we set

$$
\begin{aligned}
& L^{p}(\Omega):=\{f: \Omega \rightarrow \mathbb{C}: f \text { is measurable and } p \text {-integrable }\}, \\
& W^{k, p}(\Omega):=\left\{f \in L^{p}(\Omega): D^{\beta} f \in L^{p}(\Omega) \forall \beta \in \mathbb{N}^{n} \text { with }|\beta| \leqq k\right\}
\end{aligned}
$$

(here the derivatives are in the sense of distributions), with the obvious norms

$$
\|f\|_{L^{p}(\Omega)}:=\left\{\int_{\Omega}|f(x)|^{p} d x\right\}^{1 / p}, \quad\|f\|_{W^{k, p}(\Omega)}:=\left\{\sum_{|\alpha| \leqq k}\left\|D^{\beta} f\right\|_{L^{p}(\Omega)}^{p}\right\}^{1 / p} .
$$

Let now Ω be a bounded open set of $\mathbb{R}^{n}, n \geqq 1$, with boundary $\partial \Omega$ of class $C^{2 m}, m \geqq 1$. We introduce the differential operators

$$
\begin{gather*}
A(x, D):=\sum_{|\alpha| \leqq 2 m} a_{\alpha}(x) D^{\alpha}, \quad x \in \bar{\Omega}, \tag{1.3}\\
B_{j}(x, D):=\sum_{|\beta| \leqq m_{j}} b_{j \beta}(x) D^{\beta}, \quad x \in \partial \Omega, \quad j=1, \ldots, m \tag{1.4}
\end{gather*}
$$

under the following assumptions:

$$
\begin{equation*}
a_{\alpha} \in C(\bar{\Omega}), \quad|\alpha| \leqq 2 m ; \quad b_{j \beta} \in C^{2 m-m_{j}}(\partial \Omega), \quad|\beta| \leqq m_{j}, \quad j=1, \ldots, m \tag{1.5}
\end{equation*}
$$

(uniform ellipticity). There exist $\eta \in[0,2 \pi[, v>0$ such that

$$
\begin{equation*}
v\left(|\xi|^{2 m}+t^{2 m}\right) \leqq\left|\sum_{|\alpha|=2 m} a_{\alpha}(x) \xi^{\alpha}-(-1)^{m} e^{i \eta} t^{2 m}\right| \quad \forall x \in \bar{\Omega}, \forall \xi \in \mathbb{R}^{n}, \forall t \in \mathbb{R} \tag{1.6}
\end{equation*}
$$

(root condition). If $x \in \partial \Omega, \xi \in \mathbb{R}^{n}, t \in \mathbb{R}$ and $(\xi, t) \neq(0,0),(\xi \mid v(x))=0$ the polynomial

$$
\begin{equation*}
\zeta \rightarrow \sum_{|\alpha|=2 m} a_{\alpha}(x)(\xi+\zeta v(x))^{\alpha}-(-1)^{m} e^{i \eta} t^{2 m} \tag{1.7}
\end{equation*}
$$

has exactly m roots $\zeta_{j}^{+}(x, \xi, t)$ with positive imaginary part (here $v(x)$ is the unit outward normal vector at x and $(\cdot \mid \cdot)$ is the scalar product in \mathbb{R}^{n}).
(complementing condition). If $x \in \partial \Omega, \xi \in \mathbb{R}^{n}, t \in \mathbb{R}$ and $(\xi, t) \neq(0,0)$, $(\xi \mid v(x))=0$ the m polynomials

$$
\zeta \rightarrow \sum_{|\beta|=m_{j}} b_{j \beta}(x)(\xi+\zeta v(x))^{\beta}
$$

are linearly independent modulo the polynomial (see (1.7))

$$
\zeta \rightarrow \prod_{j=1}^{m}\left(\zeta-\zeta_{j}^{+}(x, \xi, t)\right)
$$

(normality) $m_{j} \in \mathbb{N}, j=1, \ldots, m, 0 \leqq m_{j}<m_{i} \leqq 2 m-1$ if $j<i$, and

$$
\sum_{|\beta|=m_{j}} b_{j \beta} v(x)^{\beta} \neq 0 \quad \forall x \in \partial \Omega, j=1, \ldots, m
$$

Let $A(\cdot, D)$ and $B_{j}(\cdot, D)$ be defined by (1.3) and (1.4). Then we consider the non-homogeneous problem

$$
\begin{align*}
& \lambda u-A(\cdot, D) u=f \quad \text { in } \Omega \tag{1.10}\\
& B_{j}(\cdot, D) u=g_{j} \quad \text { on } \partial \Omega, \quad j=1, \ldots, m
\end{align*}
$$

with prescribed data f, g_{1}, \ldots, g_{m}.
The following result is well known (Agmon [6]):
Theorem 1.1. Suppose that (1.5), ..., (1.9) hold. Then there exists $\lambda_{0} \geqq 0$ such that if $|\lambda|>\lambda_{0}$ and $\arg \lambda=\eta$ (η is defined in (1.6)) then for each $f \in L^{p}(\Omega)$ and $\left.g=\left(g_{1}, \ldots, g_{m}\right) \in \prod_{j=1}^{m} W^{2 m-m_{j}-1 / p, p}(\partial \Omega), p \in\right] 1, \infty[$, problem (1.10) has a unique solution $u \in W^{2 m, p}(\Omega)$; moreover there exists $M_{p}>0$ such that

$$
\begin{align*}
& \sum_{k=0}^{2 m}\left|\lambda-\lambda_{0}\right|^{1-\frac{k}{2 m}}\left\|D^{k} u\right\|_{L^{p}(\Omega)} \tag{1.11}\\
& \leqq M_{p}\left\{\|f\|_{L^{p}(\Omega)}+\sum_{j=1}^{m} \sum_{k=0}^{2 m-m_{j}}\left|\lambda-\lambda_{0}\right|^{1-\frac{m_{j}+k}{2 m}}\left\|D^{k} \tilde{g}_{j}\right\|_{L^{p}(\Omega)}\right\}
\end{align*}
$$

where \tilde{g}_{j} is any function in $W^{2 m-m_{j}, p}(\Omega)$ satisfying $\left.\tilde{g}_{j}\right|_{\partial \Omega}=g_{j}$.
Proof. For the estimate see e.g. Tanabe [21, Lemma 3.8.1]; a proof of existence is in Triebel [22, Theorems 5.5.2-4.9.1].

Theorem 1.1 is basic in order to get an estimate similar to (1.11) in $C(\bar{\Omega})$. Namely we have (Stewart [20]):

Theorem 1.2. Suppose that (1.5), \ldots, (1.9) hold. Then there exists $\lambda_{1} \geqq 0$ such that if $|\lambda|>\lambda_{1}$ and $\arg \lambda=\eta$, then for each $f \in C(\bar{\Omega})$ and $g=\left(g_{1}, \ldots, g_{m}\right) \in \prod_{j=1}^{m} C^{2 m-m_{j}}(\partial \Omega)$
problem (1.10) has a unique solution $u \in \cap W^{2 m, p}(\Omega)$; moreover for each $p>n$ there exists $N_{p}>0$ such that $\left.\quad p \in\right\rfloor 1, \infty!$

$$
\begin{align*}
& \sum_{k=0}^{2 m-1}\left|\lambda-\lambda_{1}\right|^{1-\frac{k}{2 m}}\left\|D^{k} u\right\|_{C(\bar{\Omega})}+\left|-\lambda_{1}\right|^{\frac{n}{2 m p}} \sup _{x_{0} \in \bar{\Omega}}\left\|D^{2 m} u\right\|_{L^{p}\left(\Omega\left(x_{0},\left|\lambda-\lambda_{1}\right|^{-1 / 2 m)}\right)\right.} \tag{1.12}\\
& \leqq N_{p}\left\{\|f\|_{C(\bar{\Omega})}+\sum_{j=1}^{m} \sum_{k=0}^{2 m-m_{j}}\left|\lambda-\lambda_{1}\right|^{1-\frac{m_{j}+k}{2 m}}\left\|D^{k} \tilde{g}_{j}\right\|_{C(\bar{\delta} \Omega)}\right\},
\end{align*}
$$

where \tilde{g}_{j} is any function in $C^{2 m-m_{j}}(\bar{\Omega})$ satisfying $\left.\tilde{g}_{j}\right|_{\partial \Omega}=g_{j}$.
Proof. See the Appendix below.
We need two further basic results. The first is the well-known Sobolev's imbedding theorem, the second yields a method for extending functions defined on subsets of \mathbb{R}^{n}.

Proposition 1.3. Suppose that Ω is bounded and has Lipschitz boundary $\partial \Omega$; let $q>n$ and $\alpha=1-n / q$. Then $W^{1, q}(\Omega) \hookrightarrow h^{\alpha}(\bar{\Omega}) ;$ moreover there exist $K_{1}, K_{2}>0$ such that for each $x_{0} \in \bar{\Omega}, r>0$ and $u \in W^{1, q}(\Omega)$ we have:
(i) $\|u\|_{C\left(\Omega\left(x_{0}, r\right)\right)} \leqq K_{1} r^{-n / q}\left\{\|u\|_{L^{q}\left(\Omega\left(x_{0}, r\right)\right)}+r\|D u\|_{L^{q}\left(\Omega\left(x_{0}, r\right)\right)}\right\}$,
(ii) $[u]_{C^{\alpha}\left(\Omega\left(x_{0}, r\right)\right)} \leqq K_{2}\|D u\|_{L^{q}\left(\Omega\left(x_{0}, r\right)\right)}$.

Proof. See e.g. Adams [5, Lemmata 5.15 and 5.17].
Proposition 1.4. (i) Let F be a closed set of \mathbb{R}^{n}, let $k \in \mathbb{N}$. There exists a mapping $E_{k}: C(F) \rightarrow C\left(\mathbb{R}^{n}\right)$ such that
(a) $\left.E_{k}(f)\right|_{F} \equiv f$,
(b) $\left\|E_{k}(f)\right\|_{C^{\alpha}\left(\mathbb{R}^{n}\right)} \leqq M_{k}\|f\|_{C^{\alpha(F)}} \forall f \in C^{\alpha}(F), \forall \alpha \in[0, k]$,
where M_{k} is independent of the closed set F and of $\alpha \in[0, k]$.
(ii) Let Ω be a bounded open set with Lipschitz boundary $\partial \Omega$. There exists a mapping $E: L^{1}(\Omega) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)$ such that
(a) $\left.E(f)\right|_{\Omega} \equiv f$,
(b) $\|E(f)\|_{W^{k} \cdot p\left(\mathbb{R}^{n}\right)} \leqq M_{k, \Omega}\|f\|_{W^{k}, p(\Omega)} \forall f \in W^{k, p}(\Omega), \forall k \in \mathbb{N}, \forall p \in[1, \infty[$, where $M_{k, \Omega}$ is independent of $p \in[1, \infty[$.

Proof. Part (i) is due to Whitney; for a proof see Stein [19, Chap. VI, Sect. 2].
The result of (ii) goes back to Calderon, and is also proved in [19, Chap. VI, Sect. 3].

We finish this section with the following
Definition 1.5. Let $\left\{B_{j}(\cdot, D)\right\}$ be defined by (1.4). If $p \in[1, \infty[, k=0,1, \ldots, 2 m$ and $\alpha \in] 0,2 m]$ we set :

$$
\begin{aligned}
W_{B}^{k, p}(\Omega) & :=\left\{u \in W^{k, p}(\Omega): B_{j}(\cdot, D) u=0 \text { on } \partial \Omega \text { for } m_{j}<k-1 / p\right\} \\
C_{B}^{k}(\bar{\Omega}) & :=\left\{u \in C^{k}(\bar{\Omega}): B_{j}(\cdot, D) u=0 \text { on } \partial \Omega \text { for } m_{j} \leqq k\right\} \\
C_{B}^{\alpha}(\bar{\Omega}) & :=C^{\alpha}(\bar{\Omega}) \cap C_{B}^{[\alpha]}(\bar{\Omega}), \\
h_{B}^{\alpha}(\bar{\Omega}) & :=h^{\alpha}(\bar{\Omega}) \cap C_{B}^{[\alpha]}(\bar{\Omega}) .
\end{aligned}
$$

Remark 1.6. Let $f \in C_{B}^{\alpha}(\bar{\Omega})$ and let $m_{j}<\alpha$. Then, if we extend, via Proposition 1.4, the coefficients of $B_{j}(\cdot, D)$ to the whole $\bar{\Omega}$, we have $B_{j}(\cdot, D) f \in C^{\alpha-m_{j}}(\bar{\Omega})$. Hence the condition $B_{j}(\cdot, D) f=0$ on $\partial \Omega$ means in particular that

$$
\left\|B_{j}(\cdot, D) f\right\|_{C^{r}(\partial \Omega)}=0, \quad r=0,1, \ldots,\left[\alpha-m_{j}\right]
$$

§ 2. The Main Result

Let E be a Banach space and let $A: D_{A} \hookrightarrow E \rightarrow E$ be a closed linear operator whose domain D_{A} is possibly not dense in E. We assume that the resolvent $\rho(A)$ of A contains a fixed half-line $R_{\eta, \omega}:=\{z \in \mathbb{C}: \arg z=\eta,|z|>\omega\}$; more precisely, we suppose that there exist $\omega \geqq 0, \eta \in[0,2 \pi[$ and $M>0$ such that:

$$
\begin{equation*}
\rho(A) \supseteq R_{\eta, \omega}, \quad\|R(z, A)\|_{\mathscr{L}_{(E)}} \leqq \frac{M}{|z-\omega|} \quad \forall z \in R_{\eta, \omega} ; \tag{2.1}
\end{equation*}
$$

here $R(z, A):=(z-A)^{-1}$. By replacing possibly A with $e^{i \eta}(A-\omega)$, it is not restrictive to assume, instead of (2.1), that:

$$
\begin{equation*}
\left.\rho(A) \supseteq R_{0,0}=\right] 0, \infty\left[, \quad\|R(s, A)\|_{\mathscr{L}(E)} \leqq \frac{M}{s} \quad \forall s>0\right. \tag{2.2}
\end{equation*}
$$

Then in particular for $s \in[1, \infty$ [we have

$$
\begin{aligned}
\|A R(s, A) x\|_{E} \leqq M\|x\|_{E} & \forall x \in E \\
s\|A R(s, A) x\|_{E} \leqq M\|x\|_{D_{A}} & \forall x \in D_{A},
\end{aligned}
$$

where $\|\cdot\|_{D_{A}}$ is the graph norm. Thus, following Grisvard [11], we are led to define the intermediate spaces $D_{A}(\theta, \infty)$ and $\left.D_{A}(\theta), \theta \in\right] 0,1[$, by:

Definition 2.1. We set:

$$
\begin{aligned}
D_{A}(\theta, \infty) & :=\left\{x \in E: \sup _{s \geqq 1} s^{\theta}\|A R(s, A) x\|_{E}<\infty\right\}, \\
D_{A}(\theta) & :=\left\{x \in D_{A}(\theta, \infty): \lim _{s \rightarrow \infty} s^{\theta}\|A R(s, A) x\|_{E}=0\right\} .
\end{aligned}
$$

A norm in $D_{A}(\theta, \infty)$ is the following:

$$
\begin{equation*}
\|x\|_{D_{A}(\theta, \infty)}:=\|x\|_{E}+\sup _{s \geqq 1} s^{\theta}\|A R(s, A) x\|_{E} \tag{2.3}
\end{equation*}
$$

Clearly $D_{A} \hookrightarrow D_{A}(\theta) \hookrightarrow D_{A}(\theta, \infty) \hookrightarrow D_{A}(\sigma) \hookrightarrow \bar{D}_{A}^{-}$if $0<\sigma<\theta<1$. Moreover $D_{A}(\sigma)$ is a closed subspace of $D_{A}(\theta, \infty)$: indeed, it coincides with the closure of D_{A} with respect to the norm (2.3) (a proof is readily obtained by adapting that of [11, Lemme 2.5]).
Proposition 2.2. $D_{A}(\theta, \infty)$ and $D_{A}(\theta)$ are real interpolation spaces between D_{A} and E, namely:

$$
D_{A}(\theta, \infty)=\left(D_{A}, E\right)_{1-\theta, \infty}, \quad D_{A}(\theta)=\left(D_{A}, E\right)_{1-\theta}
$$

(For the precise definition and more properties of the spaces $\left(D_{A}, E\right)_{\alpha, \infty}$ see Lions-Peetre [14] or Triebel [22]; for the spaces $\left(D_{A}, E\right)_{\alpha}$ see Da Prato-Grisvard [9].)

Proof. See [11, Prop. 5.5] and [9, Théorème 2.5].
After these preparations, we are ready to state our main result. Let Ω be a bounded open set of $\mathbb{R}^{n}, n \geqq 1$, with boundary $\partial \Omega$ of class $C^{2 m}, m \geqq 1$; let $A(\cdot, D),\left\{B_{j}(\cdot, D)\right\}_{1 \leqq j \leqq m}$ be the differential operators defined by (1.3), (1.4) and suppose that (1.5), ...,(1.9) hold. If we set $E=C(\bar{\Omega})$, by Theorem 1.2 the operator A, defined by

$$
\begin{align*}
& D_{A}:=\left\{u \in \bigcap_{p \geqq 1} W^{2 m, p}(\Omega): A(\cdot, D) u \in C(\bar{\Omega}), B_{j}(\cdot, D) u=0 \text { on } \partial \Omega, j=1, \ldots, m\right\} \\
& A u:=A(\cdot, D) u \tag{2.4}
\end{align*}
$$

fulfills (2.1) for some $\omega \geqq 0, \eta \in[0,2 \pi[$ and $M>0$.
We will prove the following result:
Theorem 2.3. Let A be defined by (2.4) and suppose that (2.1) holds. If $\theta \in] 0,1[$ and $2 m \theta$ is not an integer, then

$$
D_{A}(\theta, \infty)=C_{B}^{2 m \theta}(\bar{\Omega}), \quad D_{A}(\theta)=h_{B}^{2 m \theta}(\bar{\Omega}),
$$

with equivalence of norms.
(The spaces $C_{B}^{\alpha}(\bar{\Omega})$ and $h_{B}^{\alpha}(\bar{\Omega})$ were introduced in Definition 1.5.)
The proof of the first equality is contained in Sects. 3 and 4 below; the proof of the second one is quite similar and will be sketched in Sect. 5.

§ 3. The First Inclusion

Let A be defined by (2.4) and suppose that (2.1) holds. Then, considering $e^{i \eta}(A$ $-\omega$) in place of A, we can assume that (2.2) is true. Then we prove the following:
Theorem 3.1. If $\theta \in] 0,1[$ and $2 m \theta$ is not an integer, then

$$
C_{B}^{2 m \theta}(\bar{\Omega}) \hookrightarrow D_{A}(\theta, \infty) .
$$

Proof. It suffices to show that

$$
\begin{equation*}
\sup _{s \geqq 1} s^{\theta}\|A R(s, A) f\|_{C(\bar{\Omega})} \leqq C\|f\|_{C^{2 m \theta}(\bar{\Omega})} \forall f \in C_{B}^{2 m \theta}(\bar{\Omega}) . \tag{3.1}
\end{equation*}
$$

This will be done by constructing, for each fixed $f \in C_{B}^{2 m \theta}(\bar{\Omega})$, a function w : $[1, \infty[\rightarrow C(\bar{\Omega})$ such that:

$$
\begin{align*}
\|w(s)-f\|_{C(\bar{\Omega})} \leqq c s^{-\theta}\|f\|_{C^{2 m \theta}(\bar{\Omega})} & \forall s \geqq 1 \tag{3.2}\\
\|A R(s, A) w(s)\|_{C(\bar{\Omega})} \leqq c s^{-\theta}\|f\|_{C^{2 m \theta}(\bar{\Omega})} & \forall s \geqq 1: \tag{3.3}
\end{align*}
$$

this will imply (3.1) since

$$
\begin{aligned}
\|A R(s, A) f\|_{C(\bar{\Omega})} & \leqq A R(s, A)\left\|_{\mathscr{L}(C(\bar{\Omega}))} \cdot\right\| f-w(s)\left\|_{C(\bar{\Omega})}+\right\| A R(s, A) w(s) \|_{C(\bar{\Omega})} \\
& \leqq c s^{-\theta}\|f\|_{C^{2 m \theta}(\bar{\Omega})} .
\end{aligned}
$$

Let $f \in C_{B}^{2 m \theta}(\bar{\Omega})$, and consider an extension $F \in C^{2 m \theta}\left(\mathbb{R}^{n}\right)$ of f (Prop. 1.4(i)), satisfying

$$
\begin{equation*}
\|F\|_{\mathbf{C}^{2 m \theta}\left(\mathbb{R}^{n}\right)} \leqq c\|f\|_{\mathbf{C}^{2 m \theta}\left(\mathbb{R}^{n}\right)} . \tag{3.4}
\end{equation*}
$$

Define an auxiliary function $\left.\left.v_{0}:\right] 0,1\right] \rightarrow C\left(\mathbb{R}^{n}\right)$ by

$$
\begin{equation*}
v_{0}(t)(x) \equiv v_{0}(t, x):=\int_{\mathbb{R}^{n}} \phi(z) F(x-t z) d z=t^{-n} \int_{\mathbb{R}^{n}} \phi\left(\frac{x-y}{t}\right) F(y) d y \tag{3.5}
\end{equation*}
$$

where $\phi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ is a real-valued function such that $0 \leqq \phi \leqq 1, \phi \equiv 0$ outside $B(0,1), \int_{\mathbb{R}^{n}} \phi(z) d z=1$, and ϕ is even in each variable.

We have the following lemma, whose proof is straightforward:
Lemma 3.2. (i) $\lim _{t \rightarrow 0^{+}}\left\|v_{0}(t)-F\right\|_{C\left(\mathbb{R}^{n}\right)}=0$, i.e. $v_{0}(0)=f$,
(ii) $\left.\left.v_{0} \in C^{\infty}(] 0,1\right] \times \mathbb{R}^{n}\right)$ and

$$
\sup _{t \in \mathrm{j} 0,1]}\left\|\frac{\partial^{h} v_{0}(t)}{\partial t^{h}}\right\|_{C_{(\mathbb{R} n)}} \leqq c\|F\|_{C^{h}(\mathbb{R} n)}, \quad h=0,1, \ldots,[2 m \theta] .
$$

Let us define now

$$
\begin{equation*}
\left.\left.v(t)(x) \equiv v(t, x):=\sum_{h=0}^{[2 m \theta]}(-1)^{h} \frac{\partial^{h} v_{0}}{\partial t^{h}}(t, x) \frac{t^{h}}{h!}, \quad t \in\right] 0,1\right], x \in \mathbb{R}^{n} \tag{3.6}
\end{equation*}
$$

Then clearly $\left.\left.v \in C^{\infty}(] 0,1\right] \times \mathbb{R}^{n}\right)$ and we have the following result:
Lemma 3.3. For each $t \in] 0,1]$ we have:
(i) $\|v(t)-F\|_{C\left(\mathbb{R}^{n}\right)} \leqq c t^{2 m \theta}\|F\|_{C^{2 m \theta}\left(\mathbb{R}^{n}\right)}$

(iii) $\left\|D^{\gamma} v(t)\right\|_{C\left(\mathbb{R}^{n}\right)} \leqq c t^{-(|\gamma|-2 m \theta)}\|F\|_{C^{2 m \theta}\left(\mathbb{R}^{n}\right)} \forall \gamma \in \mathbb{N}^{n}$ with $|\gamma|>2 m \theta$.

Proof. (i) Let us compute $\frac{\partial^{h} v_{0}}{\partial t^{h}}(t)$ for $h \leqq[2 m \theta]$: it is easily seen that

$$
\begin{equation*}
\frac{\partial^{h} v_{0}}{\partial t^{h}}(t, x)=\int_{\mathbb{R}^{n}} \phi(z) \sum_{|\beta|=h} D^{\beta} F(x-t z)(-z)^{\beta} \frac{h!}{\beta!} d z \tag{3.7}
\end{equation*}
$$

and consequently

$$
v(t, x)=\int_{\mathbb{R}^{n}} \phi(z) \sum_{|\beta| \leqq[2 m \theta]} \frac{D^{\beta} F(x-t z)}{\beta!} z^{\beta} t^{|\beta|} d z .
$$

On the other hand for each $z \in \mathbb{R}^{n}$ and $\left.\left.t \in\right] 0,1\right]$ we have by Taylor's formula

$$
F(x)=\sum_{|\beta| \leqq[2 m \theta]} \frac{D^{\beta} F(x-t z)}{\beta!} z^{\beta} t^{|\beta|}+\sum_{|\beta|=[2 m \theta]} \frac{D^{\beta} F(\xi)}{\beta!} z^{\beta} t^{[2 m \theta]}
$$

where $\xi=\xi(t, z, x)$ is a suitable point in the segment joining x and $x-t z$; hence we get

$$
\begin{aligned}
v(t, x)-F(x) & =\int_{\mathbb{R}^{n}} \phi(z)\left\{\sum_{|\beta| \leqq[2 m \theta]} \frac{D^{\beta} F(x-t z)}{\beta!} z^{\beta} t^{|\beta|}-F(x)\right\} d z \\
& =\int_{\mathbb{R}^{n}} \phi(z) \sum_{|\beta|=[2 m \theta]}\left[D^{\beta} F(x-t z)-D^{\beta} F(\xi)\right] \frac{z^{\beta} t^{[2 m \theta]}}{\beta!} d z
\end{aligned}
$$

and finally

$$
\begin{aligned}
\|v(t)-F\|_{C\left(\mathbb{R}^{n}\right)} & \leqq c \int_{\mathbb{R}^{n}} \phi(z)|z|^{2 m \theta} t^{2 m \theta} d z \sum_{|\beta|=[2 m \theta]}\left[D^{\beta} F\right]_{C^{2 m \theta-[2 m \theta]\left(\mathbb{R}^{n}\right)}} \\
& \leqq c t^{2 \boldsymbol{m} \theta}\|F\|_{C^{2 m \theta}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

(ii) Fix $\gamma \in \mathbb{N}^{n}$ with $|\gamma| \leqq[2 m \theta]$ and compute $D^{\gamma} \frac{\partial^{h} v_{0}(t)}{\partial t^{h}}$ for $h \leqq[2 m \theta]$. If $|\gamma|+h \leqq[2 m \theta]$, by (3.7) we get:

$$
\begin{array}{r}
D^{\gamma} \frac{\partial^{h} v_{0}(t, x)}{\partial t^{h}}=\int_{\mathbb{R}^{n}} \phi(z) \sum_{|\beta|=h} D^{\beta+\gamma} F(x-t z)(-z)^{\beta} \frac{h!}{\beta!} d z \tag{3.8}\\
\text { if }|\gamma|+h \leqq[2 m \theta] .
\end{array}
$$

On the other hand if $|\gamma|+h>2 m \theta$ we choose $\gamma_{1}, \gamma_{2} \in \mathbb{N}^{n}$ such that

$$
\left|\gamma_{1}\right|=[2 m \theta]-h, \quad\left|\gamma_{2}\right|=|\gamma|-[2 m \theta]+h, \quad \gamma_{1}+\gamma_{2}=\gamma ;
$$

note that $\left|\gamma_{2}\right| \geqq 1$. Hence using (3.8) we can write

$$
\begin{aligned}
D^{\gamma} \frac{\partial^{h} v_{0}}{\partial t^{h}}(t, x) & =D^{\gamma_{2}}\left(D^{\gamma_{1}} \frac{\partial^{h} v_{0}}{\partial t^{h}}(t, x)\right) \\
& =D^{\gamma_{2}}\left(\int_{\mathbb{R}^{n}} \phi(z) \sum_{|\beta|=h} D^{\beta+\gamma_{1}} F(x-t z)(-z)^{\beta} \frac{h!}{\beta!} d z\right) \\
& =D^{\gamma_{2}}\left(t^{-n} \int_{\mathbb{R}^{n}} \sum_{|\beta|=h} D^{\beta+\gamma_{1}} F(y) \frac{h!}{\beta!} \phi\left(\frac{x-y}{t}\right)\left(\frac{y-x}{t}\right)^{\beta} d y\right) \\
& =t^{-n} \int_{\mathbb{R}^{n}} \sum_{|\beta|=h} D^{\beta+\gamma_{1}} F(y) \frac{h!}{\beta!}\left[D^{\gamma_{2}}\left(\phi(\xi)(-\xi)^{\beta}\right)\right]_{\xi=\frac{x-y}{t}} \cdot t^{-\left|\gamma_{2}\right|} d y \\
& =t^{-\left|\gamma_{2}\right|} \int_{\mathbb{R}^{n}} \sum_{|\beta|=h} D^{\beta+\gamma_{1}} F(x-t z) \frac{h!}{\beta!} D^{\gamma_{2}}\left(\phi(z)(-z)^{\beta}\right) d z
\end{aligned}
$$

and, since $\int_{\mathbb{R}^{n}} D^{y_{2}}\left(\phi(z)(-z)^{\boldsymbol{\beta}}\right) d z=0$, we obtain

$$
\begin{aligned}
D^{\gamma} \frac{\partial^{h} v_{0}}{\partial t^{h}}(t, x)= & t^{-(|\gamma|-[2 m \theta]+h)} \int_{\mathbb{R}^{n}} \sum_{|\beta|=h}\left[D^{\beta+\gamma_{1}} F(x-t z)-D^{\beta+\gamma_{1}} F(x)\right] \\
& \cdot \frac{h!}{\beta!} D^{\gamma_{2}}\left(\phi(z)(-z)^{\beta}\right) d z
\end{aligned}
$$

this implies

$$
\begin{align*}
& \left\|D^{y} \frac{\partial^{h} v_{0}}{\partial t^{h}}(t)\right\|_{C\left(\mathbb{R}^{n}\right)} \tag{3.9}\\
& \quad \leqq c t^{-(|\gamma|-[2 m \theta]+h)} \sum_{|\beta|=[2 m \theta]}\left[D^{\beta} F\right]_{C^{2 m \theta-[2 m \theta]\left(\mathbb{R}^{n}\right)}} t^{2 m \theta-[2 m \theta]} \\
& \quad \leqq c t^{-(|\gamma|+h-2 m \theta)}\|F\|_{C^{2 m \theta}\left(\mathbb{R}^{n}\right)}, \quad \text { if }|\gamma|+h>2 m \theta
\end{align*}
$$

Now by (3.6) we have:

$$
\begin{aligned}
\left\|D^{\gamma} v(t)-D^{\gamma} F\right\|_{C\left(\mathbb{R}^{n}\right)} \leqq & \left\|\sum_{h=0}^{[2 m \theta]-|\gamma|}(-1)^{h} D^{\gamma} \frac{\partial^{h} v_{0}}{\partial t^{h}}(t) \frac{t^{h}}{h!}-D^{\gamma} F\right\|_{C\left(\mathbb{R}^{n}\right)} \\
& +\| \|_{h=[2 m \theta]-|\gamma|+1}^{[2 m \theta]}(-1)^{h} D^{\gamma} \frac{\partial^{h} v_{0}}{\partial t^{h}}(t) \frac{t^{h}}{h!} \|_{C\left(\mathbb{R}^{n}\right)}=I_{1}+I_{2}
\end{aligned}
$$

We estimate I_{1} as in (i), by using (3.8) and Taylor's formula for $D^{\nu} F$ of order $[2 m \theta]-|\gamma|-1$, centered at $x-t z$:

$$
\begin{aligned}
I_{1} & =\left\|\int_{\mathbb{R}^{n}} \phi(z)\left[\sum_{|\beta| \leqq[2 m \theta]-|\gamma|} \frac{D^{\gamma+\beta} F(x-t z)}{\gamma!} z^{\beta} t^{|\beta|}-D^{\gamma} F(x)\right] d z\right\|_{C_{\left(\mathbb{R}^{n}\right)}} \\
& =\left\|\int_{\mathbb{R}^{n}} \phi(z) \sum_{|\beta|=[2 m \theta]-|\gamma|}\left[D^{\gamma+\beta} F(x-t z)-D^{\gamma+\beta} F(\xi)\right] \frac{z^{\gamma}}{\gamma!} t^{[2 m \theta]-|\gamma|} d z\right\|_{C\left(\mathbb{R}^{n}\right)} \\
& \leqq c \sum_{|\beta|=[2 m \theta]}\left[D^{\beta} F\right]_{C^{2 m \theta-\{2 m \theta]}\left(\mathbb{R}^{n}\right)} t^{2 m \theta-|\gamma|} \leqq c t^{2 m \theta-|\gamma|}\|F\|_{C^{2 m \theta}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

In order to estimate I_{2} we just use (3.9):

$$
I_{2} \leqq \sum_{h=[2 m \theta]-|\gamma|+1}^{[2 m \theta]}\left\|D^{\gamma} \frac{\partial^{h} v_{0}}{\partial t^{h}}(t)\right\|_{\mathcal{C}_{\left(\mathbb{R}^{n}\right)}} \frac{t^{h}}{h!} \leqq c t^{2 m \theta-|\gamma|}\|\boldsymbol{F}\|_{C^{2 m \theta}\left(\mathbb{R}^{n}\right)}
$$

This we obtain

$$
\left\|D^{\gamma} v(t)-D^{\gamma} F\right\|_{C\left(\mathbb{R}^{n}\right)} \leqq I_{1}+I_{2} \leqq c t^{2 m \theta-|y|}\|F\|_{C^{2 m \theta}\left(\mathbb{R}^{n}\right)}
$$

and (ii) follows.
(iii) Let $\gamma \in \mathbb{N}^{n}$ be such that $|\gamma| \geqq 2 m \theta$. By using again (3.9) we have:

$$
\left\|D^{\gamma} v(t)\right\|_{C\left(\mathbb{R}^{n}\right)} \leqq \sum_{h=0}^{[2 m \theta]}\left\|D^{\gamma} \frac{\partial^{h} v_{0}}{\partial t^{h}}(t)\right\|_{C\left(\mathbb{R}^{n}\right)} \frac{t^{h}}{h!} \leqq c t^{-(\mid y]-2 m \theta)}\|F\|_{C^{2 m \theta}\left(\mathbb{R}^{n}\right)}
$$

and the proof is complete.
The desired function $w:[1, \infty[\rightarrow C(\bar{\Omega})$ satisfying (3.2) and (3.3) is now

$$
\begin{equation*}
w(s)(x) \equiv w(s, x):=v\left(s^{-1 / 2 m}, x\right), \quad s \geqq 1, x \in \bar{\Omega} \tag{3.10}
\end{equation*}
$$

its main properties are summarized as follows:

Corollary 3.4. We have:
(i) $w \in C^{\infty}([1, \infty[\times \bar{\Omega})$,
(ii) $\|w(s)-f\|_{C_{(\bar{\Omega})}} \leqq c s^{-\theta}\|f\|_{C^{2 m \theta}(\bar{\Omega})}$,
(iii) $\left\|D^{\gamma} w(s)-D^{\gamma} f\right\|_{C_{(\bar{\Omega})}} \leqq c s^{-(\theta-|\gamma| / 2 m)}\|f\|_{C^{2 m \theta}(\bar{\Omega})} \forall \gamma \in \mathbb{N}^{n}$ with $|\gamma| \leqq[2 m \theta]$,
(iv) $\left\|D^{\gamma} w(s)\right\|_{C(\Omega)} \leqq c s^{|\gamma| / 2 m-\theta}\|f\|_{C^{2 m \theta}(\bar{\Omega})} \forall \gamma \in \mathbb{N}^{n}$ with $|\gamma|>2 m \theta$.

Proof. It is an immediate consequence of (3.4) and Lemma 3.3.
By Corollary 3.4(ii) we have shown (3.2). Concerning (3.3) we set:

$$
\begin{equation*}
u(s):=s R(s, A) w(s), \quad s \geqq 1, \tag{3.11}
\end{equation*}
$$

and observe that

$$
\begin{equation*}
A R(s, A) w(s)=u(s)-w(s), \quad s \geqq 1 . \tag{3.12}
\end{equation*}
$$

Now $u(s)$ satisfies:

$$
\begin{aligned}
& u(s) \in \bigcap_{p \geqq 1} W^{2 m, p}(\Omega) \\
& s u(s, x)+\left[\lambda_{0}-A(x, D)\right] u(s, x)=s w(s, x) \quad \text { in } \Omega, \\
& B_{j}(x, D) u(s, x)=0, \quad j=1, \ldots, m, \quad \text { on } \partial \Omega
\end{aligned}
$$

Hence $u(s)-w(s)$ is the unique solution of:

$$
\begin{aligned}
& u(s)-w(s) \in \bigcap_{p \geqq 1} W^{2 m, p}(\Omega), \\
& s[u(s, x)-w(s, x)]+\left[\lambda_{0}-A(x, D)\right][u(s, x)-w(s, x)] \\
& \quad=\left[A(x, D)-\lambda_{0}\right] w(s, x) \quad \text { in } \Omega \\
& B_{j}(x, D)[u(s, x)-w(s, x)]=-B_{j}(x, D) w(s, x), \quad j=1, \ldots, m, \quad \text { on } \partial \Omega .
\end{aligned}
$$

Thus by Theorem 1.2 we obtain:

$$
\begin{align*}
\|u(s)-w(s)\|_{C(\bar{\Omega})} \leqq & c s^{-1}\left\|\left[A(\cdot, D)-\lambda_{0}\right] w(s)\right\|_{C(\bar{\Omega})} \tag{3.13}\\
& +c \sum_{j=1}^{m} \sum_{k=0}^{2 m-m_{j}} s-\frac{m_{j}+k}{2 m}\left\|B_{j}(\cdot, D) w(s)\right\|_{C^{k}(\partial \Omega)} \\
= & J_{1}+J_{2}
\end{align*}
$$

We estimate J_{1} by using Corollary 3.4 (iii)-(iv) and recalling that $s \geqq 1$:

$$
\begin{align*}
J_{1} & \leqq c s^{-1} \sum_{|\beta| \leqq 2 m}\left\|D^{\beta} w(s)\right\|_{C(\bar{\Omega})} \tag{3.14}\\
& \leqq c s^{-1}\left\{1+\sum_{h=[2 m \theta]+1}^{2 m} s^{(h / 2 m)-\theta}\right\}\|f\|_{C^{2 m \theta}(\bar{\Omega})} \\
& \leqq c s^{-\theta}\|f\|_{C^{2 m \theta}(\bar{\Omega})} .
\end{align*}
$$

To estimate J_{2} we split it into three terms. Set
then

$$
j_{0}:=\max \left\{j \leqq m: m_{j}<2 m \theta\right\} ;
$$

$$
\begin{align*}
J_{2}= & \left(\sum_{j=1}^{j_{0}} \sum_{k=0}^{[2 m \theta]-m_{j}}+\sum_{j=1}^{j_{0}} \sum_{k=[2 m \theta]-m_{j}+1}^{2 m-m_{j}}+\sum_{j=j_{0}+1}^{m} \sum_{k=0}^{2 m-m_{j}}\right) \tag{3.15}\\
& \cdot\left\|_{j}(\cdot, D) w(s)\right\|_{C^{k}(\partial \Omega)}=J_{21}+J_{22}+J_{23} ;
\end{align*}
$$

now by Corollary 3.4(iii)-(iv) we get

$$
\begin{equation*}
J_{22} \leqq c \sum_{j=1}^{j_{0}} \sum_{k=[2 m \theta]-m_{j}+1}^{2 m-m_{j}} s^{-\left(m_{j}+k\right) / 2 m}\|w(s)\|_{C^{k+m_{j}(\partial \Omega)}} \leqq c s^{-\theta}\|f\|_{C^{2 m \theta}(\bar{\Omega})} \tag{3.16}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
J_{23} \leqq c \sum_{j=j_{0}+1}^{m} \sum_{k=0}^{2 m-m_{j}} s s^{-\frac{m_{j}+k}{2 m}}\|w(s)\|_{C^{k+m_{j}(\partial \Omega)}} \leqq c s^{-\theta}\|f\|_{C^{2 m \theta}(\Omega)} \tag{3.17}
\end{equation*}
$$

Finally, concerning J_{21} we use Remark 1.6 and Corollary 3.4(iii), obtaining

$$
\begin{align*}
J_{21} & =\sum_{j=1}^{j_{0}} \sum_{k=0}^{[2 m \theta]-m_{j}}\left\|B_{j}(\cdot, D)[w(s)-f]\right\|_{C^{k}(\hat{\partial} \Omega)} \tag{3.18}\\
& \leqq c \sum_{j=1}^{j_{0}} \sum_{k=0}^{[2 m \theta]-m_{j}}\|w(s)-f\|_{C^{k+m_{j}}(\hat{\theta} \Omega)} \leqq c s^{-\theta}\|f\|_{C^{2 m \theta}(\bar{\Omega})}
\end{align*}
$$

Collecting (3.13), ..., (3.18) we get

$$
\|u(s)-w(s)\|_{C_{(\bar{\Omega})}} \leqq c s^{-\theta}\|f\|_{C^{2 m \theta}(\bar{\Omega})}
$$

and recalling (3.12) we have proved (3.3).
As (3.1) follows by (3.2) and (3.3), the proof of Theorem 3.1 is complete.

§ 4. The Second Inclusion

Again, let A be defined by (2.4) and, after the usual modifications, assume that (2.2) holds. We have to prove:

Theorem 4.1. If $\theta \in] 0,1[$ and $2 m \theta$ is not an integer, then

$$
D_{A}(\theta, \infty) \hookrightarrow C_{B}^{2 m \theta}(\bar{\Omega}) .
$$

Proof. We will construct a function $u:] 0,1] \rightarrow D_{A}$ such that $u(t) \rightarrow f$ in $C_{B}^{[2 m \theta]}(\bar{\Omega})$ as $t \rightarrow 0^{+}$: this will imply that $f \in C_{B}^{[2 m \theta]}(\bar{\Omega})$; next, we will show that $f \in C^{2 m \theta}(\bar{\Omega})$ by using the approximating function $u(t)$, evaluated at suitable points t.

We start with defining

$$
\begin{equation*}
\left.\left.u(t)(x) \equiv u(t, x):=t^{-1}\left[R\left(t^{-1}, A\right) f\right](x), \quad t \in\right] 0,1\right], x \in \bar{\Omega} . \tag{4.1}
\end{equation*}
$$

Remark 4.2. Clearly $\left.u \in C^{1}(] 0,1\right], C(\bar{\Omega})$), and it is readily seen that

$$
\begin{equation*}
\left.\left.u^{\prime}(t)=t^{-2} R\left(t^{-1}, A\right) A R\left(t^{-1}, A\right) f, \quad t \in\right] 0,1\right] \tag{4.2}
\end{equation*}
$$

Thus in particular $\left.\left.u, u^{\prime} \in C(] 0,1\right], D_{A}\right)$, which implies

$$
\begin{array}{lll}
u(t), u^{\prime}(t) \in \bigcap_{p \geqq 1} W^{2 m p}(\Omega) \hookrightarrow \bigcap_{\alpha \in ⿺ 0,1[} C^{2 m \alpha}(\bar{\Omega}) & \\
B_{j}(\cdot, D) u(t)=B_{j}(\cdot, D) u^{\prime}(t)=0 & \text { on } \partial \Omega & \forall t \in] 0,1] .
\end{array}
$$

As a consequence we have for $|\beta| \leqq 2 m-1$

$$
\left.\frac{\partial}{\partial t} D^{\beta} u(t, x)=D^{\beta} \frac{\partial}{\partial t} u(t, x) \text { in the sense of } C(\square 0,1] \times \bar{\Omega}\right),
$$

and for $|\beta|=2 m$

$$
\left.\left.\frac{\partial}{\partial t} D^{\beta} u(t, x)=D^{\beta} \frac{\partial}{\partial t} u(t, x) \text { in the sense of } \bigcap_{p \geqq 1} L^{p}(] 0,1\right] \times \Omega\right) .
$$

We have the following key lemma:
Lemma 4.3. For each $p>n$ there exists $C_{p}>0$ such that:
(i) $\sum_{h=1}^{2 m-1} t^{-\left(1-\frac{h}{2 m}\right)} \sum_{|\beta|=h}\left\|D^{\beta} u(t)\right\|_{C(\bar{\Omega})}$
$+t^{-\frac{n}{2 m p}} \sup _{x_{0} \in \bar{\Omega}}\left\{\sum_{|\beta|=2 m}\left\|D^{\beta} u(t)\right\|_{L^{p}\left(\Omega\left(x_{0}, t^{1 / 2 m}\right)\right)}\right\} \leqq C_{p} t^{-1}\|f\|_{\boldsymbol{C}(\bar{\Omega})}$,
(ii) $\sum_{h=1}^{2 m-1} t^{-\left(1-\frac{h}{2 m}\right)} \sum_{|\beta|=h}\left\|D^{\beta} u^{\prime}(t)\right\|_{C(\bar{\Omega})}$

$$
\begin{aligned}
& +t^{-\frac{n}{2 m_{p}}} \sup _{x_{0} \in \bar{\Omega}}\left\{\sum_{|\beta|=2 m}\left\|D^{\beta} u^{\prime}(t)\right\|_{L^{p}\left(\Omega\left(x_{0}, t^{1 / 2 m)}\right)\right.}\right\} \\
& \leqq C_{p} t^{-(2-\theta)}\|f\|_{D_{A}(\theta, \infty)} .
\end{aligned}
$$

Proof. (i) It follows readily by (4.1) and Theorem 1.2 with $\lambda=\lambda_{0}+t^{-1}$.
(ii) It follows by (4.2), Theorem 1.2 with $\lambda=\lambda_{0}+t^{-1}$ and the fact that

$$
\left\|A R\left(t^{-1}, A\right) f\right\|_{C(\bar{\Omega})} \leqq c t^{\theta}\|f\|_{D_{A}(\theta, \infty)}
$$

The next Lemma is a consequence of Lemma 4.3.
Lemma 4.4. We have:
(i) $\lim _{t \rightarrow 0^{+}}\|u(t)-f\|_{C(\bar{\Omega})}=0$.
(ii) $\left\|D^{\beta} u(r)-D^{\beta} u(s)\right\|_{C(\bar{\Omega})} \leqq c|r-s|^{\theta-\frac{1 \beta \mid}{2 m}}\|f\|_{D_{A}(\theta, \infty)}$ $\forall r, s \in] 0,1], \forall \beta \in \mathbb{N}^{n}$ with $|\beta| \leqq[2 m \theta] ;$
(iii) $\left\|D^{\beta} u(t)\right\|_{C(\bar{\Omega})} \leqq c t^{-\left(\frac{181}{2 m}-\theta\right)}\|f\|_{D_{A}(\theta, \infty)}$ $\forall t \in] 0,1] . \forall \beta \in \mathbb{N}^{n}$ with $2 m \theta<|\beta| \leqq 2 m-1 ;$
(iv) for each $p>\frac{n}{2 m(1-\theta)}$ there exists $C_{p}>0$ such that

$$
\begin{aligned}
& \sup _{x_{0} \in \bar{\Omega}}\left\|D^{\beta} u(t)\right\|_{L^{p}\left(\Omega \left(x_{0}, t^{1 / 2 m)}\right.\right.} \\
& \left.\left.\quad \leqq C_{p} t^{-\left(1-\theta-\frac{n}{2 m \bar{p}}\right)}\|f\|_{D_{A}(\theta, \infty)} \forall t \in\right] 0,1\right], \forall \beta \in \mathbb{N}^{n} \quad \text { with } \quad|\beta|=2 m ;
\end{aligned}
$$

(v) for each $\alpha \in] 0,1\left[\right.$ there exists $c_{\alpha}>0$ such that

$$
\begin{aligned}
& \sup _{x_{0} \in \Omega}\left[D^{\beta} u(t)\right]_{\mathrm{C}^{\alpha}\left(\Omega\left(x_{0}, t / 2 m\right)\right.} \\
& \left.\left.\quad \leqq c_{\alpha} t^{\frac{1-\alpha}{2 m}+\theta-1}\|f\|_{D_{A}(\theta, \infty)} \forall t \in\right] 0,1\right], \forall \beta \in \mathbb{N}^{n} \quad \text { with } \quad|\beta|=2 m-1 .
\end{aligned}
$$

Proof. (i) We have

$$
\|u(t)-f\|_{C_{(\bar{\Omega})}}=\left\|A R\left(t^{-1}, A\right) f\right\|_{C_{(\bar{\Omega})} \leqq c t^{\theta}\|f\|_{D_{A}(\theta, \infty)} .}
$$

(ii) If $|\beta| \leqq[2 m \theta]$ and $0<s<r \leqq 1$ we have by Lemma 4.3 (ii) (with any fixed $p>n$):

$$
\begin{aligned}
\left\|D^{\beta} u(r)-D^{\beta} u(s)\right\|_{C(\bar{\Omega})} & \leqq \int_{s}^{r}\left\|D^{\beta} u^{\prime}(\sigma)\right\|_{C(\bar{\Omega})} d \sigma \\
& \leqq c \int_{s}^{r} \sigma^{-1+\theta-(|\beta| / 2 m)} d \sigma\|f\|_{D_{A}(\theta, \infty)} \\
& \leqq c(r-s)^{\theta-|\beta| / 2 m}\|f\|_{D_{A}(\theta, \infty)}
\end{aligned}
$$

(iii) If $2 m \theta<|\beta| \leqq 2 m-1$ and $t \in] 0,1]$ we write:

$$
\begin{equation*}
\left\|D^{\beta} u(t)\right\|_{C(\bar{\Omega})} \leqq \int_{t}^{1}\left\|D^{\beta} u^{\prime}(\sigma)\right\|_{C(\bar{\Omega})} d \sigma+\left\|D^{\beta} u(1)\right\|_{C(\bar{\Omega})} . \tag{4.3}
\end{equation*}
$$

Now by Lemma 4.3 (i) (again with any fixed $p>n$)

$$
\begin{equation*}
\left\|D^{\beta} u(1)\right\|_{C(\bar{\Omega})} \leqq c\|f\|_{C_{(\bar{\Omega})}} \tag{4.4}
\end{equation*}
$$

whereas by Lemma 4.3 (ii)
(4.5) $\int_{t}^{1}\left\|D^{\beta} u^{\prime}(\sigma)\right\|_{C(\bar{\Omega})} d \sigma \leqq c \int_{t}^{1} \sigma^{-1+\theta-\frac{|\beta|}{2 m}} d \sigma\|f\|_{D_{A}(\theta, \infty)} \leqq c t^{\theta-\frac{|\beta|}{2 m}}\|f\|_{D_{A}(\theta, \infty)}$.

As $t \leqq 1$, by (4.3), (4.4) and (4.5) we get

$$
\left\|D^{\beta} u(t)\right\|_{C_{(\bar{\Omega})}} \leqq c t^{\theta-\frac{1 \beta}{2 m}}\|f\|_{D_{A}(\theta, \infty)}
$$

(iv) If $p>\frac{n}{2 m(1-\theta)},|\beta|=2 m$ and $x_{0} \in \bar{\Omega}$, we write:

$$
\begin{align*}
\left\|D^{\beta} u(t)\right\|_{L^{p}\left(\Omega \left(x_{0}, t^{1 / 2 m))}\right.\right.} \leqq & \int_{t}^{1}\left\|D^{\beta} u^{\prime}(\sigma)\right\|_{L^{p}\left(\Omega\left(x_{0}, t^{1 / 2 m)}\right)\right.} d \sigma \tag{4.6}\\
& +\left\|D^{\beta} u(1)\right\|_{L^{p}\left(\Omega\left(x_{0}, t^{1 / 2 m)}\right)\right.}
\end{align*}
$$

now Lemma 4.3 (i) yields

$$
\begin{equation*}
\sup _{x_{0} \in \bar{\Omega}}\left\|D^{\beta} u(1)\right\|_{L^{p}\left(\Omega\left(x_{0}, t^{1 / 2 m)}\right)\right.} \leqq c_{p}\|f\|_{C(\Omega)} \tag{4.7}
\end{equation*}
$$

whereas by Lemma 4.3 (ii)

$$
\begin{align*}
& \sup _{x_{0} \in \Omega} \int_{t}^{1}\left\|D^{\beta} u^{\prime}(\sigma)\right\|_{L^{p}\left(\Omega \left(x_{0}, t^{1 / 2 m))}\right.\right.} d \sigma \leqq c_{p} \int_{t}^{1} \sigma^{-2+\theta+\frac{n}{2 m p}} d \sigma\|f\|_{D_{A}(\theta, \infty)} \tag{4.8}\\
& \leqq c_{p} t^{-1+\theta+\frac{n}{2 m_{p}}\|f\|_{D_{A}(\theta, \infty)}} .
\end{align*}
$$

As $1-\theta-\frac{n}{2 m p}>0$, by (4.6), (4.7) and (4.8) we conclude that

$$
\sup _{x_{0} \in \bar{\Omega}}\left\|D^{\beta} u(t)\right\|_{L^{p}\left(\Omega\left(x_{0}, t^{1 / 2 m}\right)\right)} \leqq C_{p} t^{-1+\theta+\frac{n}{2 m_{p}}}\|f\|_{D_{A}(\theta, \infty)}
$$

(v) Let $\alpha \in] 0,1\left[,|\beta|=2 m-1\right.$, and set $q:=\frac{n}{1-\alpha}$. By Proposition 1.3 (ii)

$$
\begin{equation*}
\left[D^{\beta} u(t)\right]_{C^{\alpha}\left(\overline{\left.\Omega\left(x_{0}, t^{1 / 2 m}\right)\right)}\right.} \leqq C_{\alpha} \sum_{|y|=2 m}\left\|D^{\gamma} u(t)\right\|_{L^{a}\left(\Omega\left(x_{0}, t^{1 / 2 m}\right)\right)} \tag{4.9}
\end{equation*}
$$

Now pick $p>\max \left\{q, \frac{n}{2 m(1-\theta)}\right\}$: by (4.9), Hölder's inequality and part (iv) we
get:

$$
\begin{aligned}
{\left[D^{\beta} u(t)\right]_{C^{\alpha}\left(\Omega\left(x_{0}, t^{1 / 2 m}\right)\right)} } & \leqq C_{\alpha} \sum_{|\gamma|=2 m}\left\|D^{\gamma} u(t)\right\|_{L^{p}\left(\Omega \left(x_{0}, t^{1 / 2 m))}\right.\right.} t^{\frac{n}{2 m}\left(\frac{1}{q}-\frac{1}{p}\right)} \\
& \leqq C_{\alpha, p} \frac{n}{t^{2 m p}+\theta-1+\frac{n}{2 m}\left(\frac{1}{q}-\frac{1}{p}\right)}\|f\|_{D_{A}(\theta, \infty)} \\
& =C_{\alpha} t^{\frac{1-\alpha}{2 m}+\theta-1}\|f\|_{D_{A}(\theta, \infty)} . \quad \square
\end{aligned}
$$

By Lemma 4.4(i) (ii) we deduce that $u(t) \rightarrow f$ in $C^{[2 m \theta]}(\bar{\Omega})$ as $t \rightarrow 0^{+}$; as $B_{j}(\cdot, D) u(t)=0$ on $\partial \Omega$ for $j=1, \ldots, m$, when $t \rightarrow 0^{+}$we get $B_{j}(\cdot, D) f=0$ on $\partial \Omega$ if $m_{j} \leqq[2 m \theta]$, i.e. $f \in C_{B}^{[2 m \theta]}(\bar{\Omega})$. In addition we get

$$
\begin{align*}
\|f\|_{C^{[2 m \theta](\bar{\Omega})}} & \leqq f-u(1)\left\|_{C^{[2 m \theta](\tilde{\Omega})}}+\right\| u(1) \|_{C^{[2 m \theta](\Omega)}} \tag{4.10}\\
& \leqq c\|f\|_{D_{A}(\theta, \infty)} .
\end{align*}
$$

Thus it remains to show that $D^{\beta} f \in C^{2 m \theta-[2 m \theta]}(\bar{\Omega})$ if $|\beta|=[2 m \theta]$. We distinguish two cases: (a) $[2 m \theta]<2 m-1$, (b) $[2 m \theta]=2 m-1$. In case (a), let $|\beta|=[2 m \theta]<2 m-1$, and choose $t:=|x-y|^{2 m}$ where $x, y \in \bar{\Omega}$ and $|x-y| \leqq 1$. Then

$$
\begin{aligned}
& \left|D^{\beta} f(x)-D^{\beta} f(y)\right| \\
& \quad \leqq\left|D^{\beta} f(x)-D^{\beta} u(t, x)\right|+\left|D^{\beta} u(t, x)-D^{\beta} u(t, y)\right|+\left|D^{\beta} u(t, y)-D^{\beta} f(y)\right| \\
& \quad \leqq 2\left\|D^{\beta} f-D^{\beta} u(t)\right\|_{C(\bar{\Omega})}+C \sum_{|y|=[2 m \theta]+1}\left\|D^{\gamma} u(t)\right\|_{C(\bar{\Omega})}|x-y|,
\end{aligned}
$$

and by Lemma 4.4(ii)-(iii)

$$
\begin{align*}
& \left|D^{\beta} f(x)-D^{\beta} f(y)\right| \tag{4.11}\\
& \leqq c t^{\theta-\frac{[2 m, \theta]}{2 m}}\|f\|_{D_{\mathcal{A}}(\theta, \infty)}+c t^{\theta-\frac{[2 m \theta]+1}{2 m}}|x-y|\|f\|_{D_{\mathcal{A}}(\theta, \infty)} \\
& \leqq c|x-y|^{2 m \theta-[2 m \theta]}\|f\|_{D_{\mathcal{A}}(\theta, \infty)} .
\end{align*}
$$

In case (b), let $|\beta|=[2 m \theta]=2 m-1$ and choose, as before, $t:=|x-y|^{2 m}$ where $x, y \in \bar{\Omega}$ and $|x-y| \leqq 1$. Then

$$
\begin{aligned}
& \left|D^{\beta} f(x)-D^{\beta}(y)\right| \\
& \quad \leqq 2\left\|D^{\beta} f-D^{\beta} u(t)\right\|_{C(\bar{\Omega})}+\left[D^{\beta} u(t)\right]_{\left.C^{2 m \theta-[2 m \theta]\left(\Omega\left(x, 1^{1 / 2 m}\right)\right.}\right)}|x-y|^{2 m \theta-[2 m \theta]}
\end{aligned}
$$

and by Lemma 4.4(ii)-(v)

$$
\begin{align*}
& \left|D^{\beta} f(x)-D^{\beta} f(y)\right| \tag{4.12}\\
& \leqq c t^{\theta-\frac{2 m-1}{2 m}}\|f\|_{D_{A}(\theta, \infty)} \\
& \quad+c t^{\frac{1-2 m \theta+[2 m \theta]}{2 m}+\theta-1}|x-y|^{2 m \theta-[2 m \theta]}\|f\|_{D_{A}(\theta, \infty)} \\
& \leqq c|x-y|^{2 m \theta-[2 m \theta]}\|f\|_{D_{A}(\theta, \infty)} .
\end{align*}
$$

By (4.11) and (4.12) we conclude that if $|\beta|=[2 m \theta]$ then $D^{\beta} f \in C^{2 m \theta-[2 m \theta]}(\bar{\Omega})$; moreover recalling (4.10) we also obtain

$$
\|f\|_{C^{2 m \theta}(\bar{\Omega})} \leqq c\|f\|_{D_{A}(\theta, \infty)}
$$

and the proof of Theorem 4.1 is complete.

§ 5. Improvements and Remarks

By Theorems 3.1 and 4.1 the first equality of Theorem 2.3 is established. In order to check the second one, just a few remarks are needed.

Concerning the first inclusion, we proceed as in Sect. 3. There is only a difference in the basic Lemma 3.3: namely, it turns out that the right-hand sides of the inequalities in (i) (ii)-(iii) have to be multiplied by o (1) (as $t \rightarrow 0^{+}$), due to the fact that $F \in h^{2 m \theta}\left(\mathbb{R}^{n}\right)$. Consequently, the right-hand sides of the inequalities of Corollary 3.4 should also be multiplied by $o(1)$ (as $s \rightarrow \infty$). As a result one obtains, instead of (3.2),

$$
\begin{equation*}
\lim _{s \rightarrow \infty} s^{\theta}\|w(s)-f\|_{C(\bar{\Omega})}=0 \tag{5.1}
\end{equation*}
$$

Continuing as in Sect. 3 , one then arrives to

$$
\begin{equation*}
\lim _{s \rightarrow \infty} s^{\theta}\|A R(s, A) w(s)\|_{C(\bar{\Omega})}=0 \tag{5.2}
\end{equation*}
$$

which replaces (3.3). Finally, recalling (3.12), by (5.1) and (5.2) it follows that

$$
\lim _{s \rightarrow \infty} s^{\theta}\|A R(s, A) f\|_{C(\bar{\Omega})}=0
$$

i.e. $f \in D_{A}(\theta)$.

The second inclusion is easier: we already know that $D_{A}(\theta) \hookrightarrow D_{A}(\theta, \infty)$ $=C_{B}^{2 m \theta}(\bar{\Omega})$; hence if $f \in D_{A}(\theta)$ we have only to show that $f \in h^{2 m \theta}(\bar{\Omega})$. Now, recalling that $D_{A}(\theta)$ is the closure of D_{A} in $D_{A}(\theta, \infty)$, we take a sequence $\left\{u_{n}\right\} \subseteq D_{A}$ such that $u_{n} \rightarrow f$ in $D_{A}(\theta, \infty)$, i.e. in $C^{2 m \theta}(\bar{\Omega})$, as $n \rightarrow \infty$. But $D_{A} \hookrightarrow h^{2 m \theta}(\bar{\Omega})$ by Prop. 1.3, and consequently we get $\left\{u_{n}\right\} \subseteq h^{2 m \theta}(\bar{\Omega})$. Thus $f \in h^{2 m \theta}(\bar{\Omega})$ since $h^{2 m \theta}(\bar{\Omega})$ is a closed subspace of $C^{2 m \theta}(\bar{\Omega})$. The proof of Theorem 2.3 is now complete.

Remark 5.1. Theorem 2.3 can be generalized in several directions. Following Amann [7], one can consider elliptic systems of differential operators as in [7, Sects. 12-13], in a possibly unbounded open set Ω which is supposed to be uniformly regular of class $C^{2 m}$ ([7, Sect. 11]). The analogue of Theorem 1.1 is proved by Geymonat-Grisvard [10, Sect. 5] and Amann [7, Theorem 12.2], whereas the analogue of Theorem 1.2 can be proved by the same method used in the Appendix below; the arguments of Sects. 3 and 4 then still work.
Remark 5.2. The critical cases $2 m \theta \in \mathbb{N}$ are not covered by our theorem: they will be the object of a further paper. However in the case $m=1$ the "critical" spaces $D_{A}\left(\frac{1}{2}, \infty\right)$ and $D_{A}\left(\frac{1}{2}, \infty\right)$ are known. The (single) boundary operator $B(\cdot, D)$ has then one of the following forms:
(a) $B(x, D)=I$ (Dirichlet problem), or
(b) $B(x, D)=\alpha(x) I+\sum_{i=1}^{n} \beta_{i}(x) D_{i} \quad$ (oblique derivative problem), where
(x) $v(x))>0 \forall x \in \partial \Omega$. $(\beta(x) \mid v(x))>0 \forall x \in \partial \Omega$.

Denote by $C^{*, 1}(\bar{\Omega})$ and $h^{*, 1}(\bar{\Omega})$ the Zygmund spaces defined by:

$$
\begin{aligned}
C^{*, 1}(\bar{\Omega}): & =\left\{u \in C(\bar{\Omega}): \sup \left\{\frac{\left|u(x)+u(y)-2 u\left(\frac{x+y}{2}\right)\right|}{|x-y|}: x, y, \frac{x+y}{2} \in \bar{\Omega}, x \neq y\right\}<\infty\right\} \\
h^{*, 1}(\bar{\Omega}):= & \left\{u \in C(\bar{\Omega}): \lim _{r \rightarrow 0^{+}} \sup _{x_{0} \in \bar{\Omega}}\right. \\
& \left.\cdot \sup \left\{\frac{\left|u(x)+u(y)-2 u\left(\frac{x+y}{2}\right)\right|}{|x-y|}: x, y, \frac{x+y}{2} \in \overline{\Omega\left(x_{0}, r\right)}, x \neq y\right\}=0\right\} ;
\end{aligned}
$$

then in case (a) (Lunardi [15]) we have

$$
D_{A}\left(\frac{1}{2}, \infty\right)=\left\{u \in C^{*, 1}(\bar{\Omega}): u=0 \text { on } \partial \Omega\right\}, \quad D_{A}\left(\frac{1}{2}\right)=\left\{u \in h^{*, 1}(\bar{\Omega}): u=0 \text { on } \partial \Omega\right\},
$$

whereas in case (b) (Acquistapace-Terreni [3]) we obtain

$$
\begin{aligned}
D_{A}\left(\frac{1}{2}, \infty\right)= & \left\{u \in C^{*, 1}(\bar{\Omega}): \sup \right. \\
& \left.\cdot\left\{\frac{|u(x-\sigma \beta(x))-u(x)|}{\sigma}: x \in \partial \Omega, \sigma>0, x-\sigma \beta(x) \in \bar{\Omega}\right\}<\infty\right\},
\end{aligned}
$$

$$
D_{A}\left(\frac{1}{2}\right)=\left\{u \in h^{*, 1}(\bar{\Omega}): \lim _{\sigma \rightarrow 0^{+}} \frac{u(x-\sigma \beta(x))-u(x)}{\sigma}=\alpha(x) f(x) \forall x \in \partial \Omega\right\}
$$

Remark 5.3. The method employed in the proof of Theorem 2.3 still works in different situations. For instance if we choose $E=L^{p}(\Omega), 1<p<\infty$, then we find again Grisvard's characterizations of $D_{A}(\theta, \infty)$ and $D_{A}(\theta)$ in this case ($[11,9]$), needing on the other hand much less regularity on the coefficients of the differential operator. Even more, we can study by the same method the spaces $D_{A}(\theta, q)$, $1 \leqq q<\infty$, where

$$
D_{A}(\theta, q)=\left\{x \in E: \int_{0}^{\infty}\left\|s^{\theta} A R(s, A) x\right\|_{E}^{q} \frac{d s}{s}<\infty\right\}
$$

also in this case we find again old results by Grisvard (see [12] or [22, Theorem 4.3.3(a)]) as well as new results. More details will be published elsewhere.

Appendix: Proof of Theorem 1.2

Let $f \in C(\bar{\Omega}), g=\left(g_{1}, \ldots, g_{m}\right) \in \prod_{j=1}^{m} C^{2 m-m_{j}}(\partial \Omega)$. As, clearly, $f \in \bigcap_{p>1} L^{p}(\Omega)$ and, for $j=1, \ldots, m, g_{j} \in \bigcap_{p>1} W^{2 m-m_{j}-\frac{1}{p}, p}(\partial \Omega)$, by Theorem 1.1 for each $p>11, \infty$ [problem (1.10) has a unique solution $u_{p} \in W^{2 m, p}(\Omega)$; hence if $q>p$ we have $u_{p}=u_{q}$ and consequently $u_{p} \in \bigcap_{q>1} W^{2 m, q}(\Omega)$ and is independent of p. Thus a unique solution $u \in \bigcap_{p>1} W^{2 m, p}(\Omega)$ of problem (1.10) does exist.

We have to prove (1.12). Fix $p>n$, choose $\lambda_{1}=\lambda_{0}+1$ (λ_{0} is given in Theorem 1.1) and fix $\lambda \in C$ with $|\lambda|>\lambda_{1}$ and $\arg \lambda=\eta$; fix also $x_{0} \in \bar{\Omega}$ and let $\mu>2$ to be chosen later. Select a function $\phi(x) \equiv \phi\left(x_{0}, \lambda, \mu, x\right)$ with the following properties:

$$
\begin{equation*}
\phi \in C^{\infty}\left(\mathbb{R}^{n}\right), \quad \phi \equiv 1 \quad \text { on } B\left(x_{0}, \rho\right), \quad \phi \equiv 0 \quad \text { outside } B\left(x_{0}, \mu \rho\right), \tag{A.1}
\end{equation*}
$$

$$
\left\|D^{h} \phi\right\|_{C\left(\mathbb{R}^{n}\right)} \leqq c_{h} \rho^{-h}(\mu-1)^{-h}, \quad h=1, \ldots, 2 m
$$

where we have set

$$
\begin{equation*}
\rho:=\left|\lambda-\lambda_{0}\right|^{-1 / 2 m} . \tag{A.2}
\end{equation*}
$$

(Note that $\rho<1$.) The function $v(x):=u(x) \cdot \phi(x)$ solves

$$
\begin{align*}
& \lambda v(x)-\sum_{|\alpha| \leqq 2 m} a_{\alpha}(x) D^{\alpha} v(x)=\phi(x) f(x)+F(x), \quad x \in \bar{\Omega}, \tag{A.3}\\
& \sum_{|\beta| \leqq m_{j}} b_{j \beta}(x) D^{\beta} v(x)=\phi(x) g_{j}(x)+G_{j}(x), \quad x \in \partial \Omega, j=1, \ldots, m,
\end{align*}
$$

where

$$
\begin{equation*}
F(x)=\sum_{|\alpha| \leqq 2 m} a_{\alpha}(x) \sum_{y<\alpha}\binom{\alpha}{\gamma} D^{\beta} u(x) D^{\alpha-\gamma} \phi(x) \tag{A.4}
\end{equation*}
$$

$$
\begin{equation*}
G_{j}(x)=\sum_{|\beta| \leqq m_{j}} b_{j \beta}(x) \sum_{\delta<\beta}\binom{\beta}{\delta} D^{\delta} u(x) D^{\beta-\delta} \phi(x), \quad j=1, \ldots, m \tag{A.5}
\end{equation*}
$$

By Theorem 1.1 we have (denoting again by g_{j} any $W^{2 m-m_{j}, p}$-extension of g_{j} to the whole Ω):

$$
\begin{aligned}
& \sum_{k=0}^{2 m}\left|\lambda-\lambda_{0}\right|^{1-\frac{k}{2 m}}\left\|D^{k} v\right\|_{L^{p}(\Omega)} \\
& \leqq M_{p}\left\{\|\phi f+F\|_{L^{p}(\Omega)}+\sum_{j=1}^{m} \sum_{k=0}^{2 m-m_{j}}\left|\lambda-\lambda_{0}\right|^{1-\frac{m_{j}+k}{2 m}}\left\|D^{k}\left(\phi g_{j}+G_{j}\right)\right\|_{L^{p}(\Omega)}\right\},
\end{aligned}
$$

and hence

$$
\begin{align*}
& \sum_{k=0}^{2 m}\left|\lambda-\lambda_{0}\right|^{1-\frac{k}{2 m}}\left\|D^{k} v\right\|_{L^{p}(\Omega)} \tag{A.6}\\
& \leqq M_{p}\left\{\|f\|_{L^{p}\left(\Omega\left(x_{0}, \mu \rho\right)\right)}+\|F\|_{L^{p}\left(\Omega\left(x_{0}, \mu \rho\right)\right)}\right. \\
& \quad+\sum_{j=1}^{m} \sum_{k=0}^{2 m-m_{j}}\left|\lambda-\lambda_{0}\right|^{1-\frac{m_{j}+k}{2 m}} \\
& \left.\quad \cdot\left[\left\|D^{k}\left(\phi g_{j}\right)\right\|_{L^{p}\left(\Omega\left(x_{0}, \mu \rho\right)\right.}+\left\|D^{k} G_{j}\right\|_{L^{p}\left(\Omega\left(x_{0}, \mu \rho\right)\right)}\right]\right\}
\end{align*}
$$

Now by (A.4) and (A.1) we get:
(A.7) $\quad\|F\|_{L^{p}\left(\Omega\left(x_{0}, \mu \rho\right)\right)} \leqq c \sum_{k=0}^{2 m-1}\left\|D^{k} u\right\|_{C(\bar{\Omega})} \cdot \rho^{-2 m+k+n / p} \mu^{n / p}(\mu-1)^{-1} ;$
moreover if $k=0,1, \ldots, 2 m-m_{j}$ it is easily seen that

$$
\left|D^{k} G_{j}\right| \leqq c \sum_{h=0}^{k+m_{j}-1}\left|D^{h} u\right| \cdot \sum_{r=1}^{k+m_{j}-h}\left|D^{r} \phi\right|
$$

and therefore (A.1) yields

$$
\begin{align*}
& \left\|D^{k} G_{j}\right\|_{L^{p}\left(\Omega\left(x_{0}, \mu \rho\right)\right)} \tag{A.8}\\
& \leqq c \sum_{h=0}^{k+m_{j}-1}\left\|D^{h} u\right\|_{C(\Omega)} \cdot \rho^{h-k-m_{j}+n / p} \mu^{n / p}(\mu-1)^{-1}, \\
& \quad k=0,1, \ldots, 2 m-m_{j}
\end{align*}
$$

Finally, again by (A.1) it follows that

$$
\begin{align*}
& \left\|D^{k}\left(\phi g_{j}\right)\right\|_{L^{p}\left(\Omega\left(x_{0}, \mu \rho\right)\right)} \tag{A.9}\\
& \leqq c \sum_{h=0}^{k}\left\|D^{h} g_{j}\right\|_{L^{p}\left(\Omega\left(x_{0}, \mu \rho\right)\right)} \cdot \rho^{h-k}(\mu-1)^{h-k} \\
& \quad k=0,1, \ldots, 2 m-m_{j}
\end{align*}
$$

By (A.6), (A.7), (A.8) and (A.9), recalling (A.2) we easily get:
(A.10)

$$
\begin{aligned}
& \sum_{k=0}^{2 m}\left|\lambda-\lambda_{0}\right|^{1-\frac{k}{2 m}}\left\|D^{k} v\right\|_{L^{p}(\Omega)} \\
& \leqq c_{p}\left\{\|f\|_{L^{p}\left(\Omega\left(x_{0}, \mu \rho\right)\right)}+\sum_{j=1}^{m} \sum_{k=0}^{2 m-m_{j}}\left|\lambda-\lambda_{0}\right|^{1-\frac{m_{j}+k}{2 m}}\left\|D^{k} g_{j}\right\|_{L^{p}\left(\Omega\left(x_{0}, \mu \rho\right)\right)}\right. \\
& \left.\quad+\sum_{k=0}^{2 m-1}\left|\lambda-\lambda_{0}\right|^{1-\frac{k}{2 m}-\frac{n}{2 m p}} \mu^{n / p}(\mu-1)^{-1}\left\|D^{k} u\right\|_{C(\bar{\Omega})}\right\}
\end{aligned}
$$

On the other hand, by Proposition 1.3 (i) and (A.2),

$$
\begin{align*}
& \sum_{k=0}^{2 m-1}\left|\lambda-\lambda_{0}\right|^{1-\frac{k}{2 m}}\left\|D^{k} u\right\|_{C\left(\Omega\left(x_{0}, \rho\right)\right)}+\left|\lambda-\lambda_{0}\right|^{\frac{n}{2 m p}}\left\|D^{2 m} u\right\|_{L^{p}\left(\Omega\left(x_{0}, \rho\right)\right)} \tag{A.11}\\
& \quad \leqq c\left|\lambda-\lambda_{0}\right|^{\frac{n}{2 m p}} \sum_{k=0}^{2 m}\left|\lambda-\lambda_{0}\right|^{1-\frac{k}{2 m}}\left\|D^{k} v\right\|_{L^{p}(\Omega)}
\end{align*}
$$

Now choose as x_{0} a point of maximum for the (real) function $A \in C(\bar{\Omega})$ defined by

$$
\Lambda(x)=\sum_{k=0}^{2 m-1} \rho^{k}\left|D^{k} u(x)\right|+\rho^{2 m-n / p}\left\|D^{2 m} u\right\|_{L^{p}(\Omega(x, \rho))}, \quad x \in \bar{\Omega}
$$

then we have clearly

$$
\text { (A.12) } \begin{aligned}
\left|\lambda-\lambda_{0}\right|\|\Lambda\|_{C(\bar{\Omega})} \leqq & \sum_{k=0}^{2 m-1}\left|\lambda-\lambda_{0}\right|^{1-\frac{k}{2 m}}\left\|D^{k} u\right\|_{C(\bar{\Omega})} \\
& +\left\lvert\, \lambda-\lambda_{0} \frac{n}{\left.\right|^{\frac{n}{m p}}} \sup _{x \in \bar{\Omega}}\left\|D^{2 m} u\right\|_{L^{p}(\Omega(x, r))}\right. \\
\leqq & (2 m+1)\left|\lambda-\lambda_{0}\right|\|\Lambda\|_{C(\bar{\Omega})} .
\end{aligned}
$$

Choose now μ so large that

$$
c_{p} \mu^{n / p}(\mu-1)^{-1} \leqq(4 m+2)^{-1}
$$

then by (A.10), (A.11) and (A.12) we conclude that

$$
\begin{aligned}
& (2 m+1)^{-1}\left\{\sum_{k=0}^{2 m-1}\left|\lambda-\lambda_{0}\right|^{1-\frac{k}{2 m}}\left\|D^{k} u\right\|_{C(\bar{\Omega})}+\left|\lambda-\lambda_{0}\right|^{\frac{n}{2^{m} p}} \sup _{x \in \bar{\Omega}}\left\|D^{2 m} u\right\|_{L^{p}(\Omega(x, \rho))}\right\} \\
& \quad \leqq\left|\lambda-\lambda_{0}\right| A\left(x_{0}\right) \leqq C_{p} \left\lvert\, \lambda-\lambda_{0} \frac{n}{2^{2 m p}}\left\{\|f\|_{L^{p}\left(\Omega\left(x_{0}, \mu \rho\right)\right)}\right.\right. \\
& \left.\quad+\sum_{j=1}^{m} \sum_{k=0}^{2 m-m_{j}}\left|\lambda-\lambda_{0}\right|^{1-\frac{m_{j}+k}{2 m}}\left\|D^{k} g_{j}\right\|_{L^{p}\left(\Omega\left(x_{0}, \mu \rho\right)\right)}\right\} \\
& \quad+(4 m+2)^{-1} \sum_{k=0}^{2 m-1}\left|\lambda-\lambda_{0}\right|^{1-\frac{k}{2 m}}\left\|D^{k} u\right\|_{C(\bar{\Omega})},
\end{aligned}
$$

which clearly implies (1.12). The proof of Theorem 1.2 is complete.

References

1. Acquistapace, P.: Existence and maximal time regularity for linear parabolic integrodifferential equations. J. Integral Equations 10, 5-43 (1985) (Supplement)
2. Acquistapace, P., Terreni, B.: Some existence and regularity results for abstract non-autonomous parabolic equations. J. Math. Anal. Appl. 99, 9-66 (1984)
3. Acquistapace, P., Terreni, B.: Characterization of Hölder and Zygmund classes as interpolation spaces. Pubbl. Dip. di Mat. Univ. Pisa, n. 61 (1984)
4. Acquistapace, P., Terreni, B.: A unified approach to abstract linear non-autonomous parabolic equations. Rend. Sem. Mat. Univ. Padova (to appear).
5. Adams, R.A.: Sobolev spaces. New York: Academic Press 1985
6. Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Commun. Pure Appl. Math. 15, 119-147 (1962)
7. Amann, H.: Existence and regularity for semilinear parabolic evolution equations. Ann. Scuola Norm. Sup. Pisa (4) 11, 593-676 (1984)
8. Baillon, J.B.: Caractére borné de certains générateurs de semigroups linéaires dans les espaces de Banach. C.R. Acad. Sci. Paris 290, 757-760 (1980)
9. Da Prato, G., Grisvard, P.: Equations d'évolution abstraites non linéaires de type parabolique. Ann. Mat. Pura Appl. (4) 120, 329-396 (1979)
10. Geymonat, G., Grisvard, P.: Alcuni risultati di teoria spettrale per i problemi ai limiti lineari ellittici. Rend. Sem. Mat. Univ. Padova 38, 121-173 (1967)
11. Grisvard, P.: Equations différentielles abstraites. Ann. Sci. Ec. Norm. Super. (4) 2, 311-395 (1969)
12. Grisvard, P.: Equations opérationnelles abstraites et problèmes aux limites dans les domaines non réguliers, Actes Congrés Inter. Math. (Nice 1970), 2, 731-736. Paris: Gauthier-Villars 1971
13. Labbas, R., Terreni, B.: Somme d'opérateurs linéaires de type parabolique. Boll. Un. Mat. Ital. (to appear)
14. Lions, J.L., Peetre, J.: Sur une classe d'espaces d'interpolation. Inst. Hautes Études Sc. Publ. Math. 19, 5-68 (1964)
15. Lunardi, A.: Interpolation spaces between domains of elliptic operators and spaces of continuous functions with applications to nonlinear parabolic equations. Math. Nachr. 121, 295-318 (1985)
16. Lunardi, A.: Abstract quasilinear parabolic equations. Math. Ann. 267, 395-415 (1984)
17. Lunardi, A., Sinestrari, E.: Fully nonlinear integrodifferential equations in general Banach space. Math. Z. 190, 225-248 (1985)
18. Sinestrari, E.: On the abstract Cauchy problem of parabolic type in spaces of continuous functions. J. Math. Anal. Appl. 107, 16-66 (1985)
19. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton: Princeton University Press 1970
20. Stewart, H.B.: Generation of analytic semigroups by strongly elliptic operators under general boundary conditions. Trans. Am. Math. Soc. 259, 299-310 (1980)
21. Tanabe, H.: Equations of evolution. London/S. Francisco/Melbourne: Pitman 1979
22. Triebel, H.: Interpolation theory, function spaces, differential operators. Amsterdam/New York/ Oxford: North-Holland 1978
