Annali di Matematica pura ed applicata
(IV), Vol. CLXI (1992), pp. 231-269

On BMO Regularity for Linear Elliptic Systems (*) (¥¥%),

PAOLO ACQUISTAPACE

Summary. - We prove o refinement of Campanato’s result on local and global (under Dirichlet
boundary conditions) BMO regularity for the gradient of solutions of linear elliptic systems
of second order in divergence form: we just need that the coefficients are «small multipliers

.of BMO(Q)», a class neither containing, nor contained in C°(Q). We also prove local and
global L? regularity: this result neither implies, nor follows by the classical one by Agmon,
Douglis and Nirenberg.

0. - Introduction.

This paper contains a refinement of some results of Campanato concerning
local and global (under Dirichlet boundary conditions) regularity for the gradient
of solutions u e H'(Q,RY) of second order linear strongly elliptic systems of
the form

©) 3 [Wy@-DuDde=3 [(@IDede VseCi@RY),
ij= g i= o

in the «limit» case fe BMO(Q,R™) (here BMO is the John-Nirenberg space).
It is well known[6, Ch. II, Th. 5.I}] that Due BMO provided the coefficients
A;; are Holder continuous in Q; we show here that a revisitation of Campanato’s
proof yields the same result when the coefficients just belong to the class of
«small multipliers of BMO(Q)», which turns out to be optimal (in a sense) and
is exactly characterized [9]: a function g is a multiplier of BMO(Q) if and only
if g is essentially bounded in @ and in addition its mean oscillation over cubes

(*) Entrata in Redazione il 25 luglio 1989.
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versitd «La Sapienza», Roma.
(**) Work partially supported by M.P.I.Project 40% «Equazioni di evoluzione e applicazioni
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Q, of edge s behaves like logs|™!; the attribute «small> means that, in ad-
dition,

sup ch}f}g—ng}dx: 0<s<r
Q.

tends to 0 as 0.

Now it turns out that such class neither contains, nor is contained in C°(Q): on one
hand, this forces us to impose strong ellipticity rather than ellipticity, in order to
have existence of solutions; on the other hand, because of this fact our result implies
some relevant consequences.

Firstly, by Stampacchia’s interpolation theorem, we get the L? regularity theory
for a class of linear systems having discontinuous coefficients (but not for all systems
with continuous coefficients): thus from this point of view Campanato’s approach is at
least as powerful as potential theory [1], and independent of it. Secondly, from L7
theory we deduce an extension of De Giorgi’s regularity theorem to a class of linear
systems with discontinuous coefficients. Unfortunately, the class of «small multipli-
ers of BMO» does not seem to be handy enough to obtain similar results for nonlinear
systems.

We also remark that our result is nearly sharp, since in the case n =1 it is easy to
verify (see Theorem 5.1 below) that BMO regularity is true if and only if the coeffi-
cients are multipliers of BMO (not necessarily «small»).

If one considers only the subclass of continuous small multipliers of BMO, then
our result applies to (not necessarily strongly) elliptic systems: as the functions of
such subclass are not Dini continuous in general, our result does not follow by the
well known ones concerning Dini regularity [2].

For the sake of simplicity, only second order systems with no lower order terms
are considered here, but this restriction might be easily dropped; similarly, the
method applies, «mutatis mutandis», to higher order systems (under Dirichlet
boundary conditions). However we believe that our approach works in the case of
Neumann boundary conditions as well.

Let us sketch our method of proof. We start from the Dirichlet problem for a sys-
tem with smooth coefficients, for which the BMO regularity is provided by Campana-
to’s result: our main task consists in obtaining a sharp estimate for the BMO norm of
Du, which does not involve the Hoélder norms of the coefficients, but just their norm
in the space of multipliers of BMO. Once we have this estimate, we consider a system
whose coefficients are small multipliers of BMO, and in order to get our result we just
need to approximate suitably (not uniformly) our coefficients by smooth ones: in this
step we cannot replace «small multipliers» simply by «multipliers». In this way, we
get global BMO regularity for the solution of the Dirichlet problem for the system
0.1).

Next, we prove a local BMO regularity result, which however does not follow in a
standard way by the global one. The difficulty is that the usual localization argument
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does not work here, essentially because we do not have «lower regularity results»,
i.e. the regularity theory in the Morrey spaces L%”* 0< i< ; this is due to the fact
that our coefficients are discontinuous in general.

We overcome the above difficulty by using the global L? theory deduced from
Stampacchia’s interpolation theorem: in the L? setting the localization argument does
work, and from local LP results we are able to deduce the local BMO result.

It is to be noted that our starting point is the BMO theory with smooth coeffi-
cients, so that Campanato’s BMO theory is not replaced by our paper but, on the con-
trary, our arguments are based on it. Similarly, the L? regularity is not merely a
corollary of our result since it is a basic tool in order to get a complete BMO
theory.

The paper is organized in the following way: Section 1 is devoted to the study of
L4 spaces, i.e. the sets of functions whose mean oscillation over cubes @, behaves like
9(c); the properties of these spaces are crucial in revisiting Campanato’s argu-
ment. ‘

Section 2 concerns global BMO regularity; Section 3 deals with L? theory, where-
as in Section 4 we study local BMO regularity. Finally Section 5 contains some im-
provements, counter examples and further remarks.

We end this section by introducing some notations.

If x)e R” and >0 we set

Qg,0):={xeR": |x;—xy| <o, 1<i<n}, By, :={xeR": |x—x|<c};
if &, lies in the «plane» x, =0, we set
Q7 (xg,0):=Q@g,0) N {x, =0}, B*(xy,9):=Bxy, ) n {x, =0},
Ny, o) = Qxy, ) n{x, =0}.

When no confusion can arise, we will simply write Q,,B,,QS,B,I.. If Als a
measurable subset of R™ with positive measure, and f is an integrable function de-
fined on A, we set

- 1
fa =A](f(90) dx:= —m(A)Ajf(x) dx.

n
We will use the sum convention on repeated indices, so that a;b; means 2, a,b;.
The inner product in R¥ will be denoted by (x| %)y . =
Next, if X(Q,R") is a Banach space of R"-valued functions defined in Q, we will
denote the norm of X(Q, R") simply by [||xw-

Finally if X(Q@) is a Banach space of scalar functions defined in Q, we
denote by M(X(Q)) the space of multipliers of X(Q), i.e. the space of functions
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g such that f-g e X(Q) for each fe X(2), endowed with the norm
9lbscxan = sup {follxr: £ € X, ||flxer <1}

1. - £; spaces.

Throughout this section we assume that

(1.1) @: [0,d]— [0, [ is a continuous, non-decreasing function such that ¢ — &(s)/«
is almost decreasing, i.e. there exists K;=1 such that

ot ®
K¢—~(£Z>~S—) Visti<ss<sd.

For instance the functions %, |1g o/, exp(¢”) —1 (,8 € [0, 1],y = 1) satisfy the
above assumption (in suitable intervals [0, d]).

DEFINITION 1.1. — Let Q be an open set of R”, n = 1. We denote by £;(2) the set of
all functions f'e L2(Q) for which the quantity

1/2
(1.2) [f],(‘iq;(ﬂ) = sup {@(G)_l{ J: if(?/) _fQ(xo,:)nQ izd?/] 1 e, 0 el0, d]}
Q

(29,0 NQ

is finite. We denote by 1;(Q) the subspace of all fe £5(Q) such that

1/2
(13) [f]@,!),r == 8up {Q(G)ul I: :‘: |f(?/) ‘_fQ(wo,a') nQ 12dyi| NS ‘Q; a E]Oa 1"]] =
Q@

(@y,0) N2

=o0(1) as 7} 0.
£5(Q) is a Banach space with norm
1 £ les = 1f e + [ Loy -

The £, classes, introduced by SPANNE [12], generalize (among others) Campana-
to’s £7* spaces [3], which are defined for p €[1, «[ and X € [0, n+2] by:

£04Q) = |f € LPQ): || flfer @)= sup o f |f = faw, ana F dee: 2y € 2, 0> 0} < w}-
Qg, ) NQ

We recall that by [6, Ch. I, Th. 2.1] we have:
(@) LPAQ)=LP*Q) Vpell, =, Vrel0,n[,
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the Morrey class L?*(Q) being defined by

(L4 £P2Q):=)fe LPQ): || flfo )= sup o™ f |fIP da: g € Q,5> O} < 00};

o, N

() LPHQ)=CO0MP@)  Vpell, o[, Vielm, n+2],
where C%*(Q), « [0, 1], is the Holder-Lipschitz space:
LPm(Q) = £2"(Q) = BMO@Q) Vpell, =]

(BMO(Q) is the John-Nirenberg class, see [10]).

Now if 0(c):= %, «€]0,1], we find £,(Q)= £L>"+*%(Q) =C%*(Q), whereas if
®(z) =1 we get £,(Q) = BMOQ); if moreover &(c) = |1g o/, €10, 1], we obtain the
Orlicz class defined by the function M(s):= exp (Js|'/*~#) — 1 (see [12]).

REMARK 1.2. — It is worth to reeall the trivial but basic property

(1.5) J1r=ts [ da = min [If-cPdz  vfeL*@),
A A

whose role in the whole paper is crucial. This property will be systematically used
throughout, often without explicit reference.

The subspace [5(Q) is obviously closed in £,(Q); moreover we have:

PROPOSITION 1.2. — Let © be a bounded open set of R™ with 2Q e Lip. If
Hf% (¢/®(c)) =0, then [;(Q) coincides with the closure of C~(Q) in £,(Q).

PROOF. — It is easy to verify that C*(Q) c I;(Q) provided lifra. (c/ () =0; as I, (Q)

is a closed subspace, we also have C”(Q) c I,(Q).

The proof of the converse needs an extension lemma for functions in Z,(Q):

LEMMA 1.4. — Under the assumptions of Proposition 1.3, there exists an extension
operator E: £;(Q) — L5 (R"™) such that Ef e [, (R") Vfe l;(R") and

(1.6) (Efle,my =< c(n,Q, Kz)[fle, 0
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PrOOF. — Firstly, we claim that if fe £,(B™) (resp. [,(B*)), then the func-
tion
f@) if 2,>0),
f(xh sy Wy 1, _xn) if xn<0a

F(x):= {

belongs to £,(B) (resp. l,(B)); here B*:= B*(0,1), B:= B(0, 1).
Indeed, let xzye B; if Q(xy,0) does not intersect I':=I(0,1), setting z,:=
= (%, vy g p~1, |900n’), we get

P(c) 2 ][ |F' = Fo, 0 np 2 de = $(z) 2 )[ |~ fat, 2B Pda < [ffe@(m),
Qwg, )N B ~ QGz, ) NB*

whereas if Q(xy, o) NI'# 0, setting yy= (g, ..., ¥ ,—1,0) We obtain by (1.5)

80)% | P —Fou, onalfdr<cn, Ko@) | F~Foy, 0 fde=
Qzo,a) "B Qyy,2:) "B

= e, K)0@)> 4 |f~fogomns Pde <, KPRy ao);

Qo,2)nB*

this clearly implies our claim.

Next, arguing as in [5, Appendix I, Theorem V], we see that if T: Q'— Q is a Lips-
chitz homeomorphism, then foT € £,(Q") (resp. 1,(Q")) for each fe £,(Q) (resp.
ldi (Q))7 and

1.7 [foTle,on=¢Q,Q, Kol fle,0)-

Now, as 90 € Lip, there exists a finite coveriEg {Qi}1<i<cm of 0, and a family
{T;}1<i<m of Lipschitz homeomorphisms 7;:Q;— B, such that T;(Q;nQ)=B",
T;(Q;n30Q) =T. Let Q, cc O be such that Q ¢ 'Uo Q;=:0', and let {Y; }o<i<m bea C”
partition of unity associated to {Q;}o<i<m. For fe £,(Q) set:

Yo T if yeB and 4,0,
F;(y):= ) 7'1('7/) _ y ¥ 1<ism,
(&) o T Wy - Yn-1, —¥x) if yeB and y,<0, ‘
£ 0 if xeQ' \Q;, l<i<m
. = =1 5
PR T o we,

)i 0 if xel ' \0Q,
=V @ i x e
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Then by the above assertion we have
file,oyscn, @, Kp)lfle, @, 0<ism;
finally, setting

0 if x¢Q
2 fil if zeq,

=0

(
Ef(x):= %
{

we immediately get (1.6). On the other hand the above argument shows also that Ef e
€ls(R™) if fe ls(Q). The proof of Lemma 1.4 is complete. =

Fix now fely(Q) and extend it outside Q via Lemma 1.4, and consider the
convolutions

fk(x):=fEf<w—%z>6(z)dz, keN", xzeQ,
i

where 6 € Cf (R"), =0, 6=0 outside B, [6(z)dz = 1.
5
Asg [,(Q) c BMOW@) c . N re (), we clearly have
sp<®e

(1.8) fi—af as koo in LPQ) Vpell,«[.
Let us show that
(1.9) fi—=>f as k— o in £,(Q);

this will complete the proof of Proposition 1.3.
Fix ¢>0. As fely(Q), we have Efel,(R™), so that there exists s,>0 such
that

(1.10) 02 | |Bf~ (Bf)qe. 2du<c Va,eR", Vocl0,s,.
Qeg, 2)
Now if 2y € Q and s>, we have by (1.5) and (1.8)

20 = fo (F=Fde nal*de < cm) 061267 [ | = £, P <
Q

Qlry, ) NG

< c(n) 8(s,) 2o |f = filBag) < ¢,
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provided that % is larger than a suitable &, ; otherwise if &g € Q and ¢ €]0, 5, ] we get by
(1.10)

515(0)2 J[ |f‘fk - (f‘fk)Q(xo,a)ng |2d90 <c(n) @(G)_Z ][ iEf_fk - (Ef_fk )Q(xo,c) i2 =

Qxo,5)NQ Qg o)

2
do <

= ¢(n) &(c) 2 ](

Qg 0

BB g, 0~ | 40 {Ef(w—%z)— | Br(s-14) dy} dz

R" Qlxo, 2)

< ¢(n) (o) 2

N

| VB~ ot [0 |Ef<s>—<Ef>Q@0_a/k>z,,)Fdsdz}

Qo , 9) R" Qg ~(1/ k)2, )
<c(Eff gr ., <cn,fle VYkeNT.
Hence if k =k, we get

[f_fk ],264,(0) < C(n)f) €,
and (1.9) is proved. =
REMARK 1.5. — We have in fact proved that under the assumptions of Proposition
1.3, if f e [,(Q) there exists a sequence {f}}r.yC C”(Q) such that:
(1.11) kh_{f%o (lfe "'f”%(a) e —fllr@) =0  Vpell, =,

(1.12) lifr(} [fsls.0,=0 uniformly in keN.

If, moreover, f belongs to L~ (Q), too, the sequence {f;} satisfies
(1.13) Mfelle= < £l -

The following result, due to JANSON [9], shows that the £, classes occur as spaces of
multipliers.
d -1

o(r)
PROPOSITION 1.6. — M(£5(Q)) = L”(Q) n £,(Q2), where (o) := f Tdr . n

o

In particular we have (with d:=e):
(1.14) MBMO@) =L*@n L), §6):=1+]gs)™;

from now on, ¢(s) will always mean (1+|lg o)7', s €[0, 1.

REMARK 1.7. — The result (1.14) is not surprising since it is well known that if
fe BMOQ) and @, c Q we have

|fo.l=00+]lga) asslO,
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(see 11, §3.10], [9D. A more precise estimate will be proved in Propositions 1.15,
1.16 below.

We want to prove now that the space of multipliers of BMO(Q) neither contains,
nor is contained in C°(@Q). Indeed we have:

PROPOSITION 1.9. — Let ¢(s):= (1+|lg o)”". Then C°(Q)\ £,(Q) and [L*(Q) N
NLEAINC (@) are not empty.

PRrROOF. — Set

2 -1/2
zle) = (1 + —§]lga|> , «<¢€l0,1]:

then y € C°([0, 1]), x(0) =0, x(1) =1, y is strictly increasing and concave and y(c)/s is
almost decreasing; moreover

ﬁ?g x(a)|1ga" =+,

Next, consider in Q:=1-1, 1[ the funetion
g@):=x(x)sgnx, xel-1,1].
Clearly, g € C°([—1,1]) and by the concavity of x

3( 19@) = g [dy = 2% f 9@y = < f L) Fdy =
G -a 0

I_ T 2 o 2 s
Ztgl;fx(y)dy > lfX(G)yoly - Kl

a g 4
0 U

which implies

s 1/2
li =i - } — Qs I* >1y =40,
lirn [9)o,s, - 13?3 (o) { lg — 91—, 4 dy] 5 171?3 lgaf x(e) = + o

Thus g ¢ £,(Q) and this proves the first assertion.
Next, set 2:=]—1, 1] and define:

(1.15) Wo):=[(A + lgah1 +1g (1 +lgaPll™", < €l0,1],
1
(1.16) 7(0) = ﬂgdr= lgll+1g@+|lga))], <el0,11,

q

(1.17 g@):=r(x)), xeQ.
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It is known [12] that ¢ € £,(Q) and consequently g € [,(Q) since hm (W) [(3(e) =
On the other hand we have g ¢ L~ (Q) because

(1.18) lirr}J glx) =

Now consider the function
(1.19) fl@):=sing®), »eQ;

as t— sint is Lipschitz continuous and bounded, it is clear that fe [,(Q) n L™ (Q). In
addition by (1.18) we have

(1.20) limsup f(x) =1, lim iglff(x) = —

z—0

so that f¢ C°(Q). Proposition 1.9 is completely proved. =

PROPOSITION 1.10. — The class of Dini continuous functions in O is strictly con-
tained in C°(Q) N 1,(Q).

PROOF. — Firstly it is easy to construct functions belonging to C°(Q) n 1, (@) which
are not Dini continuous. An example in Q:=]-1, 1[ is f(x) := ¢(x)-sgn x, where ¢ is
the function (1.15): arguing as in the proof of Proposition 1.9, we see that f'e £,(Q) c
c 1,(Q), Whereas the oscillation of fin 1— g, ol is w(s) := 2¢(s/2) and clearly the Dini con-

dition f (w()/ o‘) do < o is not fulfilled.

Next let f: Q— R be Dini continuous and let : [0, diam Q]— R ™ be its oscilla-
tion: thus  is continuous, concave, non-decreasing, such that «(0)=0 and

J(w(0) /o) ds < . The estimate
0

[ ~famoealPlys | 1f-f@Pdy<loGcVDF =EEF,

Qx,2)nQ Qx,9) N0

shows that fe £;(Q); thus it is sufficient to show that (rewriting « in place of )
£,(Q) c,(Q), i.e. that

)

= o) =1 o)™
Im =75 =0 GO (1+lga)™)

Indeed, assume by contradiction that lim sup(w(a) /#(c)) > 0: then we may suppose

(possibly replacing » by c¢-w) that there 1s a sequence {t; };.n cl0, 1 such that

Vit o) N
k+l<tk7 é(tk) >1 VEk e .




P. ACQUISTAPACE: On BMO regularity for linear elliptic systems 241

Denote by 7(s) the broken line joining all points (¢, ¢(,)), i.e.

$(t) = 8ty 1) }a+[¢(t,€)—tk( #(t) = 8t 1)

b=ttt [l A

T(a):=[ ﬂ, g€llei1, ], keN;

by the concavity of w we have w=r in [0,1,]. Hence

) )

wls s = - 2t ) — (. 13
f ”daaf’"“dazil[¢<tk>-¢<tk+1)1+{¢<tk>—tk<q’(‘“) St nﬂlogtk }
k+1

g g k=0 b= tesr
0 0

and after standard manipulations we get

$tr1) ()

() S b et ) 2
= ¢(t) + 1
f g da ¢(O) kgo g tk+1 1 ____1__
’ ot

= b+ D g et re
o k=0gtk+1 1 1
he1 G
As
d 30  —@a+ild) o) - [P
_% T o2 - 2 ’
we easily obtain
)
w(o) Z t
[ 220> 5000+ 3 18 st 1 - ott)
0 G k=0 tk+1
and since t; > V1, recalling also that 4(t,) | 0, we conclude that
t 1
(o) S 1 ¢~ '8 i1
J’ T d02¢(to)+02¢(tk+1)1g =¢(t0)+52——————1=+00
o k=0 bh+1 F=01+1g
B+l

This contradicts the Dini continuity assumption of f. The proof is complete.

Let again @ be a function satisfying (1.1).

We are interested to introduce some equivalent seminorms in 2, (@), where @ is a
cube of R" whose edges are parallel to the coordinate axes.

We need the following
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LEMMA 1.11. - Let xy e R™, 7, €]0,d/2], @:= Q(xy, 7). For fe £,(Q), set

(1.21) [f1%, = sup [@(G)"l ][ W) — fow,» | dy: Q,0) ¢ Q},
Qxy, )
(1.22) Y (@)= J —Qy—)-dr sel0,s], selo,d].

T

Then we have:

<lylf_—9 "
< | dr, ( b, [f]?éq,(Q) )} if s b, [fl%( € [y, (1o ), dor, o,

=0 = 7 0,
b[f]e%(Q) n )

where b, is a positive constant and ¢5; is the inverse function of ¢y, .

meas {y € Q: |f(y) —fo| > 3}

PROOF. - It is essentially contained in[12, proof of (4.3)]. Set m(s):= meas {y €

€ Q: |f(y) —fol >3} A

For fixed je N*, divide @ into 2™ parallel subcubes Qj:= Q(x;,7;), where
')"j =Ty '2—].

If y € Q4 and |f(y) —~fo| > we have

o <|f) —fo,| + |fo —fol =

ji-1
<|fly) —fijl+h§08up 3[ |F@) — fow,ro | 0y Q@ 7ha1) C Q1) c QLS
Q2,1 1)

j—1

<|f) —fo | + 2" [[ 5@ ]EO ()
hence if % € @ and |f(y) —fg| > we obtain

i1
|f(y) ka‘><7—2n[f] @, 2 o(ry,);

consequently

29

(1.23) m(o) < 2 meas [y € Qu: If@) —fo,l > — 2" [f 1,0 Z Qj(’”h)}

Choose in particular

j-1
(1.24) (2% + na,, )[fle@(Q) 20 Qj(')ﬂh) s
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o, being a suitable positive constant: as

-1
q; = [2" hgo @(’I"h) + 'njan @(7"]' )} [f]E, Q>

we get by (1.23)
on

(1.25) m(s;) < 121 meas {y € Qu: | 1) —fo,| > nja, 0)If 1, ) -

On the other hand by John-Nirenberg’s lemma [10, Lemma 1], arguing asin[12, Lem-
ma 4] we easily deduce that there exists a, >0 such that
meas {y € Q. |f(®) ——fijl > nja, D) f 150t S 27" ",
so that
24 )
(1.26) mio) < 2 27 =1,
k=1 -
Now we observe that

T2 7R

j~1
3 () = (log 2)‘ f L o) <
h=0

n,:z —h
oy
<tog2? 3 | Tds= g2,
27
which implies by (1.24)

2"+ na%
log

(1.27) 0 < LF1E @ e, (- 1) =t 0, Lf T, @ b (- 1)

Now let r €]0,7,], so that there is a unique j e N* for which ;<7 <;_;. Then by
(1.27) and (1.26)

(1.28) b, [f15, @ dor, ) < by, [F1E, @ o, - 1 D) S o) S vf << ™,
Hence setting o:= b,[f1%, g e, (M, 7 €10, 7], we get

mie) <= {%(m)} T € B (0), 4, O

on the other hand if ¢ = b,[f1%,q) 2, (0) then by (1.28)
m(o) < m(bn [f]}fkqs(Q) Sb2ro (0)) =0

and the result is proved. =
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A quite simple similar proof gives:

LEMMA 1.12. ~ Let 2 e R" ™1 X {0}, r, €10, d/2], @ " := Q* (2, 7). Forfe £,(Q7),
set

(1.29) [f1ERgy =MV My,
(1.30) M, := sup I@(U)'l Jf @) ~Faw,nldy: Qe ) c Q*},
QGx, ™)

(1.81) Mj:=sup {QD(G)“1 )[ W) = for,nldy: ® € Iwg, 19), @ (2, 7) € QJ}-
Q* (1

Then we have

A

-1 o n - ’
v H E S, O

=0

meas {y €Q": |f(y) —fo:| > o}
if o =, (0),
AT

where (s, is defined by (1.22) and b, is a positive constant. ™

The following result is very important for us. It is related to the well known fact
that for BMO functions (and, a fortiori, for €, functions) all L? norms with 1 <p <
are equivalent.

PROPOSITION 1.13. — Let 2 be a bounded open set of R*. Forp e [1, <[, Q" cc 2, €
€0, min {d/2, 1/(2Vn) dist(8Q’,3Q)}] and f e £,(Q), set

. 1/p
(1.32) N, (f;9,Q',3):= sup|d(=)~" )[ ) —fown Pdy| :xeoel0,s]l.
Qx, )
Then we have for each fe £,(Q) (see (1.3)
Nl(f;qij”a) sz(f; @"Q,,é\) = C(p>n7K@)[f]@,Q,c‘-
PROOF. — The first inequality is obvious. To prove the second one, it is clearly suf-

ficient to take p =m € N*. We use a modification of the argument of {12, proof of
Th. 1(b)]. If x€Q’ and s € 10,4] (so that Q(x,s) cQ), we have

7[ W) — fow,» " dy = (Zo-)‘”Jmeas {y € Q,0): | f(y) —faw,o| >t} -mt™'dt,

Qx, o) 0
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and by Lemma 1.11, setting k:=b,[f1% 0w, We get after a change of vari-
able:

Fodg, (=) Koo, (0)
, [
(1.33) fvwﬁmmmwsmWﬂjw*ﬂmﬂmﬂj.mlk(%ﬂdh
Qe 2) 0 Fgo, (o)

= fm

[, ()" +ma™ j [a. ()" 18" 1 0(s)ds <
{

el 2 m—1

< k™ [do, )" + Mo [8(20)]" f f du

" s" ds;.
0 8

The last integral becomes, by repeated integrations by parts:

sl 2g m—1

" — @_ n-—-1 _Eﬁ m -1 m_l._. —
Im.-fju 8 ds‘n[log2] +1, o R

0 s

o 2‘ [log 21" (m — D! o1 (m — 1)! =5"m2_1 (m —1)! (log 2)"
n ) pm-1-h p) Loym—1 = A pm=h

hence by (1.33) we derive (since #(s) is non-decreasing and (@(c))/s is almost
decreasing):

s 1 2
AL _fQ(x,a)|mdySkm{[¢zg(0)]m+{@(20)]”‘ E m (05 Z ]s
Qx, 7) n
S m! (log 2 o (log 2)F
<k" 2 7;1' (Oi , [2@2o)]" < [2k- K, ]™ 2 % (oi_z [0()]",
h=0 n =0 . n

and the result follows since k <c(m)[fls .. ™
A similar proof, using Lemma 1.12 as well as Lemma 1.11, gives:

PROPOSITION 1.14. — Let 2, e R™ ™1 X {0}, 7> 0, BT := BT (iy, 7). For p € [1, %[,
0 <7 <ry/Vn, ¢€l0, min{d/2,1/2(r,/\Vn—7")} and fe £,(Q7), set

(1.34) N} (f;0,7,8):=N;VN,,

1 )
(1.85) Nip:= sup[@(a)'l[ ][lf(y)—fQ(wﬂpdy} p:er*(xO,r’),ae]O,S],Q(x, U)CB+J,
Qx, o)
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* (ac, u')

1/ .
(1.36) N2:=sup[@<a)‘1{ ][ @) = for,» [P dy p:wer(oco,m,ae]o,a]}.
@

Then we have
NI (50,7, 8) <Ny (50,7, 8) < cp,n, Ko flo,p+,: Ve L(BT). ™
We end this section with some useful inequalities for BMO functions.

PROPOSITION 1.15. — Let © be a bounded open set of R™; let Q'cc Q with &:=
= dist (3Q',00Q) < 2. For xy € Q’, ¢€l0,38] and fe BMOQ), we have:

(1.37) | fotwo | < {1 + 12 o1 Ipao + ¢ 2 2y } -

PrOOF. — This argument is essentially that of [12, proof of Lemma 2 (a) and Lem-
ma 5]. Firstly, if 0<p<o=<2 and x,e Q' we have

(1.38) ]( |f = faw,» | de < ][ |f = fawe,» | 3% + | fows,» = Fow, | <
Qag, 0) Qzg, p)

<2 Ur~fnolde<2(2) 1= faolde,

. Qo,0) Qlag, o)
Next, let xyeQ’, o €]0,8]. If o e [4/4,4] then 20=¢/2 so that

2\ 7" N ] n/2
| <[ 2) I v @202 < (2] s

If, otherwise, o €]0,4/4], there exists a unique k € N* such that 2fc < 3/2 <2810,
Hence

k-1

| fa@, | < ]ZO | fatms, 20) — fata, 21 | T | foeo, 2600 | <

k—1 n
shgo ][ 1f—fQ(x0,2h+1u)ldx+ (%) J 1fld90$

Qzy, 2" ) Qzo,3)

4 n/2
<32 | U-faeolde () 1o -
Q(wO,2h+1O')

2h+2Cr
k

-1 n/2
2" ds 4
-2Z | e a2 (4 1,

z}wl7 Q(a:g,Zh”a)
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so that (1.38) yields

oh+2
k-1 ; n/2
2" " . d 4
fawol < 2,55 [ oG] | -fanol B4 (3] 100
B 2tis ° Qay, 8)
ok+1.
o+ 1 ds 4 n/2
<2 | Evene o+ () Ifhos
2z
22’ﬂ+1 3 , 4 n/2
S —— . —
e 2N 0+ (5] IFw,

and the result follows. ™

PROPOSITION 1.16. — Let x, e R~ X {0} and fix r>7'>0. For x € I'(z;,7), o €
€l0,»—7'] and fe BMO(Q™ (x,,7)) we have:

for w.n | < eI+ g1l s+ @ m + =) "2 Flre@r @ m ) -

PrOOF. — Extend f to Q(xy,r) by setting

[, ..., 2z,) if 2,20,

Flo . 1) =
@ ®) = el i@, <0

Then Fe BMO(Q(xO , 7')) with ||F”%2(Q(%’T)) = ZIIfII%Z(Q+(x0,T)) and [F]BMO(Q(GEO,T)) =
< () flamo+ @, (see the proof of Lemma 1.4); thus the result follows easily by
Proposition 1.15. =&

2. — Global BMO regularity.

Let Q be a bounded open set of R and consider the operator
@.1) Ew:=— div(A@@)-Du), ueH'@Q,RY),
where A eL”(@,RY")n1,(@,RY") with $(c):=(1+|lgs))™!; we assume the

strong ellipticity condition

(2.2) (A;(z)-&| 51')N>v§1‘|§i[2 VeeQ, Vi, ..., &"eRY.

REMARK 2.1. — (i) In all what follows, we may take A e C°@,RY " )n
Nl @, RY 2”2) under the (weaker) ellipticity assumption

2.3) (A @ y&& =P VYreQ, VEeR", VpeRY.
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(i) To avoid formal complications, we assume n>2. If n=1 or n=2 we need a
slight modification in the assumptions on data; see Remark 2.5 below.

We consider the Dirichlet problem associated to the operator E in the variational
sense:

e Hj (@, RY),
EY 0 @y - Do = [(@ Do ds - [(h@ide voe Hi@,RY),
o Q

Q
where f e L?(Q,R™), fy € L*®+?(Q, RY). By Lax-Milgram’s Theorem, the solution
of problem (2.4) always exists and is unique, since by [6, Ch. I, Lemma 4.1] the distri-
bution fy — div f belongs to H *(Q,RY) = (H{ (@, RY))*. We want to prove the fol-
lowing result:

THEOREM 2.2. — Let u be the solution of the Dirichlet problem (2.4), with 8Q €
eC'*™ (8>0), fe BUO@Q,R™), fyeL/e+d.na+d (o RNy (see (1.4)), Ae
e L™ @Q,R¥")n1,(@,RY™) (3(o):= (1 +|lgs])™"). Then Du € BMO@, R™") and

2.5) [Dulpyoq < c(n, v, 2,8, wa, |AllL= @)1 + Al ] [”f lzazow + 1 fol

1,20/ 4 2, i+ 2) (Q)] y

where (see (1.3))
(2.6) wple):=[AL o ., <€l0,1].

ProoF. — Our proof splits in two steps:

Step 1: The estimate (2.5) holds under the stronger assumption A e C#@, RV,
which guarantees «a priori» that Du € BMO®Q, R™): see[5, Theorem 16.1] for the
case N = 1; the extension to N =1 is straightforward (compare with [6, Ch. II, The-
orem 5.17).

Step 2: We approximate A by a smooth sequence {A4;};.n, in such a way
that:

(i) the solutions u, of the approximating systems converge to the solution u of
the original problem,
(i) the sequence {A,} fulfills, uniformly in k€ N, all the relevant properties
required for A in Step 1;
(iii) the estimate (2.5), written for u, and A, , is preserved when k— oo, thus
yielding the result in its full generality.

To start with, we remark that since A € C#@,RY"™) c I, (@,RV™"), we have by
(2.6) and (1.3)

@.7 lim o, (o) = 0.
=0
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Moreover, as Q is bounded with 3Q e C1*#, there exists a finite number of open sets
Qy,8,...2,, contained in Q, such that:

( (@) for 1<s<m there exists a C'*# diffeomorphism T,: Q,— B*(0,1)
, such that T, (@, N 8Q) =10, 1);
(ii) there exist ¢; (Q), ¢, (Q) > 0 such that

@ <|det T, ()| <c(Q VyeB*(0,1), Vse{l,...,m};

(i) QgccQ and Q =Q0u[ QITS“I(QJ'(O, ——1—))}

2.8) <

Vn

PRrROOF OF STEP 1. —~ Let % be the solution of the Dirichlet problem (2.4), with fe
€ BMO@Q, R™), fy e L2/@+2.7 [+ RNY and A e C4Q, RV*™). We will prove:

Step 1A: Estimate for [Dulgyoq,);
Step 1B: Estimate for [Du, Ipyog+o.ry, 0 <E <1/V/n, where U= uoT;};
Step 1C: Final estimate for [Dulgyoq)-

PROOF OF STEP 1A. — Set dy:= dist (3Q,, 3Q); it is not restrictive to assume d, €
€10, 1/2]. Fix a cube Q(x, o) with xy € Q, and ¢ €10, 1/(2Vn], so that Q(x,, o) cc 2.In
Q(xg, o) split =v+w, where w is the unique solution of the Dirichlet problem

(w e H (Q(xy,9),RY),
j (Agey, " Dw| D) de = — f ([A®) ~ Aqey, » 1 [DU — DWgiay, 1| D) dez —
Qo o) Qo )
DN - | (A@) - Age, 1 Dwge, | DO e+
Qg 0)
+ f (f@) = foea, » | DO) dac — [ (fo@)|0)de  V6e Hi(Qw,,a),RY);
| Q. o) Qg , @)

then v:=u—w is a solution of the homogeneous system with constant coefficients

Ve Hl (Q(xO’ a)yRN) 3
(2.10) f (Agu,,»"Dv|DO)dx =0 V6 H} (Qxy,0),RY).
2y, o)

For the function v we have the fundamental estimate [6, Ch. II, Theorem 3.I1I]

(2.11) f IDv — (DV) gz, 1 [P die < () £ 72 f IDv — (D) g, P V€10, 1].
Qo , o) Qwy, o)
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For the function w we have the variational estimate {6, Ch. II, Theorem 1.1II]

Q(% ,a)

(@4, )

@12 | Dufdes —12-[ [ 1A~ Ay o B1DU ~ Dl 2+
Q

) m+2)/n
+ A = Agey, o F1DWee,y, o P+ 1~ fow,» [F1d2 + c(n) { f | fy [Pt 2 dx} ] .
Qag, o)

Let us estimate the right member of (2.12). As Du e BMO(), we have by Proposition
1.13 and (1.3):

(213) J ‘A - AQ(%’G) ]2 |D’M/ - (DH)Q(%',) ’2 =
“Qlxg, )

A
A

r 1/2 1/2
j \A — AQ(%y 2 |4 dac J’ .Du - (D/M/)Q(ﬂcoy ) ‘4 dac
Rz, 9) Q

(g, 7)

A

< —2 [N, (A;4,Q, ) PINDu; 1,00, ) <
= (1+ilga|)2[ 4( 7¢9 0> )][ 4( (2 0 )]

< ¢(n) [AR o, . [Dulinoq) -

1+ [lgs)?

Next, by Proposition 1.15

@18 | 1A~ Agy, o Pl D, o i<
Q(xo y T)

% . d —-n
< —7 23 00, P + g2 [Dul 0 D22 <
< ¢(n) (1+|1g¢l)2 [N2(4;4,0q, 0] {( + liga?L u]BMO(Q)+<2\/1—@) 1Dulff (9)}

dg"

<)o" {[ A]i 0, 1DULy00) + m

[A]?ew ) “Du“%?(o)} ’
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and finally
@15) | [F~fomn Pde+cm)

[ s e g, | i
| 1Al di <
Qlxg, 2)

Qlag, )

< ¢n) " {[f Baro + [ fo [fzvin-22i000) } .
By (2.12), (2.13), (2.14) and (2.15) we get, recalling (2.6)
2.16) | IDwdz < c(n, v, do) * {log )2 [Dulsio + 43,
Qzg, =)

where we have set

2.17) A= {JAlf- @+ ME@(@)HW“MI%%Q) + [ fEacow + o 2w+ itiern gy

{The quantity A contains more terms than necessary, but we shall need them all later
on).

By (2.11), (2.16) and (2.6) we easily deduce for each te[0,1] and oe
€]0,dy/2Vn]:

@18) [ |1Du~Dudgg,w Pdw<
Q(wo , ta)

= C(‘J) tn+2 f |Du - (Du)Q(xo‘,) lzdx + C(%, v, do ) a {[wA (’J)]Z [D/LL]IZQMO(Q) + A} .
Qg o)
We now invoke a function-theoretic lemma [6, Ch. I, Lemma 1.1] in order to get for

each t€]0,1] and ¢ €]0,dy/2Vn]:

@19 | |Du—(Dulgg, wlPde<
Qo )

< c(v) J[ |Du — (Dw)ge,, » [P die + e(n, v, do){[ws DB [DuByo@ + 4} ;
Axo, o)
taking into account (2.17) we deduce for each x, e Q; and 0 <r<oc<dy/2Vn:
(2.20) J[ |Du — (D)o, » P < e(n, v, dy Y{[wa ()P [Duleyom + o "4},
Qlg, )
which easily implies:
@-21) [DuByoe,) < c(n, v, do){[wa OBIDulyoq +5"A} VYo el0, dy/2Vn].

This concludes the proof of Step 1A.
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Proor oF STEP 1B. - Fix s € {1,...,m} and write simply U, T for U,, T. Accord-
ing with [5, Appendix III], the function U solves in B*:= B*(0,1) the following
problem:

UeH'(B*,RY),

| Bu@)-D,UID 8 dy = [(a,@)| D0 dy — [ (g0l dy Vo e HYB*,RY),

B+ B* B+

(2.22)

where (setting J ™' (y):= det |[DT ' (y))):
(2.23) By ()= J LD, T DD T XT )] Ay (T (),
(2.24) 0 @) =IO, TT O LT W), g =T W) (T ).
It is easily seen that
@25  Bu@ =0, él " VyeB*, V.., "eRY;
In addition we have
BeC*B* R¥"), geBMOB*,R™), g,eL/o+dn/ntdp+ RNy

and, arguing as in[5, Appendix I, Theorems IV-V], we see that

(2.26) [B1¢,B+,,/CO<cl{[AL,g,xr[sup rﬁ<1+|1gr|>]rw|m} Vs €10, 17,

0<r<s

(2-27) [g]BMO(B"’) + ”g() ”LZn/(ﬂ+2),n2/(n+2)(B+) = Co {[f]BMO(Q) + “fb ”LZn/(n+2),%2/(n+2)(Q)} ,

(2.28) [Dulsyo,) < s |Dulauor+) < callDullpaow)

where ¢;, ¢, ¢y, C3, ¢4 depend only on Q; it is not restrictive to assume in (2.26)
() =2 W.

" Fix now R ell/Vn—2/¢y,1/Vnl. Let 2eQ*(0,R) and 5 €10,(1/\/rn—R)/4].
Two cases can occur:

(D (%), > o so that

+[o L 1 +(o, L
Q. ) @ (0,2(R+W))CQ o5 )

an (x), €10, 4], so that

+ + + 1 1 + 1
Q@n, B Q" 0,29 < Q (0,2(R+\/.ﬁ))ccz 035 )

where 7, is the projection of x, on the hyperplane {x, = 0}.
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In case (I) we repeat exactly the argument of Step 1A, using the quantities
N, (B;¢,R,0) and N, (DU;1,R,c) (see (1.34)) instead of N,(4;¢,Qp,0) and

N,(Du;1,0,0), and analogously to (2.20) we deduce for 0 <r<o=< i(% ——R)
n
2.29) )(: |DU — (DU)gq,. » [2da < c(n, v, Q, R){[BE g+, [DU Byrog+y + o "AT},
Qxg, 7

where we have set

{2,30) A+ = ‘IBI'?@¢(B+)]|DU|[%Z(BT) + [g]%MO(B+) + Ilgo “%2n/(n+2),n2/'(n+2)(3+) .

In case (IT) we split in Q* (yy,20) U = v+ w, where w is the unique solution of the
Dirichlet problem

(we Hi (Q" (yy, 20),RY),
| Borg,20 Dl DO dy =
Q" 4,29
= j ([B(y) ~ Bg+(yy,2 - [DU = (DU )+, 21| DO) dy —
231 | Q* (40,20
- j ([By) — Bq+yy,201- (DUg+ gy, 2 | DO) dy +
Q* 4,2
+ j (9W) ~ 9o+, 2 | DO) dy — J (90()| ) dy
Q" (¥, 2) Q" (o, 20)
Vo e H} Q™ (%, 20), RY);

then v:=U-w is a solution of the homogeneous system with constant coeffi-
cients
?JGHI(Q+(?/0,2G),RN), 'U=00np(?/o,20),

2.32) | Boauz DDA =0 Yoe B} @ (o,2),RY).

Q7 (yo,20)

For the function v we have the fundamental estimate (see [5, Corollary 11.1 and Lem-
ma 11.1I7 for the case N=1 and[14, Lemma 3.5] for the case N=1):

n-1

@3 3 [ Dofdy+ [ Dw- Duvgr g Pdy <
R Q" (g, 2t)
n—1
<, 3, | IDoPdy+ [ Do - DuvdgrgeealPdyl  VEEl0, 1.

Q* (g, 20) Q" 4o, 29)
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For the funetion w we have the variational estimate

(2.34) J 1Dw|2dy < ¢(v, .Q){ f ['B — Bg+ .20 12 |DU —(DW)g+ 4. 20 %2dy +

@ (Yo,29) Q" o, 20)

+|B = Bq- g, 20 [ [(DWg+ ty,20 P + 19 = g~ 200 1y +
n+2)/n
+ c(n) f 190‘2n/(n+2) dy .
Q" (Yo, 20)

We estimate the right as in the proof of Step 1A, obtaining, via Propositions 1.14 and
1.16:

@35 [ |Dwfdy<cn, v, R (B 5 2 DU Rom ) + 4"}
QT o, 29

By (2.33), (2.35) and a function-theoretic lemma [6, Ch. I, Lemma 1.I], as in Step 1A
we get for 0<r<2:<(1/Vn—-R)/2:

n—1
@36 3 | DiUPdys | IDU- D0 g nlPdy <
- Q7 (o, Q* o, M

= C(?’L, Yy .Q, 1‘3){[8]2’3-*’27 [DU]%?MO(B”') + (20‘)_nA+ } .

By (2.29) and (2.36) it follows that for each 2eQ*(0,R) and 0<r<o<
<(1/Vn—R)/4 we have:

2.37) | DU - O nneram Py <
Qly, NN Q*(O,R)

= C(n, v, .Q, R){[B]%,B+,Za— LDU]%MO(B*) + G_nzi_}— }
and consequently

(2.38)  [DURwoq+w,zy < ¢, v, Q, R){[BE g+ 2 (DU Byog+) +o7 A"}

i)
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Finally, recalling (2.26), (2.27), (2.28) as well as (2.30), (2.17), (2.6), we conclude
that

(2.39) DU, Byoq+o,r) <

= C(’ﬂ, v, .Q, R){[[wA (200 O’)]Z + [wﬂ (ZCO G')]z “A“%m @ ]“DuH%MO(Q) + G"nA}

1 2 1 1/ 1
VRe|—= - —,—=|, Voe|0,—|—= —R}|, Vse{l,...,m},
[ % al veefralm ) v o
where
(2.40) wy ()= sup r*(1+|lgr), telo,1].
O<r=t

This concludes the proof of Step 1B.

Proor oF STEP 1C. — By (2.8) (iii) it is clear that if R := R(Q) is sufficiently close to
1/V/n, then the family {Q,, T, (Q* (0, R))}1 < < still covers Q. Moreover, by (2.28)
and (2.39) we have for - €10,(1/\/n—R)/4] and s=1, ..., m:

[Du]%MO(T;I Q*©,R)) = c(’n, Yy .Q){[[(UA (2C0 U)]z -+ [wg (200 O‘)]z . ”A”%m @ ]“DuH%MO(Q) + G-nA} .
Recalling (2.21) we easily deduce

2.41)  [Duliwon) < e, v, {[[ws Ceo)F + w5 (2co )P+ JAR - o) MIDulErro + o A)

1/ 1 dy
Yoe |0, | — —R||n|0, .
Now taking into account (2.7) and (2.40), there exists o:= o(n,v,Q,8, wy, |A|L-@) €
€10,(1/Vn—R)/4]1n10,d,/2V/n] such that

H

(2.42) (v, Dl[ws Cco ) + [ ey ) P AR -] <

DO |

consequently, recalling (2.17), it is clear that (2.41) implies
[DuTiso) <
<, v, Q, 8, |Al= o, 0a){[1 + [AT, 0 HDUlB 2 @) + 1 Bt + | folBonierrtioin gy } .
Finally (2.5) follows recalling the variational estimate [6, Ch. II, Theorem 3.1II]
DLz 0) < e, W f 2@ + I fo oo on } -

This concludes the proof of Step 1C and hence Step 1 is proved.

ProOOF OF STEP 2. - Suppose only that 80 € C'*5(8>0), fe BMOQ,R™), f, €
€ LD B RY), A e L@, RY") n1,@,RV™). Let {Ag}rey c C*@, RY™)
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be a sequence such that (see Remark 1.5):
243)  Ay—> A as k- in £,(@Q,RV™) and in L?(@Q,RY"™)  Vpell, |,
(2.44) 1A

=@ < AllL=) »

(2.45) li?% ws, (@) =0 uniformly in keN.

We still have (2.42) for some

_ 11 %]
g = 57(”; v, 2,5, (”A’HA“L“’(Q)) E] O, 4 < \/’I_’L R)] m:l 0’ 2\/,7'1 }’

due to (2.456) we may assume that for the same number « we also have
2.46) o1, v, D[, Co ) + [y (20 LA [Be 0] < % VkeN.

Let u; be the unique solution of the Dirichlet problem

we € Hy @, RY),

EED N [e@- D Do = [ D) bz - [(Gy@l e Vo e HE@,RY).,
Q Q

Then, by Step 1 and (2.43), (2.44) (2.46), we deduce that w; satisfies (2.5) uniformly
in k, ie.

(2.48)  [DupBEyow <
< c(n, v, 2,8, wa, [lAllL- @)1 + [A%, @ £ [Baoy + folwes2rttarn ] VE € N.
On the other hand, w; — u solves the Dirichlet problem
w,—u € H} (Q,RY),

(2.49) J(Av@)-[Du, ~ Dul| Do) de = [([A() ~ A, @)]-Dul D) diw Vo & H @, RY),

Q Q

and by the variational estimate [6, Ch. II, Theorem 1.1II]
(2.50) 1D — Dl < LA - A)-Dullse,  VEeN*.

Now, passing possibly to a subsequence, by (2.43) and (2.44) we have as k— o
[A®) — A, (@)]-Du(x)—0 a.e. in 2,

[A) — Ay @)1 Du@) 2 < c| AR~ | Duix)2 € L1 (@),
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so that by (2.50), Lebesgue Theorem and Poincaré inequality,
(2.51) we—u in H'@Q,RV) as k— .

Now fix € Q and s> 0: «passing to the limit» in (2.48) we get

][ \Du — (DU)g gy, o [P d =
Q0 Qxg, )
= lim ][ \ Dy, — (D g e, ) Pdy < li]£n inf [Duy, Barom <

ks o

Q2 Qxy, 0)
< c(n, v, 2, 8, wa, |AllL- @)1 + [AL o) 1| fBarow + [ follEene-2s20r0 0 }

and (2.5) follows at once.
This completes the proof of Step 2. Theorem 2.2 is completely proved. ®

REMARK 2.3. — The result of Theorem 2.2 holds more generally for «complete» lin-
ear systems in divergence form:

Eu:=— div(A)-Du) — div(B()-u) + C(x)- Du + G(x)

provided we assume BeL®(@Q,RV")nIl,(Q,R¥") and CeL”@,R™), Ge
e L*(Q,RY). The proof is exactly the same.

Theorem 2.2 can be generalized to the case in which Q is a cube; the proof is essen-
tially the same and is even easier. Indeed, suppose Q = Qy:= Q(0,1). We use Step 1A
in order to estimate the quantities

3[ |Du ~ Duge,, o [*da,
Qag, 2)
when ;€ Q0,R), with fixed R €]1/2,1[, and c€[0,1~R]. If, otherwise, xye
€ Qy\QO,R) and s €[0,1 - R], two cases may occur:
1) dist. (g, 9Q0) > 0o, so that Q(xy, o) cc @y,

(i) dist (g, 0Qp) <a, so that Q(xy, o) 0 Qy € @Yy, 20) N Qy, Where y, is a suit-
able point of 3Q),.

In case (i) we again use Step 1A; in case (ii) we apply Step 1B, remarking
that

[ 12
J— |Du — Dugy, o nq, 1% die < c(n) Jﬁ |Du— Dugyy, 2nq, 12 d2e.
Qrg, NGy Q0,221 N Qy

We do not need Step 1C since we do not need to change the space variables. As a re-
sult we can state:
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THEOREM 2.4. — Let u be the solution of the Dirichlet problem (2.4) with @ = @,
(69>0) and ]:G BMO@Q,,,R™), fyeL®eawfnsdQ RN) (see (1.4), Ae
eL” @, ,RV")n1,@Q,,RY") ($():=(1+]lgs)™!). Then DueBMOWQ, ,R ")
and

(2.52) [Du]BM0<Q,0) < c(n, v, 09, wa, ”A“L‘”(Q,O))[l +[Ale, @) I-

59

Tf “BMO(Q,O) +|f% “L%/m"?%nzﬂ”*”(Qm) I.om

REMARK 2.5. — Theorems 2.2 and 2.4 still hold in the cases n=1, n=2,
provided:

foe U L9279Q RY) ifn=2, and fe L'@Q,RY) if n=1.

geli, 2]

Indeed, such assumptions guarantee that in the variational estimate (2.12) we can
still bound the quantity depending on f; by " multiplied by a suitable constant (com-
pare with [6, Ch. I, definitions (4.8)-(4.9)]).

3. - The LP? regularity.

Throughout this section we assume » =2 (see Remark 3.8 for the modifications in
the case n=1). Consider again the situation described at the beginning of Section 2.
Let us first prove the following L? regularity result on cubes:

THEOREM 3.1. — Suppose 2 = Q,,, 5 €]0, 1], and let u be the solution of the Dirich-
let problem (2.4) with fe LP(Q, ,R™), fye Lo/t p (QGO,RN) (pel2,o]) and A €
€ L”(Q,, R"™) n1,(Q,,, R”™) (4(s):= (1 + |lgs))™"). Then Du e LP(Q,,, R™) and

B.1)  [Dulp,) < o, v, p, 04, 1A= )1 + [Alg,q,) -

S ller g,y + 156 ||Ln?/<n+P><Q,O) 1.

PrOOF. — We use Stampacchia’s interpolation Theorem ([13]; see also [7, Ch. III,
Th. 1.4] and[6, Ch. I, Th. 2.1I}).

First of all we recall that the distribution f, — div fis in H >?(Q,,,R") by [6, Ch.
I, Lemma 4.1], and

(3.2) 1fo = div fllz-1r ) < ¢y D folleren o) + 1 ey 35

hence there exist Fye L? (Q,O,RN Yand FelL? (QUO,R“N) such that f,—div f=Fy~
—div F and[6, Ch. I, (4.5)]

(3.3) J0 “Fo “LP(Q) + “FHLP(Q) < ¢(n, p)“fo —div f“H'“’(Q,o)-
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Thus u solves the Dirichlet problem

8.4)

Eu=F,~divF in@Q,,
u e Hy (@, RY).

Now denote by u;, i=0, 1, ..., n, the solutions of the Dirichlet problems

Euy=F, inQ,, [Bu;=-DF; inQ, )
{ (i=1,...,n).

uy € H} (Q,, RY); u; € H} (Q.,, RY);

By the linearity of problem (3.4), it is clear that u = > u;. The linear operator
i=0
Ty:Fi—Djw; (=0,1,...,m j=1,...,m) is bounded from L*@Q,,,RY) into
L#(Q,,, RY), by Lax-Milgram Theorem, and from BMO(Q,,, R") into BMO(Q,, R™),
by Theorem 2.4, with both norms bounded by
c(n, v, 90, wa, [AlL=(@ )1 +[Ale,@ -

By Stampacchia’s Theorem we deduce that T); is also bounded from L7 (@, ,RY) into
L?’(Q%,RN ) more precisely we get for p e[2, ] [6, Ch. I, Theorem 2.II]:

ID; i 2o,y < €0y v, 0, 90, w4 [AllL= @ {1 + [ALe 0 HFiller 0.y

Summing with respect to j and 7 we get

=) {1+ [Alg, @, YlIFo e, + 1FlLr@, 15

HDu“L”(Q,O) < c(n, v, P, 005 w4, “A
a simple homothetical argument then gives
IDUlzp g,y < €ty v, P, w4, A=) {1 + [Ae @) Moo ol + IFlle ) 1

and the result follows by (3.3) and (3.2). =

We now want to prove a local L?-regularity result for solutions of

1 N
3.5) {ueH Q,RY),

Eu=fy,—divf inQ.

THEOREM 3.2. — Let Q be a bounded open set of R™. If u solves (3.5) with fe
e L?(Q,R™), fye L™/ (@Q,RY) (pe(2,») and A eL”©Q,R")ni, @ R"™)



260 P. ACQUISTAPACE: On BMO regulavity for linear elliptic systems

(¢(e):=(1 +|lga))™!), then Du € LE. (2, R™) and for each cube Q, c @, c Q
3.6)  [IDulprq) < cr, v, p, w4, [AllLe @y, [Ale, )

AP D2 g,y + 1 F o + o

Lo/t P (Qy, ) } .

ProOF. — We use the argument of [6, Ch. 11, proof of Theorem 9.II].
Fix a cube Q,=Q(x,,s) with s €]0,(1/2) Adist (,,3Q)/(4Vn)], and let ne
€ Cy (Qs,) be such that

3.7 0<n<1, y=1inqQ, |Dn<

o3

The function v(x) = [u(x) — ug, 1-n(x) solves the following Dirichlet problem:
ve H&(QZU)RN)?

3.8 | [A;@- Dyl Do)de = [{Gafi+ DAy (u—ug,)| Di) +
Qs Qex
+Dinfi—nfy— Din-Ay-Dyul0)} de V0 € H Qs , RY).

Suppose first p € [2,2n/(n—2))(p € [2, [ if n=2). Then by Sobolev-Poincaré in-
equality

(3.9 o — g, Lo,y < €y ot =" 2=YP Do,

and, since np/(n+p) <2,

(3.10) Dty < eyt~ 2 P D,

Hence by Theorem 3.1 we easily get

G110  IDvlzeq,) < ¢, v, py w4, Al @), [Ale, @)

A lle e+ Wfollmioss @ + Nl @ IDulle oy 5™~}

and (3.6) is proved for p €2, 2n/(n — 2)], since Dv=Du in Q,.

If p>2n/(n—2) (and n>2, of course), then there exists k € N* n[1,n/2[ such
that p €]2n/(n — 2k), 2n /(n — 2(k + 1))]. In this case we iterate the above argument:
suppose that the function 5 satisfies (instead of (3.7))

c(n)

YI'ECOW(QZG); OgﬂSI, 7{1‘Elln QZt::) anls—.—“9
aQ-9Hs

where t:= 27D Then v:= (u —ug, )n solves (3.8) and as above we obtain
DU 2vi0-2q,, ) < €y v, P, 8, 5, 04, AL (@) » [A)e,@))

Al f oy + 1o llpwwien gy, + iDLz, } 5
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which is the first step. Next, assume that for some h, 1<k <k, the following esti-
mate holds:

(3.12) “D’I/LHLZn(n—Zh)(QM:) = C(’}’l, v, P, t, a, h, w4, “A”Lm(g), [A]£¢([_)))‘

Alf HLP(QZ,) +f “L"P/(”“”(Qz,) + “DMHLZ(Q2,> 1
then, choosing n € Cy (@a+,) such that

c(n)

0sy=1, =1in hely, Dy € ———i,
Y 7 Qe ] /i (1l —be

we find that v:= (4 — ug,, )7 solves problem (3.8) with @,, replaced by Q.. Hence
by Theorem 3.1 and Sobolev-Poincaré inequality we get as before

(3, 13) ”Du“Lp/\zn/(n—Z(hd—1))(Q2th+1:) S C(’I’L, Yy p, t, a, h, W4, “A“Lm(g) y [A]ﬁé(ﬂ) ) .

{1 2o @ua + o lrwin @y, + 1D

and using (3.12) we get again (3.12) with % replaced by & + 1.
In particular when k=% we have (since 2t**! =1 and k depends only on n, p)

7, 2n/(n—2h) (Qasr,) } ,

1DullLr @) < c(n, v, p, 7, 04, [AllL- @, [Ale, @ W Fllzeuy + [ follmwinrn gy y + 1Dz, } 5

and finally a simple homothetical argument leads to (3.6) for general pe
€f2, 0. nm

A quite similar proof leads to the following boundary result: consider the
cubes

Co={xeR" |x;|<s/2,1<i<n-1L0<x,<s} (¢>0)

and set A,:=C.n{x, = 0}._ Then we have:

THEOREM 3.3. — Let U be a solution of
EU=Fy,-divF inC,,
U=0 in4,,
UEHI(C%,RN)
where F e LP(C,, ,R™), FOEL””/(”“’)(C RY) (pel2, =), AeL” C,,,R ¥y A

NL(C,,,R™) (¢(a) = (1+lgs))™!); then UeHlp(CV,RN) Vrel0, 5[, and if 0<
< 2¢ < gy we have

B.14) DUl < e, v, p, w4, |A]L= . o0 [Ale,c)):

: {”Fo

poinen ey + W e,y + o2 YP DU 2, ) -
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As a consequence we can state the following global LP-regularity result whose
proof follows by Theorem 3.2 and 3.8 in a standard way:

THEOREM 3.4. — Let Q be a bounded open set of R™ with 82 € C'*# 3> 0. Let u be
the solution of the Dirichlet problem

ue HH(Q,RY),
Eu=fy—divf inQ,

where feLP(@Q,R™), feL™®*P@QRY) (pel2, =), AeL”@QR")n
Al @, R™Y) (§(o):= (1 +|lga))™"). Then u € H>?(2, RY) and

1Dl @) < ey v, 0, 2, 04, 1A=y, TALe, @) U f ey + folpmieniy .

REMARK 8.5. ~ Due to Remark 2.4, similar results hold for complete linear sys-
tems, i.e. systems containing also lower order terms.

REMARK 3.6. ~ As already remarked in the Introduction, our L? results neither
imply nor follow by the classical theory of [1]: indeed Proposition 1.9 and Remark 1.10
show that the class of our coefficients A;; neither contains nor is contained in the class
of continuous coefficients of [1].

REMARK 3.7. — By Theorem 3.2 and Sobolev theorem we see that the solutions of
linear strongly elliptic systems, whose coefficients are «small multipliers of BMO»,
are locally Hélder continuous provided the right member is an element of
H™Y7(Q, RYN) with p>n. Thus we have a class of elliptic systems with discontinuous
coefficients for which De Giorgi’s regularity theorem is true.

REMARK 3.8. - If n =1, the results of this Section still hold if we replace the as-
sumption fy € L"™/®*P( RY) (or Fye L"™/**P(C, ,RY) in Theorem 3.3) by fye
e L'(Q,R") (or Fye L'(C,,,RY)). We note that in (3.6) and (3.14), for homogeneity
reasons, the role played by || fo|lLme+»q ) (resp. [|Fo|lp=i+nc,y) is played when n =1 by
P fillrqy (esp. o7 Follie,)-

4. - Local BMO regularity.

Consider again the situation described at the beginning of Section 2 and let « be a
solution of

fue H'@Q,RY),
4.1) i

Eu=-divf+f, inQ,

under the strong ellipticity assumption (2.2) (or (2.3): see Remark 2.1). We want to
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prove the following result (written for the case n>2: easy modifications have to be
done for n=1 and n =2, compare with Remark 2.5):

THEOREM 4.1. — Let % be a solution of (4.1) with fe BMOWQ,R™), fye
e L/ + DD (9 RN A e L° (@, RV™) 1, (@, RV™) (3(s) = (1 + [lgs])~" ) and no
assumption on 3Q. Then Du € BMOy,, (2, RM™) and for each cube Q(xy,0) =@Q, c Qz, C
¢ Q we have

4.2)  [Dulgyoq,) S €n, v, wg, 1A=, [Ale, @)

{om 1Dullrzq, ) + I Fllaaos,) + 1fo luemnsntinsng, y } -

PROOF. — In Q,, we split 4 =2+ w where w solves the Dirichlet problem

{43) {WEH&(QZ:)’

Ew=—divf+f, in Q,,
whereas z:=u —w solves the homogeneous system

ZGHI(QZG)ﬁ
Ez=0.

4.4 {
By Theorem 2.4 we have for w the following estimate:
4.5)  [Dwlsyoq,) < ¢, v, 9, w4, 1AL, [Ale, @)

U flyo@y) + I Iz mntiasn g, 1.

QOur goél now is an estimate for z. By Theorem 3.2, we know that Dz € L, (Q., , RM™)
for each p< o and we have an estimate like (3.6):

(4.6) ID2 gy ) < O, p, 1A= @y, [Ale ), DD2l20g, ) 5
consequently, by Hélder inequality, choosing in particular p =n,

4.7 |Delpmse-ontinrn gy, < DAl ) < €, [AllL= 0y, [Ale, ), D2, -
Let now v e Cf (Q(g/g)g) be such that

c(n)
pap

4.8) O0sy<1, r=1inQ,, |Dy=
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Then the function v(x) = [2(x) — zq, /2)7]-7;(90) solves a Dirichlet problem like (3.8):

veH; (Q(s/z)uRN) ,
(4.9) f (Aj(@)-D;v| Di§) dow = f {Cafi + DymAij (2 — 2q,,)| Di6) +
Qi/2 Qa/2-

+(D;n-fi—nfo—DinA;;-Dizl 6} dx Vo e H} (Q(3/2)3,RN)-

Now it is easy to see that, setting G;:= nf;+ DjnA;; (2 — 2q,,, ), Go:=D; nfs —nfo—
—D;nA;;-D;z, we have

4.10)  ||Gllsro@gs.) < € f Broge) + [lAllL= @ + [ALe, @ WDzl p2vte 22000290 )

@10 [Gollpavte oot sn gy <

= c(n, G){“f “BMO(Q@/Z)«) + “f OIILZ”/("+2)v"2/(”+2) Qa2 + ||AHL==(9> ”DZHL%M*Z%'LZ/W”J (Qa/2) ¥
hence by Theorem 2.4 and (4.10), (4.11), (4.7) we deduce (since Dv =Dz in Q,):

(4. 12) [DU]BMO(QG) = c(n)[Dz]BMO(Q(3/2),) =

< cn, v, 04, Al @), [Ale,@» N2z @) + | lBreo@s) + | follpues eoriorng,y } -
Finally we couple (4.5) and (4.12), obtaining for u =w +z:
(4.13)  [Dulpyow,) < ¢, v, 0,04, A= @, [Ale, @)
(IDulz2 g,y + I lsaos.y + Mfollpzvn-22ie 0y 3 5

and a simple homothetical argument leads to (4.2). This proves Theorem
41, =

5. — Improvements and remarks.

This final Section is denoted to a few remarks.

Firstly, we want to improve the result of Theorem 2.2 in the special case of one
space variable, i.e. n=1.

Thus, assume that Q =la, b[, and consider the operator

Bu:= - (A@-u'), ueH (a,b,RY),
where A e L*(a, [, RY*) and

(5.1) (A@)Z )y =v|e? Ve ela,bl, VEeRY.
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If fe BMO(la, b[, RY), fy € L*(la, b[, RY), the Dirichlet problem

{Eu=f0—f' in Ja, [,

5.2
o2 u € H; (la, B[, RY),

is obviously equivalent, by (5.1), to

5.3) u'(x) = Alx)™ - | f(x) —affo &) dt + c} , a.e.in la, b[.,

ula) =u(b) =0,
where ¢ = (¢!, ..., ¢") is an arbitrary constant vector. We want to prove the following
result:

THEOREM 5.1. — Let u € H' (Ja, b[, RY) be the solution of problem (5.2), with A €
€ L% (la, b[,RNz) satisfying (5.1) and f € BMO(la, b[, RY), f, € L*(la, b[, R"Y). Then u'e
€ BMO(a, b[,RY) if and only if A e L*(la,b[,RY") NL;(la, b, RY) (with ¢(o):=
:= [1+|lgo|]™!)); if this is the case we have the estimate

(5.4) [0, b < €, Al @, 0y » [ALL, 0,0 ) {1 lmar0ce vy + ol o,y } -

Proor. — We need the following

LEMMA 5.2. — Let A € L= (Ja, b[, RY") satisfy (5.1). If @: [0, d] — Rtis any function
such that (1.1) holds, then A € £5(Ja, b[,RY") if and only if A~ e £,(la, b[, RY).

PROOF. — Suppose that A € £, (Ja, b[, RY*). Then, setting

Iwy, ) =loy= o, +olnla, b, As= { A@de, M= ALy,

Ky, )
we have by (5.1)
A<y, (A7M<i,
and consequently

:{ A@) - @A), Pde < ]( lA(@) ™ — A Pde =

I(xg, 7) I(zg, 9)

= | A@ A - A@1AT Pae< L | 1A -APdr< Lporar,,.

v

Iy, @) Hayg, 2)

This shows that A~ € £,(Ja, o[, R") and [A ™ ]e, 1y < 1/ NAle 0 b -
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Suppose conversely A~ e £,(la, b[, RV") then by (5.1)

(A8 8N = J( (A@) e &)yde = v

(g, 9)

A@) = iﬁmz Ve RY,;

hence [(A™1)c]™! exists and we can write

]f AGx) — A, Bde < J( |AGx) - [(A™), 17 Pd =

I(aco, o) I(%o,:r)

= | Ja@ra), - Ae A, 1 o <

Iy, 2)

2

)

I(xy, o)

4
<2 | jaw - @ pde< LoeF A B,

that is A e £, (la, [, RY") and [Ale, 0,5 < ME/VA  e,ap- ™

Now assume that A e L*(la, b, RY") n £,(la, b, RY"), with ¢(c):= (1 + [lga))7",
and suppose that (5.1) holds. Then by Lemma 5.2 and (1.14) we get that A7 lis a mul-
tiplier of BMO (in the sense that A" e M(BMO(la, bD) for h, k=1,...,N. As

x— f@) ~ [ fy(t)dt+c € BMOCa, b, R™),

by (5.3) we readily obtain u’' € BMO(la, b[, RY) and (5.4) follows easily.
Conversely, suppose that A ¢ £,(a, b[, RY *); then also A™'¢ £,(la, o[, RY") (oy
Lemma 5.2). This implies, by (1.14), that, there exist k, ke {1,...,N} such that
(A~H"* ¢ M(BMO)(Ja, b[). As a consequence, we can find a scalar function ¢ €
e BMO(la, b[) such that (A~'Y*g ¢ BMO(la, b]).
Choose now

Fom (F7) Frm 0 ifr#k,
'_{ r=1,..,N>» o g fr="FL.
Then it is clear that fe BMO(a, b[, RY), but A~'-f ¢ BMO(Qa, b[, RY).
Choosing also fy:= 0, we easily see that the solution « of problem (5.3) is such that
w =AN(f+c¢) ¢ BMO(]e, b[,RY). The proof of Theorem 5.1 is complete. ™

REMARK 5.3. — If n=1 we can find an open set Q and two guznctions Ae
e L7 (@, RV"™)N£,@,R"Y) (in fact, AeC'@ RV™)\&@RY™)) and fe
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€ BMO@Q, R™) such that the gradient of the solution of

Eu=—divf inQ,
(5.5)
e H}(Q,RY),
does not belong to BMOQ,R™). Indeed, fix 2:=10,1[", and A= {A;;}ij=1, . n>
Ay (@)= alx;) 1, a e CO0, 1)\ £, (0, 1), a(x) = v in [0, 1]; then 1/a also belongs to
C°([0,1D)\.£, (10, 1[), so that we can select
f={fitici<n, Jfil@):={(g(x),0, ...,0)_ € BMO@Q,R™)

with g e BMO(J0, 1[) such that g/a ¢ BMO(]0, 1[). Then the solution of (5.5) is

1

9(s)
£ z&g;ds 2 .
- | _ [ 9D 4 0 i
Ulx) = (u(x,),0...,0), ulx,)= o dt - POk
0 ds ©
; al(s)
and the gradient of U is not in BMO(Q, R™) since
1
1 Y _ g(xl) _ ¢ __0
DU (@) = w'(2,) = @) awy’ T 3
ds
a(s)

This shows in particular that the BMO regularity for elliptic systems like (5.5), whose
coefficients are merely continuous, is false.

REMARK 5.4. — Arguing as in [5, Appendix I, Th. III] we see that u € H} (2, RY),
Du e BMO@Q,R™)=ut e £2"*2(Q), h=1,...,N (i.e. ue £2""2(Q,RY)), where

()=
= fe L*@Q): [flgreq= sup {0'_2 inf { ][ \f(x)—a-x—b‘zde<oo;
Q

acR™", beR
‘ 2pe0,0>0 Qg 9)
N

In particular[4, Th. 6.1],  is Holder continuous with any exponent « €10, 1[.
But we can be more precise: by a result of GREVHOLM [8], we have

L2, RY) = A" (@Q,RY),
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where A'(Q,RY) is the Zygmund class, i.e.

AY@,RY):=1fe C°@Q,RY): [flu@:=  sup @+ -2f@ry/2l _ |
2y, @+y/2en lx'—yi

It is well known that O<ﬂ<lC°”(§,RN)DAl(s_D,RN)D-Lip@,RN) (with proper
inclusions).

Thus if Du e BMO@Q,R™) we obtain that u is Zygmund continuous in 0.

For the solutions of elliptic systems under the assumptions of Theorem 2.2 this
regularity result is optimal, since % cannot be Lipschitz continuous in general: indeed
u(x) :=x lgx solves

Au = (g x)  in 0, 1],
{u(O) =u(l)=0,

and lgx e BMO(0, 1), « 1g x € A*([0, 1])/ Lip ([0, 1]).
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