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On BMO Regularity for Linear Elliptic Systems (*)(**). 

PAOLO ACQUISTAPACE 

Summary. - We prove a refinement of Campanato's result on local and global (under Dirichlet 
boundary conditions) BMO regularity for the gradient of solutions of linear elliptic systems 
of second order in divergence form: we just need that the coefficients are ,,small multipliers 

�9 ofBMO(Q),,, a class neither containing, nor contained in C O (-Q). We also prove local and 
global L p regularity: this result neither implies, nor follows by the classical one by Agmon, 
Douglis and Nirenberg. 

O. - I n t r o d u c t i o n .  

This paper contains a refinement of some results of Campanato concerning 
local and global (under Dirichlet boundary conditions) regularity for the gradient 
of solutions u e H I ( Q , R  N) of second order linear strongly elliptic systems of 
the form 

Q Q 

in the ~,limit, case f e B M O ( ~ , R  ~N) (here BMO is the John-Nirenberg space). 
It is well known[6, Ch. II, Th. 5.I] that D u e B M O  provided the coefficients 
Aij are HSlder continuous in 9; we show here that a revisitation of Campanato's 
proof yields the same result when the coefficients just belong to the class of 
~small multipliers of BMO(Q)~>, which turns out to be optimal (in a sense) and 
is exactly characterized [9]: a function g is a multiplier of BMO(Q) if and only 
if g is essentially bounded in Q and in addition its mean oscillation over cubes 
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Q: of edge z behaves like 
dition, 

sup 

tends to 0 as r $ 0 .  

log :1-1; the attribute (~small, means that, in ad- 

Ig z I ~ [g - gQo [dx: 0 < ~ <~ r} 
Q: 

Now it turns out that such class neither contains, nor is contained in C O (~): on one 
hand, this forces us to impose strong ellipticity rather than ellipticity, in order to 
have existence of solutions; on the other hand, because of this fact our result implies 
some relevant consequences. 

Firstly, by Stampacchia's interpolation theorem, we get the L p regularity theory 
for a class of linear systems having discontinuous coefficients (but not for all systems 
with continuous coefficients): thus from this point of view Campanato's approach is at 
least as powerful as potential theory [1], and independent of it. Secondly, from L p 
theory we deduce an extension of De Giorgi's regularity theorem to a class of linear 
systems with discontinuous coefficients. Unfortunately, the class of ~small multipli- 
ers of BMO,, does not seem to be handy enough to obtain similar results for nonlinear 
systems. 

We also remark that our result is nearly sharp, since in the case n = 1 it is easy to 
verify (see Theorem 5.1 below) that BMO regularity is true if and only if the coeffi- 
cients are multipliers of BMO (not necessarily ~small,,). 

If one considers only the subclass of continuous small multipliers of BMO, then 
our result applies to (not necessarily strongly) elliptic systems: as the functions of 
such subclass are not Dini continuous in general, our result does not follow by the 
well known ones concerning Dini regularity [2]. 

For the sake of simplicity, only second order systems with no lower order terms 
are considered here, but this restriction might be easily dropped; similarly, the 
method applies, ~,mutatis mutandis,, to higher order systems (under DMchlet 
boundary conditions). However we believe that our approach works in the case of 
Neumann boundary conditions as well. 

Let us sketch our method of proof. We start  from the Dirichlet problem for a sys- 
tem with smooth coefficients, for which the BMO regularity is provided by Campana- 
to's result: our main task consists in obtaining a sharp estimate for the BMO norm of 
Du, which does not involve the H61der norms of the coefficients, but just their norm 
in the space of multipliers of BMO. Once we have this estimate, we consider a system 
whose coefficients are small multipliers of BMO, and in order to get our result we just 
need to approximate suitably (not uniformly) our coefficients by smooth ones: in this 
step we cannot replace ,~small multipliers,~ simply by ~multipliers,. In this way, we 
get global BMO regularity for the solution of the Dirichlet problem for the system 
(0.1). 

Next, we prove a local BMO regularity result, which however does not follow in a 
standard way by the global one. The difficulty is that the usual localization argument 
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does not work here, essentially because we do not have ,,lower regularity results~, 
i.e. the regularity theory in the Morrey spaces L 2'~, 0 < ~ < n; this is due to the fact 
that our coefficients are discontinuous in general. 

We overcome the above difficulty by using the global L p theory deduced from 
Stampacchia's interpolation theorem: in the L p setting the localization argument does 
work, and from local L p results we are able to deduce the local BMO result. 

It is to be noted that our starting point is the BMO theory with smooth coeffi- 
cients, so that Campanato's BMO theory is not replaced by our paper but, on the con- 
trary, our arguments are based on it. Similarly, the L p regularity is not merely a 
corollary of our result since it is a basic tool in order to get a complete BMO 
theory. 

The paper is organized in the following way: Section 1 is devoted to the study of 
2~ spaces, i.e. the sets of functions whose mean oscillation over cubes Q~ behaves like 
�9 (~); the properties of these spaces are crucial in revisiting Campanato's argu- 
ment. 

Section 2 concerns global BMO regularity; Section 3 deals with L p theory, where- 
as in Section 4 we study local BMO regularity. Finally Section 5 contains some ira- 
provements, counter examples and further remarks. 

We end this section by introducing some notations. 
i 

I f x 0 ~ R  n a n d ~ > 0 w e s e t  

Q(xo ,~) :={xcR~: lx i -x~o l<~z ,  l<~i<~n}, B ( x o , ~ ) : = { x e R ~ : l X - X o l ~ < ~ } ;  

if X0 lies in the ,~plane, x~ = 0, we set 

Q § (Xo, ~) := Q(xo, ~) • {x~ >! 0}, B § (Xo, ~) := B(xo, ~) • {Xn >I 0}, 

F(Xo, z):= Q(xo, ~) ~ {x~ = 0}. 

When no confusion can arise, we will simply write Q~, B~, Q~+, B J , 1"7. If A is a 
measurable subset of R ~ with positive measure, and f is an integrable function de- 
fined on A, we set 

f i f  fA =- f(x) dx :-  re(A) f(x) dx. 
A A 

We will use the sum convention on repeated indices, so that ai b~ means ~ ai bi. 
The inner product in RN will be denoted by (x] Y)N. i= 1 

Next, if X(t~,R N) is a Banach space of RN-valued functions defined in ~, we will 
denote the norm of X(t~,R N) simply by II'llx(~). 

Finally if X(~) is a Banach space of scalar functions defined in ~, we 
denote by M(X(t~)) the space of multipliers of X(~), i.e. the space of functions 
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g such that f . g �9  for each f �9  endowed with the norm 

[~I[M(X(~)) = sup {[[fg[]z(~):f�9 X(t2), ]lf[~c(~)~< 1}. 

1 .  - s  spaces. 

Throughout this section we assume that  

(1.1) ~: [0, d]--, [0, ~[ is a continuous, non-decreasing function such that  ~ ~(e)/~ 
is almost decreasing, i.e. there exists K~ t> 1 such that  

�9 (t) 
K~ --[-  >>- - 7 -  VO <~ t < s <" d" 

For instance the functions ~, ]lg z[-z, exp (~Y) - 1 (~, ~ �9 [0, 1]; ~, >I 1) satisfy the 
above assumption (in suitable intervals [0, d]). 

DEFINITION 1.1. - Let ~ be an open set o fR ~, n I> 1. We denote by ~r (~2) the set of 
all functions f � 9  L 2 (t~) for which the quantity 

[ ] U2 
(1.2) [f]~o(~):= sup ~(~)-1 If(y)-fe(~o,,)~12dy : x � 9  �9 

[Q(xo, ) n 

is finite. We denote by l~ (t2) the subspace of all f �9 s (t~) such that  

1 
: x �9 t2, ,  �9 r] / = 

J 

=o(1) as r ~ 0 .  

s (t2) is a Banach space with norm 

[[f[L~(~) := [[f]~(~) + [f]~(~) �9 

The s162 classes, introduced by SPANNE [12], generalize (among others) Campana- 
to's ~P'~ spaces [3], which are defined for p �9 [1, oo[ and ~ �9 [0, n + 2 ]  by: 

We recall that by [6, Ch. I, Th. 2.I] we have: 

(a) ~,)~(~?)=LP,~(~) V p � 9  V)~�9 n[,  
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the Morrey class L ~'~ (t~) being defined by 

f Q o 
(b) s ~ (t~) = C o, (~ - n)/p (9) Vp e [1, ~ [, Y~ e In, n + 2], 

where  C~ a ~ [0, 1], is the HSlder-Lipschitz space: 

~P'n(t~) = s = BMO(~)  Yp e [1, ~[  

(BMO(t~) is the John-Nirenberg class, see [10]). 

Now if ~(~):= 2~, a e ] 0 ,  1], we find 2~(~) = ~2'~+2~(t~) = C~ whereas  if 
~(~) =- 1 we get  2~ (~) = BMO(t~); if moreover  ~(~) = I lg ~l-z, ~ e ]0, 1], we obtain the 
0rlicz class defined by the function M(s):= exp (]sl 1/(1-~)) - 1  (see [12]). 

REMARK 1.2. - It  is worth to recall the trivial but  basic proper ty  

(1.5) f lf-fAl dx=min f lf-cl d  Y f e L 2 ( A ) ,  
c e R  

A A 

whose role in the whole paper  is crucial. This proper ty  will be systematically used 
throughout,  often without explicit reference. 

The subspace l~ (t~) is obviously closed in 2~ (t~); moreover  we have: 

PROPOSITION 1.2. - Let  ~9 be a bounded open set  of R n with a ~ e  Lip. If  
lim(~/~(~)) = 0, then l~(t~) coincides with the closure of C ~ (9) in 2~(t~). 

PROOF. - It  is easy to verify that  C ~ (9) r l~ (t~) provided lim(z/~(~)) = 0; as l~ (D) 

is a closed subspace, we also have C ~ (tg)r 1r (t~). 

The proof of the converse needs an extension lemma for functions in Ir (tg): 

LEMMA 1.4. - Under  the assumptions of Proposition 1.3, there  exists an extension 
operator  E: 2~( t~ )~  2~(R ~) such that  E f e  l~(R n ) V f e  l~(R n) and 

(1.6) [Ef]~(R~) <~ c(n, ~, K~ )[f]~o(~). 



236 P. A C Q U I S T A P A C E :  On BMO regularity for linear elliptic systems 

PROOF. - Firstly,  we claim that  if f e  2~(B +) (resp. I~(B+)), then  the func- 
tion 

I f(x)  if x~/> O, 
F (x ) :=  [ f (x l '  "",Xn-1, --Xn) if x n < O ,  

belongs to ~ ( B )  (resp. l~ (B)); here B + := B + (0, 1), B := B(0, 1). 
Indeed,  let xoeB;  if Q(xo,~) does not intersect  F:=1"(0,1),  

= (Xo~, ..., Xo, ~- ~, IXo~ I), we get  
se t t ing Zo := 

~(~)-2 [ 
If -- fQ(~o,:)~B+ ]~ dx <. [f]r~(B+), 2 

Q(xo, ~) (~ B Q(zo, z) ~ B + 

whereas  if Q(xo, ~) ~ 1" --/: 0, set t ing yo := (Xo~, ..., Xo, ~- 1 , 0 )  we obtain by (1.5) 

~)(z) -2 ~ IF-FQ(~o,:)~BI2dx<~c(n,K~)~(2z) -2 ~ IF--FQ(yo,2:)~BI 2dx= 
Q(xo , z) ~ B Q(Yo , 2z) 5~ B 

= c(n, K~)~(2~) -2 ~ If--fV(yo,2~)~B+ 12dx < c(n, K~)[f]~(B.); 
Q(Yo, 2z) n B + 

this clearly implies our claim. 
Next,  arguing as in [5, Appendix I, Theorem V], we see tha t  if T: ~ ' -~  ~ is a Lips- 

chitz homeomorphism,  then  f o T  e ~ ( t ) ' )  (resp. l~(~')) for each f e  2~(t)) (resp. 
l~ (t))), and 

(1.7) [fo T]r~(~,) ~< c(t), t) ', K~ )[f]ro(~). 

Now, as a t~eLip ,  there  exists a finite covering {t~i}l<~_<m of ~t), and a family 
{Ti}l_<i_<m of Lipschitz homeomorphisms Ti:-~i--->-B, such tha t  Ti(-~in~)=B-- ,  

m 

Ti(-~nat)) =F. Let  t)o oct)  be such tha t  t) c [J ~i =:~)', and let { ~ i } O < ~ i < ~ m  be a C a 
i = 0  

parti t ion of uni ty associated to {~i }o < ~ < ~- For  f e 2~ (t)) set: 

I(f~i) o T(  1 (y) 

Fi(y) := [(f~i) ~ T(I(Yl ,  ... , Yn-1, --Yn) 

if y e B  and yn~>0,  

if y e B  and y n < 0 ,  
l<~i<~m, 

0 if x e ~ ' \ ~ i ,  
j~(x):= F~oTi(x)  if x c ~ i ,  

l <~i<.m, 

~f if x c t)' \ ~ o ,  
fo(x) :=  (x),~o(X) if x e t ] o .  
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Then by the above assertion we have 

[fi]&(a,)<<-c(n,t~,K~)[f]e,(~), O<i<<-m; 

finally, setting 

[0 if x q t ~ '  
Ef(x) i tt~z 

1 ~ fi(x) if x � 9  
[ i = O  

we immediately get  (1.6). On the other  hand the above argument  shows also that  Ef  �9 
�9 l~(R ~) if f � 9  l~(~). The proof of Lemma 1.4 is complete. " 

Fix now f � 9  l~(t~) and extend it outside t~ via Lemma 1.4, and consider the 
convolutions 

R ~ 

where 0 �9 C$ (R ~), 0/> 0, 0 = 0 outside B, f O(z) dz = 1. 
B 

As le (~) c BMO(~) c ~ L p (~), we clearly have 
l~<p<~ 

(1.8) f k ~ f  as k--> ~ in LV(t~) Vp �9 [1, m[. 

Let  us show that  

(1.9) fk--+f as k -~  ~ in ~#(t~); 

this will complete the proof of Proposition 1.3. 
Fix ~ > 0. As f E 1~(~9), we have E f � 9  l~ (R~), so that  there  exists ~ > 0 such 

that 

(1.1o) ~(~)-2 ~ dEf--(Ef)q(xo,~) edx<~ Vx0�9 ~, W�9 
Q(xo, z) 

Now if x0 �9 ~ and z > ~ we have by (1.5) and (1.8) 

~(~)-2 ~ V_fk_(f_fk)Q(Xo,~)<~r2dx<c(n)O(~)_2 _nf lf_fkl2dx< 
Q(xo , ~) ~ ~ 
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provided that  k is larger than a suitable k~; otherwise if x0 e ~ and : e]0, :~ ] we get  by 
(1.10) 

~(~)2 f If_fk_(f_fk)Q(~o,~)~12dx~c(n)~(~)-U ~ tEf_fk_(Ef_fk)Q(~o,:)]2= 
Q(xo , ~) n ~ Q(xo , z) 

= c(n)~(:) -2 f 
Q(xo, ~) 

<~ c(n) ~(z)-2 [Q(xo!:) Ef-(Ef)Q(~o,~)12dx+ f O(z) f IEf($)-(Ef)Q(~o_(1/k)~,,)t2d~dz <~ 
R ~ Q(xo - (1 / k ) z ,  z) 

< c(n)[Ef]~,R,, ~ < c(n, f )  ~ Vk e N + . 

Hence if k I> k~ we get  

and (1.9) is proved. �9 

2 
[ f  - fk ]ro(~) < c(n , f )  ~ , 

REMARK 1.5. - We have in fact proved that  under  the assumptions of Proposition 
1.3, i f f e  l~(t~) there  exists a sequence {fk}k~NC C~(~)  such that: 

(1.11) lim (llfk -fll~o(~)+ Ilfk -fllL,(~)) -- 0 Vp e [1, oo[, 
k ---~ cr 

(1.12) ~0[fk]~,~,:  = 0 uniformly in k e N .  

If, moreover,  f belongs to L ~ (~), too, the sequence {fk } satisfies 

(1.13) Ilfk]~(~) ~ IlfllL'(t~). 

The following result, due to JANSON [9], shows that  the 2~ classes occur as spaces of 
multipliers. 

PROPOSITION 1.6. - M(~e (~)) = L ~ (~) n ~ (~), where ,~(~) := dr . u 

In particular we have (with d := e): 

(1.14) M(BMO(t)))  = L ~ ( t ) ) n 2 ~ ( t ) ) ,  r := (1 + Ilgzl)-~ ; 

from now on, r will always mean (1 + l l g  ~1) -1, ~ c [0, 1]. 

REMARK 1.7. - The result  (1.14) is not surprising since it is well known that  if 
f e  BMO(t]) and Q: c t) we have 

I[q~ I = 0(1 + I lg ~1) as z $ O, 
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( see [ l l ,  w 3.10], [9]). A more precise estimate will be proved in Propositions 1.15, 
1.16 below. 

We want  to prove now that  the space of multipliers of BMO(t~) neither  contains, 
nor is contained in C~ Indeed we have: 

PROPOSITION 1 . 9 .  - Let  r (1 + l l g  0"1) -1. Then C~  and [L ~ (D)n 
c~ tr (t~)] \ C o (~) are not empty.  

PROOF.  - S e t  

zr 

ig(Y) - gr-:,412dY = 
- f f  

2 \-1/2 
z(~): = l + ~ J l g ~ l )  , ~ [ 0 , 1 ] :  

then Z e C o ([0, 1]), Z(0) = 0, Z(1) = 1, Z is strictly increasing and concave and Z(~)/~ is 
almost decreasing; moreover  

lira z(~)llg~] = + ~ .  
950 

Next,  consider in D := ] - 1 ,  1[ the function 

g(x) := Z([x I) sgn x,  x e [ -1 ,  1]. 

Clearly, g e C~  1]) and by the concavity of Z 

N - 
)~ dy >I 

- - : t  0 

which implies 

i10 ] v 

lim~$o [g]~' t'~ ~> ~o r Ig - gE- , ~J I ~ dy 

Thus g ~ ~% (t~) and this proves the first assertion. 
Next,  set D := ] -  1, 1[ and define: 

(1.15) ~(~) := [(1 + llg~])[1 + lg(1 + Ilg ~t)]] -I, 
1 

f ~(r) (1.16) V(~) := - - T d r  = lg[1 + ]g(1 + llg~I)], 

(1.17) g(x) := rj(ixl) , x e D. 

e [0, 1], 

e [0, 1], 



240 P. ACQUISTAPACE: On BMO regularity for linear elliptic systems 

It  is known [12] that  g ~ s162 and consequently g e 1r (~) since lira (~(~))/(r = 0. 
On the other hand we have g r L ~ (~) because ~ o 

(1.18) lira g(x) = + co. 
x--~0 

Now consider the function 

(1.19) f(x)  := sin g(x), x e ~; 

as t -~  sin t is Lipschitz continuous and bounded, it is clear that  f etr  (t~) ~ L ~ (t~). In 
addition by (1.18) we have 

(1.20) lira sup f(x) = 1, lira inf f (x)  = - 1, 
x - * 0  x--*0 

so that  f r C O (~). Proposition 1.9 is completely proved. " 

PROPOSITION 1.10. - The class of Dini continuous functions in ~ is strictly con- 

tained in C ~  t~(t~). 

PROOF. - Firs t ly  it is easy to construct functions belonging to C o (~) • 1r (t~) which 
are not Dini continuous. An example in t~ := ] -  1, 1[ is f(x) := ~(x). sgn x, where  ~ is 
the function (1.15): arguing as in the proof of Proposition 1.9, we see that  f e ~+ (~) c 
c l~ (t~), whereas  the oscillation of f i n  ] -  ~, z[ is ~(~) := 2~(z/2) and clearly the Dini con- 

1 

dition I(~(~)/~) d~ < ~ is not fulfilled. 
o 

Next, let f: ~-* R be Dini continuous and let ~o: [0, diam ~]-* R + be its oscilla- 

tion: thus oJ is continuous, concave, non-decreasing, such that oJ(O)--O and 
1 

f(co(~)/z) d~ < ~. The estimate 
0 

[f-fQ(~,~)~12dY ~ ~ If-f(x)12dY~[~(z~/-n)] 2=:[-~(~)]2 , 
Q(x, ~) ~ ~ Q(x, ~) ~ 

shows that  f e ~ (t~); thus it is sufficient to show that  (rewriting o~ in place of ~) 
~ ( ~ )  r l~(~), i.e. that  

lim ~(~) - 0 (r := (1 + Ilg ~l)-~). 
~ o ~  r 

Indeed, assume by contradiction that  limsup(o~(~)/r 0: then we may suppose 

(possibly replacing oJ by c.oJ) that  there is a sequence {tk }k ~N C]0, 1[ such that 

~(tk ) 
< tk, r > 1 Vk e X .  
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Denote  by  r(0-) the  b roken  line joining all points  (tk, r i.e. 

r(o) : . . . . .  ~ + r - tk - -  , 
tk --  tk + l ~ tk + l 

by  the  concavi ty  of ~ we have  ~ i> r in [0, to ]. Hence  

to to 

- -  I >  = - + 

0 0 

and after standard manipulations we get 

~o r + ~ ) r ) 

- -  I > r  ~ l g  tk tk+l tk = 
k=0 tk+l 1 1 

0 tk + 1 tk 

~e[tk+l,tk], k e N ;  

r ) - ( r  - r § ~) tk 
\ tk tk + 1 

l~ I, 

As 

cr 

= ,~(to)+ ~ l g -  
k=O 

tk t~:~ 

tk+ 1 1 1 
tk § 1 tk 

we easily obtain 

d r - r162  r162 
60- 0- 0 -2 02 

Co 

f r247162 
0 

and since tk > t~-~k+~, recal l ing also t ha t  r  O, we conclude tha t  

to lg 1 

~(~) do- t> r + c ~]  r + 1) lg 1 c ~]  tk + 1 
0- k = o ~/tk + 1 - r ) + ~ 1 k=o l + l g  0 

tk+ 1 

- - ~ o o .  

This cont radic ts  the  Dini cont inui ty  assumpt ion  o f f .  The  p roof  is complete .  

L e t  again �9 be a funct ion sa t is fying (1.1). 
We  a re  i n t e r e s t ed  to in t roduce  some equiva len t  seminorms  in ~ (Q), w h e r e  Q is a 

cube of R ~ whose  edges  are  paral lel  to the  coordinate  axes.  
We  need  the  following 
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LEMMA 1.11. - Let  Xo 6R n, ro e]O,d/2], Q:= Q(xo,ro). F o r f e  2t(Q), set 

, t~(~)-~ (1.21) [fifo(Q) := sup 
[ Q(xo, z) 

8 

( ~ ( r )  dr,  (1.22) ~ (~) := j - 7 -  

Then we have: 

If(Y) - fQ(~, :) l dY: Q(x, ~) r Q} , 

e [0, s], s e]0, d]. 

) 1  n ~-], if , e [~2ro (ro), ~2~o (0)[, 
b~ [ f  to(Q) bn [f]2~(Q) 

if ~ I> '~m (0) 
b~[f]z,(Q) 

where  b~ is a positive constant and ~ 1  is the inverse function of ~2r0. 

PROOF. - It  is essentially contained in [12, proof of (4.3)]. Set  re(z) := meas (y e 

Q: If(y)-fQl> ~}. 
For  fixed j e N  +, divide Q into 2 jn parallel subcubes Qjk:=Q(xjk,rj),  where  

rj := ro. 2 -j. 
If  y e Qjk and If(Y) --fq l > ~ we have 

z <  If(Y) -- fQjk l + IfQj~ -- fQ t <- 

<-tf(y)-fqh~[+ E sup I f (y)- fq(~,~) ldy:Q(z ,  rh+l)CQ(x,  rh) c Q  <- 
h=O [Q(Z, rh+l) 

j - 1  

<- If(Y) -fq~k I + 2~ [f]~(q) E ~(rh); h=O 

Choose in particular 

j - 1  

(1.24) ~j := (2 ~ + na~)[f]~*o(Q) h~O ~(rh), 

} E ~(rh) �9 e Qjk : If(Y) --fqik ] > ~ -- 2~[f]*~(q)h= o 

hence if y e Qjk and If(Y) -fQ[ > ~ we obtain 

j - 1  

If(Y) -fqg~ ! > ~ - 2n [fl~(Q)t~0 ~(rh); 

consequently 

(1.23) m(a) ~< ~ meas y 
k = l  
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a~ being a suitable positive constant: as 

~j >I 2 ~  1 ~(rh) + n j a ~ ( r j )  [f]~,(Q), 
h = 0  

we get by (1.23) 

2 ~ 

(1.25) m(:j) <<. Z meas {y e Qyk: ]f(Y) -fQ~} > nja~ ~(rj)[f]*o(q)}. 
k = l  

On the other hand by John-Nirenberg's lemma [10, Lemma 1], arguing as in [12, Lem- 
ma 4] we easily deduce that there exists a~ > 0 such that 

meas {y e Qjk : If(Y) - fQj~ I > nja~ ~(rj )[f]~(q) } <~ 2-n~ r~ , 

so that 

2 ~ 

(1.26) m(zj) <~ E 2-~J~) ~ = r~. 
k ~ l  

Now we observe that 

to.2 -h+l  

E e(rh) = (log 2) -1 ~ "~(rh) < 
h=O h=O 

to.2 -n 

to.2 -h+l 
3-1 ~ O(s) 

~< (log 2) -1 ~ j ds 
h=O 

to.2 -h 

= (log 2) -1 r (rj_ 1 ) ,  

which implies by (1.24) 

2 ~ + na~ i f ] ,  (Q) ~2ro (rj _ 1 ) ~ b~ [f]~(Q)~2ro (rj_ 1 ). (1.27) ffJ ~< log------2 

Now let r e]0, ro ], so that there is a unique j e N + for which rj <- r <~ rj_ 1. Then by 
(1.27) and (1.26) 

(1.28) m(b~[f]*(Q)r <~ m(b~[f]~(Q)r <_ m(~j) ~ r~ ~ r ~. 

* el0, ro ], we get Hence setting ~ := b~ [f]ro(Q) ~2~'o (r), r 

m(z)<~r ~= ~2-~1~ ~ [ f ~ ( Q )  if b~[f]*o(Q) e[~2r~176176 

on the other hand if z t> b~[f]*~(Q)~2~(O) then by (1.28) 

m(~) <- m(b~ [f]~(Q)~2ro (0)) = 0 

and the result is proved. I 
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set 

(1.29) 

(1.30) 

(1.31) 

A quite simple similar proof gives: 

LEMMA 1.12. - Let  x0 e R ~- 1 • (0}, ro el0, d/2], Q + := Q + (Xo, r0). F o r f  e s (Q + ), 

[ f ] ~ ( Q * )  : =  M1 V Me, 
MI := sup I0(~)-1 ff~ If(y)-fQ(x,~.)ldy:Q(x,r)cQ+), 

l Q(, ) 

Me:= sup [0(~) -~Q+(~,~)~ If(Y)- fQ*(~,~)ldY: x eF(xo,ro), Q+ (x,r) c Q+}. 

Then we have 

meas (yeQ+: ]f(y)-fQ+[ > ~) ~ (  bn[f]~*(Q+) Jj 
0 

~Y 

if b r rl** § e [p2r0(r0), 'J,2~0(0)[, 
nLJJJ~(Q ) 

(7 

if bnLj ~(Q*) F r ] * *  ~>~m (0)' 

where  '~2ro is defined by (1.22) and b~ is a positive constant, u 

The following result  is very important for us. I t  is related to the well known fact 
that  for BMO functions (and, a fortiori, for 2~ functions) all L p norms with 1 < p < oo 
are equivalent. 

PROPOSITION 1.13. - Let  t~ be a bounded open set o f R L  F o r p  e [1, oo[, I2' cc t~, ~ 
e]0, min (d/2, 1 / ( 2 ~ )  dist(3~9', ~t~)}] and f e  ~ (~9), set 

[ IQx!~ 1 lip } (1.32) N p ( f ; O , ~ ' , 3 ) : =  sup O(z) -1 if(y)-fQ(~,:)lPdy : x  e t ~ ' , z e ] 0 , ~ ]  . 
( ) 

Then we have for each f e  ~( f~)  (see (1.3)) 

N~ ( f ;~ , f~ ' ,  3) ~< Np (f;  O,t~', ~) <~ C(p,n,K~)[f]o,~,~. 

PROOF. - The first inequality is obvious. To prove the second one, it is clearly suf- 
ficient to take p = m c N +. We use a modification of the argument  of [12, proof of 
Th. l(b)]. If  x e f~' and ~ e ]0, ~] (so that  Q(x, ~) c f~), we have 

oo 

If(Y) -fQ(x,~)]m dy = (2,) -~ f meas {y e Q(x, ~): If(Y) -fQ(x,~) t} . m r  m - 1  dt, 
Q(x, ~) 0 
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and by Lemma 1.11, sett ing k :=  bn[f]~o(Q(x,:)),  we get  after  a change of vari- 
able: 

(1.33) f ]f(y)-fQ@,.),mdy~mff -n f tm-lffnd,-J-mff-n f tm-l[~2:(~)Indt~- 
Q(x, .:) 0 k+2. (~) 

The last integral becomes, 

= k m [ ~ 2 . . ( u ) ] m - J - m u  - n  [ ~ 2 ~ ( s ) ] m - 1 8 n - l q ~ ( s ) d s  

L 0 

f .[,. 3., ] o k s J 

by repeated  integrations by parts: 

/ii l --1 . I,~ := s n- 1 ds = -~- [log 2] ~ - 1 + I,~_ 1 - -  

o kS 

m - 1  
. . ~  n 

~ 1  [log 2] h ( m -  1)! ( y n  

n h=l  n m - l - h  h! 
s  

hence by  (1.33) we derive (since r is 
decreasing): 

J 

Q(x, ~) 

m-1 (m- - l ) !  ( log2) h 
+ I1 (mn m-l- 1)! _ ~ h=o ~ h! n,~-h ' 

non-decreasing and (~(~))/z is almost 

m-1 } m! (log 2) h 
If(Y)-fQ("")lmdy<~km [~:(z)]m+[~(2z)]~h=O ~ hi n "~-h ~< 

~ m! (log 2) h m! (log 2) h [~(2z)] m <  [2k.K~ ]'~ [~(~)]m, 
~<km~=o h! n m-h h=o h! n "~-h 

and the result  follows since k <~ c(n)[f]~,,,~. " 

A similar proof, using Lemma 1.12 as well as Lemma 1.11, gives: 

PROPOSITION 1.14. - Let  Xo e R ~- 1 • {0}, ro > 0, B + := B + (Xo, ro ). For  p c [1, :r [, 
0 < r' < ro/V~, ~ e]0, min {d/2 ,1/2(ro/Vn - r')} and f e  ~ (q+) ,  set  

(1.34) N ~ ( f ; ~ , r ' , ~ ) : = N I V N 2 ,  

I ] i (1.35) N l : = s u p  ~(~)~ If(y)-fQ(~,~)lPdy :xeQ+(xo,r'),~e]O,~],Q(x,~s)cB § , 
(x) 
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(1.36) N2 :=sup  ~(~)-1 If(y)-fq+(=,:)l dy :xeF(Xo,r ' ) , ze]0 ,8]  . 

L Q + (x, ~) 

Then we have 

N~(f;~,r' ,8)<.N~(f;#,r ' ,8)<--.c(p,n,K~)[f]~,B+,~ Vfe~2~(B+). tt 

We end this section with some useful inequalities for BMO functions. 

PROPOSITION 1.15. - Let  t) be a bounded open set of R=; let Q'cr t) with 8:= 
= dist (aQ', at~) ~< 2. For  Xo e Q', ~ e]0, 8] and f e  BMO(t)), we have: 

(1.37) lfq(~o,:) [ < c(n)([1 + Ilg ~![f]sMO(a) + 8-~/2llfHn=(z) } . 

PROOF. - This argument  is essentially that  of [12, proof of Lemma 2 (a) and Lem- 
ma 5]. Firstly,  if 0<~<~-_<8 and Xo ~ 9 '  we have 

(1.38) f If-fQ(~o,~)Idx< f If--fQ(~o,=)tdx+IfQ(~o,~)--fQ(~o,=)I~ 
Q(xo, ,:) Q(xo, p) 

Q(xo , P) Q(xo , ~) 

Next, let Xo e Q', ~ e]0, 8]. I f  z e [8/4, 8] then 2~ ~> 8/2 so tha t  

t f  - fQ(*o, ~)1 dx" 

8 t n/2 

If, otherwise, ~ e]0, 8/4], there exists a unique k e N + such tha t  2k~, < 8/2 ~ 2 k+ ~ ~. 
Hence 

k - 1  

h=O 

<~ E ]f -fQ(=o,=h§ + If[dx << . 
h=O 

Q(xo , 2 h v) Q(xo, Z) 

< ~ E  2 n 
h=0  

Q(xo, 2 ~' § ~ ~) 

4 )n/2 
]f -fqr176 dx + ( 7 I f l lL=(o~ = 

=. [,,.1.. f = I = o  l - ~  
h + l  Q(xo,Ih+%) 

II-IQ(=o,,-=,,o) l l (4) J2 
-4- IlflL=(~), 
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so that (1.38) yields 

2h+2~. 

]fQ(~o,*) !<~ h~=o IN 2 2 ~ I dx-  + -<< 
2 h + 1 ~ Q(xo, s) 

and the result follows. �9 

2k+1~ 

l g2  f - Nl(f;1, II/llL ( )< 
2:- 

~< 1 - ~  lg ~ N 2 ( f ;  1,~' ,  ~) + Hf[[L~(~), 

PROPOSITION 1.16. - Let x0 e R  ~-1 • {0} and fix r > r '  >0.  For x eP(xo,r) ,  ~ e 
el0, r - r '] and f e  BMO(Q + (Xo, r)) we have: 

[fq+ (x,~) [ < c(n){[1 + Ilg ~l][f]BiO(q+ (~o,~)) + (r - r') -n/2 Hf[[L2(q+ (xo,r)) } . 

PROOF.'-  Extend f to Q(xo, r) by setting 

F(x l ,  ... ,  x~) = I f ( x l '  ""' x~) if x n >i O, 
I f (x1 ,  ,Xn-1,]Xn[) i f x n < O .  

2 Then F e BMO(Q(xo, r)) with HF][L2(Q(~o,~)) = 2][fH~(q§ and [F]BMO(Q(~o,~)) < 
< c(n)[f]BMO(q+(xo,r) ) (see the proof of Lemma 1.4); thus the result follows easily by 
Proposition 1.15. " 

2. - G l o b a l  BMO r e g u l a r i t y .  

Let t) be a bounded open set of R n and consider the operator 

(2.1) E u : =  - d i v (A(x ) .Du) ,  u e HI ( t~ ,RN) ,  

where A e L ~ ( # , R  N2*~) n lr y%~) with r + Ilg~l)-~; we assume the 
strong ellipticity condition 

n 
(2.2) (Ai j (x ) '~J l~ i )N~v  ~ !~iI2 V x e ~ ,  v ~ l , . . . , ~ n e R  N. 

i=l 

REMARK 2.1. - (i) I n  all what follows, we may take AeC~ 
(~1r (~9, R N~'~) under the (weaker) ellipticity assumption 

(2.3) (A j(x).vlv)N     IVI21 ,I V X e ~ ,  V ~ e R  n, V)~ER N. 
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(ii) To avoid formal complications, we assume n > 2. If n = 1 or n = 2 we need a 
slight modification in the assumptions on data; see Remark 2.5 below. 

We consider the Dirichlet problem associated to the operator E in the variational 
sense: 

I u  e H~ (~, R N), 

(2.4) [~/(Aij(x).Dju]DiO)dx= f(fi(x)lDiO)dx_ f(fo(x)lO)d ~ VO e H~(~,RN),  

where f e L2 (tg, R Nn), f0 e L2n/(~ + 2) (~, R N). By Lax-Milgram's Theorem, the solution 
of problem (2.4) always exists and is unique, since by [6, Ch. I, Lemma 4.1] the distri- 
bution f 0 - d i v f  belongs to H-I'2(t~,R N) = (H~(t~,RN)) *. We want to prove the fol- 
lowing result: 

THEOREM 2.2. - Let u be the solution of the Dirichlet problem (2.4), with ~t~ 
e C  1+~ (~>O), fEBMO(t~,R~N), foeL2n/(~+2)'~/(~+2)(D,R N) (see (1.4)), A e  
e L ~ (D,R N~n~) n l~(~,R N~2) (r (1 + Ilgzt)-l). Then Du~ BMO(Q,R N~) and 

(2.5) [DU]BMO(~) <~ c(n, ,J, ~, fl, O~d , IIAIIL~(~))[1 + [A ]r~(~) ] [IIflIBMO(a ) + IIfo tlL2n/(~§ , 

where (see (1.3)) 

(2.6) O~A (~) := [A]r ~, z el0, 1]. 

PROOF. - Our proof splits in two steps: 

Step 1: The estimate (2.5) holds under the stronger assumption A e C z(~, R N~n~), 
which guarantees ,~a priori, that Du c BMO(t~,RN~): see [5, Theorem 16.I] for the 
case N = 1; the extension to N~> 1 is straightforward (compare with [6, Ch. II, The- 
orem 5.I]). 

Step 2: We approximate A by a smooth sequence {Ak}k~N, in such a way 
that: 

(i) the solutions uk of the approximating systems converge to the solution u of 
the original problem, 

(ii) the sequence {Ak } fulfills, uniformly in k e N, all the relevant properties 
required for A in Step 1; 

(iii) the estimate (2.5), written for uk and Ak, is preserved when k--~ ~, thus 
yielding the result in its full generality. 

To start with, we remark that since A c C~(-~,R N ~ )  r 1r we have by 
(2.6) and (1.3) 

(2.7) lim COA (~) = 0. 
~$0 
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Moreover, as t~ is bounded with at~ e C ~+z, there exists a finite number of open sets 
~0, t~ ,  . . . ~  contained in D, such that: 

(i) for 1 ~< s ~< m there exists a C 1 +z diffeomorphism T~:D~--~ B + (0, 1) 

such that T~ ( ~  n a~) = F(0, 1) ; 

(ii) there exist cl (~9), c2 (~)>  0 such that 
(2.8) 

Cl(~)<~[detTjl(y)l<.c2(t~) Yy e B+(0, 1), Vs e {1, . . . ,m}; 

[ m  = ( ( ~ n ) )  1 Q+ 1 (iii) ~o r162 t~ and ~ = ~ 0 w  Ul T~-~ 0, . 

PROOF OF STEP 1. - Let u be the solution of the Dirichlet problem (2.4), w i t h f e  
BMO(t~,RN'~), fo~ L2n/(n+2)'n~/(n+2)(t),R N) and A e C~(-D, RN~n~). We will prove: 

Step 1A: Estimate for [DU]BMO(Do) ; 

Step 1B: Estimate for [DU,]BMO(Q+(O,R)), 0 < R  < 1/Vn,  where U~:=uoTi-~; 

Step 1C: Final estimate for [DU]BMO(~). 

PROOF OF STEP 1A. - Set do := dist (a~o, ate); it is not restrictive to assume do 
el0, 1/2]. Fix a cube Q(xo, z) with Xo e t~ o and ~ e]0, 1/(2 V~], so that Q(xo, 6) cr tLIn 
Q(xo, ~) split u = v + w, where w is the unique solution of the Dirichlet problem 

w e H] (Q(xo, ~),RN ) , 

f (AQ(xo,~) �9 Dw I DO) dx = - f ([A(x) - Aq(xo ' ~)]" [Du - (DU)Q(xo,~) ]100) dx - 
Q(xo, ~) Q(xo, z) 

(2. 9) 
- f ([A(x) - AQ(xo ' ~) ]" (DU)Q(xo, ~) ] DO) dx + 

Q(xo , ~) 

+ f (f(x)--fQ(~o,,)lDO)dx- f (fo(x)tO)dx VOeH~(Q(xo,z) ,RN);  
Q(xo, ~) Q(xo, z) 

then v := u - w  is a solution of the homogeneous system with constant coefficients 

f 
'v e H 1 (q(xo, ~),RN) , 

(2.10) ( j (dq(~o,~)'Dv [ DO)dx = 0 YO e H~ (Q(xo, z ) ,RN).  
[Q(xo, ~) 

For the function v we have the fundamental estimate [6, Ch. II, Theorem 3.III] 

(2.11) f IDv-(DV)Q(~o,t~)l~dx~e(v)t ~+~ f IDv-(DV)lQ(xo,~)12dx Vte]0,1].  
Q(xo, t~) Q(xo, ~) 
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For the function w we have the variational estimate [6, Ch. II, Theorem 1.III] 

lt f (2.12) l ) lDwt2dx< [ I A - A  v2 ~ Q(~o, ~)1 I Du  - (DU)Q(~o, ~)12 + 
2 

Q(xo, ~) [Q(xo, ~) 

+ [A - AQ(xo, ~)]21(DU)Qixo, ~)12 + if--fQ(xo, ~)]2] dx + c(n) ]fo 12n/(n + 2)dx . 
[Q(xo, ) 

Let  us estimate the right member  of (2.12). As D u e  BMO(~),  we have by Proposition 
1.13 and (1.3): 

(2.13) f IA - AQ(~o, ~)]2 IDu - (DU)Q(~o, ~)12 <~ 
Q(xo , ~) 

is llJ2i ! llJ2 
2 n a n 

(I + llg~l) 2 
[N4 (A; ~, t}o, ~)]2 IN 4 (Du; 1, t}o, ~)]2 ~< 

<. c(n) an (1 + ~g ~1) 2 [d]~,~,~ [DU]2BMO(,). 

Next, by Proposition 1.15 

f 
(2.14) j IA - AQ(~o, ~)12 t(Du)q(~o, ~)12 dx <- 

Q(xo , ~) 

<~ c(n) (1 +~lgzl) 2[N2(A; r  ~)]e (1 + tlg~i)2[DU]~MO(~) IlDull~(~) ~< 

<~ c(n) n 2 2 a [A]r [DU]BMO(~) + ,2 [A]~(~)IIDulI2L~(~) , 
(1 ~- Ilg ~ 
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and finally 

(2.15) f 
Q(xo , ~) 

By (2.12), 

(2.16) f 
Q(xo , ~) 

where we have set 

I f  -fQ(~o,:) 12dx + c(n) [fo 12~/(~+2)dx <~ 
!Q(~o , :) 

IIL2,~/(.+.),~ /<~+~)(~) }. <~ c(n) :~ {[f]~MO<a> + lifo ~ : 

(2.13), (2.14) and (2.15) we get, recalling (2.6) 

IDwl 2 dx < c(n, ~, do ) ~ {[OJA (~)]2. [DU]~MO(a) + A} , 

(The quantity A contains more terms than necessary, but we shall need them all later 
on) .  

By (2.11), (2.16) and (2.6) we easily deduce for each t � 9  and ~ � 9  
 3o, do~2 

(2 .18)  f tDu - (DU)Q(xo , t  0 j2 d x  

Q(x0, t~) 

<~ c(,~) t ~ + 2 f IDu - (DU)Q(xo, ~) ]2 dx + c(n, ,J, do ) ~ {[oA (~_)]2 [DU]~MO(~) + A}.  
Q(xo , ~) 

We now invoke a function-theoretic lemma [6, Ch. I, Lemma 1.I] in order to get for 
each t �9 ]0, 1] and ~ �9 do~2 h/-n]: 

(2.19) ~ IDu - (DU)Q(~o,t:)12 dx <~ 
Q(xo, tO 

<~ c(v) f tDu - (DU)Q(~o, =)12 dx + c(n, v, do ){[~OA (v)]2 [DU]~MO(~) + A} ; 
Q(xo , z) 

taking into account (2.17) we deduce for each xo �9 and 0 < r ~< ~ ~< do/2h/-n: 

(2.20) ~ IDu - -  (DU)Q(xo, r)12 dx <~ c(n, v, do ){[COA (z)] 2 2 [DU]BMO(~) + z-nA}, 
Q(xo, r) 

which easily implies: 

u 2 2 (2.21) [/9 ]BMO(~0) ~< c(n, v, d0){[~A(~)] 2 + [DU]BMO(~) ) ~-~A} Va �9 do /2Vn]  

This concludes the proof of Step 1A. 
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PROOF OF STEP l B .  - Fix s e (1,..., m} and write simply U, T for Us, Ts. Accord- 
ing with [5, Appendix III], the function U solves in B + := B+(0, 1) the following 
problem: 

I U e HI(B+,RN), 

[,§ B + B + 

where (setting j -1  (y) := det fDT -1 (Y)t): 

(2.23) Bhk (y) := 5 -1 (y)[(Dj Th)(T -1 (y))][(D~ Tk )(T -1 (y))] Aij (T -1 (y)) , 

(2.24) gh(y):=J-l(y)[(DjTh)(T-l(y))]fj(T-l(y)), go(y):=J-l(y)fo(T-l(y)). 

It is easily seen that 
n 

(2.25) (Bhk(y)'~h]~k)~v>~C(~,~) ~ I~h] 2 VyeB+,y~l , . . . ,~neRN; 
h = l  

In addition we have 

B e Cz(-~,RN~n2), g e BMO(B+,R~N), go e L2n/(n+2)'n2/(n+2)(B+,R N) 

and, arguing as in [5, Appendix I, Theorems IV-V], we see that 

(2.26) [B]r247176 [A]r r~(l +,lgr,)],~4,,L~(~)} V ~ ] 0 , 1 [ ,  

(2.27) [g]BiO(U*) + Ilgo c2{[f]BMO(~) + I[fol]L~'~'§ , 

(2.28) [nu],uo(a,) < cs tiDuIIBMO(,+ ) < Ca []DUi[BMO(~) , 

where Co, cl, c2, cs, c4 depend only on f2; it is not restrictive to assume in (2.26) 
Co~> 2V~. 

Fix now R e ] l / V ~  - 2/Co, 1/V~[. Let Xo e Q+ (0, R) and ~ el0, (1/V~ - R)/4]. 
Two cases can occur: 

(I) (Xo)~ > ~ so that 

( 1 ( 1 ) )  Q + ( 1 )  
Q(xo,z) ccQ + 0, R + ~ n n  c 0 , ~  , 

(II) (x0)~ el0, z], so that 

( Q(xo,z)~B +cQ +(yo,2z) cQ + O, + ~  c 0 , ~  , 

where Yo is the projection of xo on the hyperplane {x~ = 0}. 
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In case (I) we repeat exactly the argument of Step 1A, using the quantities 
N~ + (B; r R, o) and N~ (DU; 1, R, 0) (see (1.34)) instead of Np (A; r t)o, o) and 

l( n ) Np (Du; 1, ~0,0), and analogously to (2.20) we deduce for 0 < r ~< ~ ~< ~- - R 

(2.29) ID U (DU)Q(xo,~)t2dx~< 2 ~ z-hA+ ' - --:c(n,v,t~,R){[B]r247 } 
q(xo , r) 

where we have set 

(2.30) [e],,o(,+) + I[qo 
In case (II) we split in Q+ (yo, 2~) U = v + w, where w is the unique solution of the 
Dirichlet problem 

(2.31) 

f 
Q + (Yo, 2z) 

"w e H~ (Q+ (Yo, 2o),RN), 

(BQ+ (yo, 2:)" Dwl DO) dy = 

: - f  
Q + (Yo, 2~) 

- f  
Q + (Yo, 2~) 

§ 
Q + (Yo, 2z) 

([B(y) - BQ+ (yo,2:) ] . [DU - (DU)Q+ (yo,2:) ]1 DO) dy - 

([B(y) - BQ + (yo, 2:) ]" (D U ) Q  + (Yo, 2~) I DO) dy + 

(g(Y)-gQ*(yo,2:)lno)dy - f (go(y)lO)dy 
Q + (Yo, 2~) 

'r e Ho ~ (Q+ (Yo, 2o),RN) ; 

then v := U - w  is a solution of the homogeneous system with constant coeffi- 
cients 

(2.32) t 
v eH1(Q+(yo,20) ,Rg)  , v = 0 on F(yo, 2o) , 

f (BQ§ YoeH~(Q+(yo ,2z ) ,RY) .  
Q + (y0,2~) 

For the function v we have the fundamental estimate (see [5, Corollary 11.I and Lem- 
ma l l . I I ]  for the case N =  1 and[14, Lemma 3.5] for the case N~>I): 

(2.33) 
n - 1  

f lD vl2dy+ f 
i = l  

Q + (yo, 2t~) Q + (yo, 2t~) 

IDn v - (Dn V)Q§ (yo,2t:) Ie dy  <. 

[1 f 1 <<.c(v,t~) ~= f lDivl2dy+ [Dnv-(D~v)q§ 2:)]2dy Yte]0 ,1] .  
i 1 

Q + (Yo, 2z) Q + (Yo, 2~) 
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For the function w we have the variational estimate 

(2.34) Q + (yo,f 2~) tDwl2dy<~ c(v't~) [Q § (yo,f 2:) [IB- BQ*(Y~176 + 

+]B - Bq§ e I(DY)q+(yo,~:)12 + Ig -gQ~(yo,2:)le]dY + 

~Q (y0,2z) 

We estimate the right as in the proof of Step 1A, obtaining, via Propositions 1.14 and 
1.16: 

(2.35) f IDwl 2 dy <. c(n, v, t~, R)(2~) ~ 2 2 A+ . {[B]r247 + } 
Q * (Y0,2~) 

By (2.33), (2.35) and a function-theoretic lemma [6, Ch. I, Lemma 1.I], as in Step 1A 
we get for 0 < r~< 2~ ~< (1/Vn - R ) / 2 :  

n - 1  
(2.36) E ~ IDi UI2 dY <- 

i = l  
Q + (yo, r) 

By (2.29) and (2.36) it 
~< (1/~/-n- R)/4 we have: 

(2.37) 

]D~ -- ( D  n U)Q+ (yo,r) dy U ]2 
Q + (yo, r) 

<. c(n, ~J, t), R){[B]r247 2~ [DU]BMO(B+)2 + (2~) -~ A + }. 

follows that for each x o e Q  +(0,R) and 0 < r ~ < ~ <  

f 
Q(xo, r) • Q+ (0, R) 

and consequently 

(2.38) 

IDU- (DU)Q(xo,r)•Q+(O,R) ]2 dY <~ 

<. c(n, 2 2 v, ~ ,  R){[B]r247  [DU]BMO(B § ) + ~ - n A +  } 

2 [D U]BMO(Q+ (O, R)) ~ c (n ,  y, ~ ,  R ) { [ B ]  2, B + ' 2: [D U]~MO(B§ ) + f f-n A + } 

w ]ol(  R)I 
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Finally, recalling (2.26), (2.27), (2.28) as well as (2.30), (2.17), (2.6), we conclude 
that 

(2.39) [DU, ~ ]BMO(Q + (0, R)) ~ 

where 

(2.40) ~z(t) := sup rZ(1 + I lg rl) , 
O<r<.t 

This concludes the proof of Step lB. 

t e]0, 1]. 

PROOF OF STEP 1C. - By (2.8) (iii) it is clear that i fR := R(~) is sufficiently close to 
1/V~,  then the family {Do, Ts -1 (Q+ (0, R))} 1 <s<m still covers t~. Moreover, by (2.28) 
and (2.39) we have for ~ e]0, ( 1 / V n - R ) / 4 ]  and s =  1, ..., m: 

2 [DU]BMO(T: l(Q* (0,R))) ~< c(n, ,J, t~){[[OJA (2C0 ~)]2 + [ooZ (2C0 ~)]e. IIAII~(,)]llDuBMo(,) + ~-~a}. 

Recalling (2.21) we easily deduce 

(2.41) [DU]~MO(a) <- c(n, v, *9){[[OOA (2C0 ~)] 2 + [oJZ (2C0 z)] 2" 1~411eL~(,)]IIDuII2BMO(a) + ~-nA} 

1 1 do 

Now taking into account (2.7) and (2.40), there exists , : =  ~(n, v,~,~,~o~, I~llL~(~))~ 
e]o, ( 1 / v ~  - R)/41 n]0, go/2 V~] such that 

(2.42) c(n, v, t~)[[COA (2C0 ~)]2 + [~Z (2C0 z)]e I~ll~o(,) ] -< �89 

consequently, recalling (2.17), it is clear that (2.41) implies 

[Du]eBMO(a) <. 

<~ c(n, ~, t~, fl, I!AII~(,), ~o~ ){[1 + [A]ee~(,)]IIDullb(~)+ Ilfll~Mo(,)+ Ilfoll~+~,,~,~+~,(~)}. 
Finally (2.5) follows recalling the variational estimate [6, Ch. II, Theorem 3.III] 

IIDulIL~(,)-< c(,,, ~){llfll~(,)+ IIfoll~+~(,)}. 
This concludes the proof of Step 1C and hence Step 1 is proved. 

PROOF OF STEe 2. - Suppose only that 0t~ e Cl+a(/~ > 0), f e  BMO(Q, RN'~), fo 
e L2n/(~+2)"*=/('~+2)(o, RN), A e L~(~ ,R  N='~=) r~ I~(~,RN~'~). Let {Ak}k~N C C~(-~,R N~'~) 
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be a sequence such that (see Remark 1.5): 

(2.43) Ak---~A as k - .  ~ in ~r  N2~2) and in LP(t~,R N2n2) Vp ~ [1, ~[ ,  

(2.44) liAklIL~(~) ~ IIA.IIL~(,O), 

(2.45) lira cOAk (~) = 0 uniformly in k e N.  
:$0 

We still have (2.42) for some 

1 1 

due ~to (2.45) we may assume that for the same number ~ we also have 

1 (2.46) c(n,v,t))[[COdk(2Coz)]e+ [o)~(2c0z)]21~4kll~o(~)] ~< ~ Yk e N .  

Let uk be the unique solution of the Dirichlet problem 

Uk ~ H~(o,  R N ) ,  

(2.47) 1of(Ak(X)'DukIDO)dx= f(f(x)ino)dx-of(fo( )lo)d  
Then, by Step 1 and (2.43), (2.44) (2.46), we deduce that u~ satisfies (2.5) uniformly 
in k, i.e. 

(2.48) 2 [DUkJBMo(~) <~ 

2 <~ e(n, v, t), fl, ~g, 1~411L" (~))[1 + [d]~(~)][llflleBMO(a) + lifo II~ ~'/('+~>,'~/('+~>(~)] Yk e N. 

On the other hand, u k - u  solves the Dirichlet problem 

uk - u e H~( t ) ,RN) ,  

(2.49) l j ( A k ( x ) . [ D u k - D u ] , D O ) d x = ~ f ( [ A ( x ) - A k ( x ) ] . D u ,  DO)dx VO e H~(tg, R N ) ,  

and by the variational estimate [6, Ch. II, Theorem 1.tII] 

(2.50) iiDu k _ DUllL~(a ) <~ 1 II(d - dk  )" DUllL~(~) Vk e N + . y 

Now, passing possibly to a subsequence, by (2.43) and (2.44) we have as k--~ ~: 

[A(x) -Ak(X)].Du(x)---~ 0 a.e. in ~9, 

I[A(x) - Ak (x)] . Du(x)] ~ <<- CI~411eL-(a) IDu(x)t 2 e L 1 (t) ) , 
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so that  by (2.50), Lebesgue Theorem and Poincar4 inequality, 

(2.51) uk--+u in H I ( ~ , R  N) as k--+ ~ .  

Now fix Xo e ~ and ~>  0: <,passing to the limit>> in (2.48) we get 

f 
c~ Q(xo , ~) 

IDu - (Du)a ~ Q(xo, =)12 d x  ~-  

lim 
k ~-> r 

E~ n Q(xo, ~) 

IDuk - (Duk )a ~ Q<~o, ~) 12 dx <- lim inf [Duk ]~MO(~) ~< 
k--+ ~ 

]{IIflIBMO+) + I[f0[[~2~+~=+~',+/"+~'(0> }" <~ c(n, v, a, fl, COA, )[1 + [A]2ega) 2 

and (2.5) follows at once. 
This completes the proof of Step 2. Theorem 2.2 is completely proved. [] 

REMARK 2.3. - The result  of Theorem 2.2 holds more generally for ~<complete, lin- 

ear systems in divergence form: 

E u  := - div (A(x). Du) - div (B(x). u) + C(x). Du + G(x). u ,  

provided we assume B e L ~ ( t ~ , R N ~ ) n l ~ ( t ~ , R  N2n) and CeL+( t~ ,RN~) ,  G e  
c L~(t~,RN).  The proof is exactly the same. 

Theorem 2.2 can be generalized to the case in which ~ is a cube; the proof is essen- 
tially the same and is even easier. Indeed, suppose ~ = Qo := Q(0,1). We use Step 1A 
in order to estimate the quantities 

IDu - D U Q ( x o , ~ )  d x  , 

Q(xo , ~) 

when Xo e Q(O,R), with fixed R e]1/2,  1[, and ~e [0, l - R ] .  If, otherwise, Xo e 
e Q o \ Q ( O , R )  and ~ e [0, 1 -  R], two cases may occur: 

(i) dist(xo, aQo) > ~, so that  Q(xo, ~) r162 Qo, 

(ii) dist (Xo, 5Qo) ~< ~, so that  Q(xo, ~) n Qo c Q(yo, 2~) n Qo, where Yo is a suit- 
able point of 8Qo. 

In case (i) we again use Step 1A; in case (ii) we apply Step 1B, remarking 
that  

IDu - DUQ(xo, ~) n Qo 12 dx ~ c(n) ~ I Du -- DUQ(yo, 2~) c~ Qo 12 dx . 
Q(xo , z) n Qo Q(Yo , 25) n Qo 

We do not need Step 1C since we do not need to change the space variables. As a re- 
sult we can state: 
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THEOREM 2.4. - Let  u be the solution of the Dirichlet problem (2.4) with ~9 = Q:0 
(~o>0)  and feBMO(Q:o,RN~),  foeL2n/(~+2),~/(~+2)(Q:~ (see (1.4)), A e 

R N 2 n  2 (~ ~ N2n 2 . _  -1  ~ Nn eL~(Q~o, ) I~(Q~o,R ) ( r  I) ). Then DueBMO(q~o,R  ) 
and 

(2.52) [DU]BMO(%) <~ c(n, v, %, ~OA, 1~411L~(Q:0))[1 + [A]r~(Q~o) ] �9 

"[llflIBMO(%) + " 

REMARK 2.5. - Theorems 2.2 and 2.4 still hold in the cases n= 1, n=2 ,  
provided: 

foe  U Lq'2-q(t),R N) if n = 2 ,  and f o c L l ( t ) , R N )  if n = l .  
q ell, 2] 

Indeed, such assumptions guarantee that  in the variational est imate (2.12) we can 
still bound the quanti ty depending on fo by ~ multiplied by a suitable constant (com- 
pare with [6, Ch. I, definitions (4.8)-(4.9)]). 

3. - The L p regularity. 

Throughout this section we assume n t> 2 (see Remark  3.8 for the modifications in 
the case n = 1). Consider again the situation described at the beginning of Section 2. 
Le t  us first prove the following L p regulari ty result  on cubes: 

THEOREM 3.1. - Suppose t) = Q:0, :0 e]0, 1], and let u be the solution of the Dirich- 
let problem (2.4) with f e L p (Q:o, R ~y), fo e L ~p/(n +p) (Q:o, RN) (P E [2, oo[) and A e 
e L ~ (Q:o,R ~y~) n lr n~y~) (r := (1 + Ilgzl) -1 ). Then D u e  LP(Q:o,R ~y) and 

(3.1) [DU]L,(%) <- c(n, v,p, ~OA, 1~411L~(Q~o))[1 + [A]r#Q:o) ]" 

�9 [llfllLp(Qoo) + lifo ] �9 

PROOF. - We use Stampacchia's interpolation Theorem ([13]; see also [7, Ch. III ,  
Th. 1.4] and [6, Ch. I, Th. 2.II]). 

Fi rs t  of all we recall that  the distribution f o -  div f is in H-I'P (Q~o, R N) by [6, Ch. 
I, Lemma 4.I], and 

(3.2) Nfo - d i v  fllH-X,p(Qoo) • r  P){llfo IIL~P/(~§ o) + IIfHLP(Q: o) } ; 

hence there exist Fo e LP(Q:o,R N) and F e LP(Q:o,R nN) such that  fo - d i v f =  Fo - 
- div F and [6, Ch. I, (4.5)] 

(3.3) zo I~o I]L,(~) + IIFllL,(~) <~ c(n, p)llfo - div flIH-l.,(%). 
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Thus u solves the Dirichlet problem 

(3.4) 
E u  = Fo - div F in Qr 

u e H~ (q~o, R N ) .  

Now denote by u~, i = O, 1, ..., n, the solutions of the Dirichlet problems 

E u  o = F o in Q Co, 

Uo e HI (Qr R N) ; 
{Eui (i = 1 , . . . ,  n) .  ~ D i  r i in Qr 

ui e H] (Qr R N) ; 

By the linearity of problem (3.4), it is clear that  u = ~ ur The linear operator 
i=O 

Ti j :Fi - -~Dju i  ( i=O,  1 , . . . , n ;  j = l , . . . , n )  is bounded from L2(Q~o,R N) into 
L 2 (Qzo, R N), by Lax-Milgram Theorem, and from BMO(Q~o, R N ) into BMO(Q~o, R y ), 
by Theorem 2.4, with both norms bounded by 

c(n, ~, ~o, O~d, I~4t~(q 0))[1 + [A]r~(q o)]. 

By Stampacchia's Theorem we deduce that  Tij is also bounded from L p (Q:o, RN) into 
LP(Q~o,R N) more precisely we get for p e [2, ~] [6, Ch. I, Theorem 2.II]: 

ilDju~ll.(Qr ~ c(n, v, p, ~o, r I~IIL~(Qr + [A].~#Qr ) }ITilIL~(%), 

l < . j < n ,  O < . i < . n .  

Summing with respect to j and i we get 

IlDull .(%) < e(n, ~, p, ~o, ~n ,  I~AIIL~(%)){1 + [A]~#qoo ) }Clio II--(q~o)+ I~IIL~(%) ] ; 

a simple homothetical argument then gives 

[tDUlrL,(%) < c(n, v, p, ~A, [~llL ~(Q~o) ){1 § [d]~r }[~o IlFo IlL'(qoo) § ]~IIL~(%) ] , 

and the result follows by (3.3) and (3.2). �9 

We now want to prove a local LP-regularity result for solutions of 

(3.5) 
U e H I (t~,RN), 
E u  = fo - div f in t~.  

THEOREM 3.2. - Let t~ be a bounded open set of R n. If u solves (3.5) with f e  
ELP(t~,RnN), foeLnP/(n+P)(~,R N) (p ~ [2,~[) and A e L  ~ n2N2 (t~, R ) r~ l~ (~, R n~N2 ) 
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(r : =  (1 "~ Ilg (Yl) -1 ), then Du e L~oc (t~, R nN ) and for each cube Q: c Q2: c ;2 

(3.6) ]IDUlIL,(Q~) <- c(n, ~, p, ~d , []A[IL~(~), [A]rA~)) ' 

. {~-n(1/2-1/p)I[Du[[L~(Q~: ) + [If[IL'(Q~:)+ I[fONL~'/(~+P)(Q2:)}. 

PROOF. - We use the argument of[6, Ch. II, proof of Theorem 9.II]. 
Fix a cube Q~=Q(xo,~) with ze]O,(1/2)Adist(xo,at~)/(4V~)] ,  and let v e 

e C~ (Q2~) be such that 

c(n) 
(3.7) 0~<~<1  ~ = 1  in Q ~ , ] D v ] ~ < - -  

The function v(x):= [u (x) -  Uq~o]. ~(x) solves the following Dirichlet problem: 

[~ e H01 (Q2~, RN) ,  

(3 .8)  tQf (Aij(x)'Djv[ DiO)dx= f {(~'fi + Djrjdij'(U-UQ~. )]DiO) + 
2~ Q2~ 

+ (D~ ~ .f~ - ~fo - Di 7" Aij" Dj u l 0)} dx YO e H 1 (Q2o, R N). 

Suppose first p e [2, 2n/(n - 2)](p e [2, :r if n = 2). Then by Sobolev-Poincar6 in- 
equality 

(3.9) Hu - -  UQ2 ~ ]ILP(Q2~) < c(n) 1- ~(1/2-1/p)IIDuI~2CQ2o) ' 

and, since np/(n +p) <<- 2, 

(3.10) ] lnu l  [Lnp/(~+p ) (Q2:) < c (n )  ~.1 - n(i/2 - ~/')[IDul IL ~(Q~o). 

Hence by Theorem 3.1 we easily get 

(3.11) I]DV]IL~(Q~o) ~ c(n, ,,, p, COA , I~4IIL~(,), [A]z~(o)) �9 

I n Du 2 5.-n(1/2- l /p)  "{HfllL,(Q~o) + lifo HL~/(~'')(Q~) + ~ L~(,) L (Q~o) } 

and (3.6) is proved for p ~ [2, 2 n / ( n ,  2)], since Dv =- Du in Q:. 
If p > 2n/(n - 2) (and n > 2, of course), then there exists k e N + n [1, n/2[  such 

that p e]2n/(n - 2k), 2n/(n - 2(k + 1))]. In this case we iterate the above argument: 
suppose that the function V satisfies (instead of (3.7)) 

c(n) 
e Co ~ (Q2~), 0 ~< v < 1 ,  ~ =- 1 in Q2~, IDvl < (1 - t)-------~' 

where  t : = 2  -1/(k+~) Then v : =  (U-UQ~)V so lves  (3.8) and as above  w e  obtain 

IIDulIL   (  <<- c(n, ~, p, t, ~, ~OA, [A]~#~))" 

�9 (lIfl~(q~) + lifo IIL'~/(~+~'(Q2~) + IlDulIL~(Q~o) } ,  
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which is the first step. Next, assume that for some h, 1 ~ h <. k, the following esti- 
mate holds: 

(3.12) IIDUHL~.(.-~)(Q~o) <. c(n, ~,p, t, z, h, ~A, ]~4]IL~(~), [A]r~(~))- 

"([[f[]L,(Q~o) + IIfollL-~(~-)(Q~) + ]IDUlIL~(Q~) } ; 

then, choosing v �9 Co ~ (Q2th:) such that  

0 ~ < v ~ l ,  ~ - -1  in Qzt~%, 
c(n) 

IDol < 
t~(1 - t ) : '  

we find that v := (u - U Q ~ ) . r j  solves problem (3.8) with Q2~ replaced by Q2t~:. Hence 
by Theorem 3.1 and Sobolev-Poincard inequality we get as before 

(3.13) IIDUt]L~/(.-~(~+~))(Q~+~:) <~ c(n, ,~, p, t, ~, h, ~A , [~4]]L~(~), [A]~#~))- 

and using (3.12) we get again (3.12) with h replaced by h + 1. 
In particular when h = k  we have (since 2t h+ l=  1 and k depends only on n, p) 

ItDu[ILp(Q:) < c(n, v, p, z, O)A, [~4]IL=(D) , [A]~#~))(HfIILp(Q2:)+ lifo NL~P/('+P)(Q2:) § I]DU][L2(Q2:) } , 

and finally a simple homothetical argument leads to (3.6) for general p �9 
�9 [2, ~[. " 

A quite similar proof leads to the following boundary result: consider the 
cubes 

C.: = { x � 9  Ixit ~<z/2, 1 ~ < i ~ < n - 1 ;  0~< xn<  z} 

and set A: := C: n {Xn = 0}. Then we have: 

(: > O) 

THEOREM 3.3. - Let U be a solution of 

E U  = Fo - div F in C~o , 

~ U =  0 in A:o, 

, I U E H I ( C : o , R N )  

where F �9 LP(C:o,RnN), Fo �9 L~p/(n+p)(C:o,R N) (p �9 [2, ~[), A �9 L ~ (C:o , R ~2N~) (~ 
nlr  n~N~) (r (1 + Ilgzl)-l); then U �9 HI 'P (Cr ,R  ~) Vr �9 zo[, and if 0 < 
< 2z < ao we have 

(3.14) IIDUI[Lp(C~) < c(n, ~, p, OJA, [~41]L~(Coo), [A]rdc,0))- 

�9 (liFo tlL~p/(.-)(c~:) + [[F[[L,(c~:) + -n(1/z-1/,)][DL~tL2(C~:)} " 
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As a consequence we can state the following global LP-regularity result whose 
proof follows by Theorem 3.2 and 3.3 in a standard way: 

THEOREM 3.4. - Let t~ be a bounded openset  o fR  n with at~ e C a+z,/~ > 0. Let u be 
the solution of the Dirichlet problem 

u e H~(t~,RN), 

Eu = fo -d i v  f i n t ) ,  

where f eLP(~,R~V), fo eL'~P/(n+P)(t),R N) (p e [2, ~[), A eL~(D,R ~s~) n 
nlr ~N2) (r (1 + Ilgzt)-l). Then u e HI'P(t),R N) and 

IIDulIL.( ) < c(n, p, �9 

REMARK 3.5. - Due to Remark 2.4, similar results hold for complete linear sys- 
tems, i.e. systems containing also lower order terms. 

REMARK 3.6. - As already remarked in the Introduction, our L p results neither 
imply nor follow by the classical theory of [1]: indeed Proposition 1.9 and Remark 1.10 
show that the class of our coefficients A~j neither contains nor is contained in the class 
of continuous coefficients of[l]. 

REMARK 3.7. - By Theorem 3.2 and Sobolev theorem we see that the solutions of 
linear strongly elliptic systems, whose coefficients are ~,small multipliers of BMO,, 
are locally Hhlder continuous provided the right member is an element of 
H-I,P(tg, R N) with p > n. Thus we have a class of elliptic systems with discontinuous 
coefficients for which De Giorgi's regularity theorem is true. 

REMARK 3.8. - If n = 1, the results of this Section still hold if we replace the as- 
sumption f0 e LnP/(n + p) (~, R y)  (or Foe L~p/(n + p) (C~o, RN) in Theorem 3.3) by f0 
e L 1 (t~, RN) (or F0 e L 1 (C~0 ' RN)). We note that in (3.6) and (3.14), for homogeneity 
reasons, the role played by lifo IIL~/(~§ (resp. liFo IIL~,/r is played when n = 1 by 
-1 /p  []f0 I]L~(Qo) (resp. r I~o I]L'(C~)). 

4. - L o c a l  BMO r e g u l a r i t y .  

Consider again the situation described a t t he  beginning of Section 2 and let u be a 
solution of 

i u ~ HI(t~,RN), 
(4.1) [Eu = - d i v f + f 0  in t~, 

under the strong ellipticity assumption (2.2) (or (2.3): see Remark 2.1). We want to 
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prove the following result  (written for the case n > 2: easy modifications have to be 
done for n = 1 and n = 2, compare with Remark 2.5): 

THEOREM 4.1. - Le t  u be a solution of (4.1) with f e B M O ( ~ , R ~ ) ,  f o e  
N2n2 eL~n/(n+2),~/(~+2)(D, R N ) , A  e L ~ ( ~ , R N ~ 2 ) c ~ l ~ ( t 2 , R  ) (r := (1+ ] lg~[)- l)andno 

assumption on at2. Then D u e  BMQoe (t2, R Nn) and for each cube Q(xo, ~) ~ Qr c Q2~ c 
c t2 we have 

(4.2) [DU]sMO(Q:) <~ c(n, v, OJA, 1~411L~(~), [A]~v~))" 

P R O O F .  - In Q2~ we split u = z + w where w solves the Dirichlet problem 

I w e H 1 (Q2~), 

(4.3) JEw = - d i v f + f 0  in Q2~, 

whereas z := u - w  solves the homogeneous system 

I Z e H 1 (Q2~), 

(4.4) [Ez  = O. 

By Theorem 2.4 we have for w the following estimate: 

(4.5) [DW]BMO(Q2o) <~ c(n, v, ~, ~OA, ]~4HL~(Q2.), [A]rdQ2~))" 

L p [r~ DNn'~ Our goal now is an estimate for z. By Theorem 3.2, we know that  Dz e loe ~2~, 1~ j 
for each p < ~ and we have an estimate like (3.6): 

(4.6) I]DZlILp(Q(~/~)~) <~ c(n, p, !~411n~(~), [A]rr ~)HDZ]IL~(Q~) ; 

consequently, by H61der inequality, choosing in particular p = n, 

(4.7) [IDZ[[L~/(~+~).,~2/(~+~)(Q(~/~)o) < IDzllL~(qr < c(n, [~HL~(,), [d]~da) , ~)[IDz]tL~(q~). 

Let  now v e C~ (Q(3/2)~) be such that  

c(n) 
(4.8) 0 < v ~< 1, r~ - 1 in Q~, IDvl ~< - 7 -  
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Then the function v(x):= [z(x)-  ZQr solves a Dirichlet problem like (3.8): 

fQ HI 

v �9 o (Q(8/2)~,RN) 

(4.9) f (A~j(x)'DJ v lDiO)dx= f {(~+DjvA~J'(Z-ZQ(~/2)o)ID~O)+ 
(3/2): Q(3/2)~ 

H I ~  RN~ +(Div . f~ - . r fo -D~vAi j .D j z lO}dx  VO�9 o~'r J" 

Now it is easy to see that, setting Gi := rfi + Dj~Aij" (z - zQ(2/~)o), Go := Di r3~ - ~fo - 
- Di~Aij 'Djz ,  we have 

(4.10) ]]GHBMO(Q(~/2):) <~ c(n, Z){Hf]]BMO(Q(2/~)o) + [I[AIIL~(~) + [A]r#~)]IIDZHL2~/(~§247 

<~ c(n, z){]IflIBMO(Q(~/2)o) + IIfO]IL2~/('§ + I�88 } ; 

hence by Theorem 2.4 and (4.10), (4.11), (4.7) we deduce (since Dv =-Dz in Q~): 

(4.12) [DV]BMO(Q~) <~ c(n)[DZ]BMO(Q(8/2):) <~ 

<. c(n, v, O~A, HAHL*(a), [A]x#~), :){]]DZHL~(Q~o) + NfHBMO(Q~o) + llfOHL2"/(~+~"~2/(~*2)(Q2:) } " 

Finally we couple (4.5) and (4.12), obtaining for u =  w + z: 

(4.13) [DU]BMO(Q~) <~ c(n, v, ~, ~OA, f]AIIL~(~), [A]~d~))" 

" {][DUHL~(Q2o) + IIflIBMO(Q2~) + IIfOI]L2~/(~*2)'~2/('~§ ; 

and a simple homothetical argument leads to (4.2). This proves Theorem 

4.1. " 

5. - I m p r o v e m e n t s  and remarks .  

This final Section is denoted to a few remarks. 
Firstly, we want to improve the result of Theorem 2.2 in the special case of one 

space variable, i.e. n = 1. 
Thus, assume that t~ = ]a, b[, and consider the operator 

E u  := - (A(x). u') ' ,  u �9 H 1 (]a, b[, R N),  

where A �9 L ~ (]a, b[, R N2) and 

(5.1) (A(x)~I~)N~VI~[ 2 Yxe]a ,b[ ,  V ~ e R  N. 
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!f f � 9  BMO(]a, b[,RN), fo �9 Ll(]a ,  b[,RN), the Dirichlet problem 

(5.2) f Eu  = f o - f '  in ]a, b[, 
[ u �9 Hl(]a, b[,RN), 

is obviously equivalent, by (5.1), to 

(5.3) u ' (x )=A(x)  -1. ( x ) -  fo( t )d t+c , a.e. in ]a,b[, 
a 

[u(a)  = u(b) = O, 

where  c = (c 1, ..., c N) is an arbi t rary  
result: 

THEOREM 5.1. - Let  u �9 H ~ (]a, b[,R N) be the solution of problem (5.2), with A �9 
�9 L ~ (]a, b[, R N2 ) satisfying (5.1) a n d f  �9 BMO(]a, b[, R y ), fo �9 L 1 (]a, b[, R g). Then u '  �9 
�9 BMO(]a, b[,R N) if and only if A �9 L ~ (]a, b[,R y~) c~L~(]a, b[,R N~') (with r 
:= [1 + Ilgzl]-~)); if this is the case we have the estimate 

(5.4) [U']BMO(a,b) < C(v, [~Z~HL~(a,b), [A]L~(a,b) ){llftlBMO(a,b ) + IIfOIIL1(a,b) } . 

constant vector. We want  to prove the following 

we have by (5.1) 

and consequently 

f jA(x)_i (A_1)~12dx<~ f 
I(xo , ~) l(xo , z) 

f 
I(xo, ~) 

IA~I <-M, IA~-ll < 1 ,  

IA(x) -1 - A~-112 dx = 

I A ( x ) - l [ n  - n ( x ) ] n ~ - l t 2 d x  ~ i v  4 f [n(x)_n~12dx~ !j4[~(ff)]2[n]2(a,b) , 
I(xo, 9) 

This shows that  A -1 �9 ~ ( ] a ,  b[,R N2) and [A -1]ro (a, b) ~< (1/v2)[A]~(a.b). 

A~:= ~ A(x)dx ,  M:= l~411L~(a,b), 
I(xo , ~) 

PROOF. - We need the following 

LEMMA 5.2. - Let A �9 L ~ (]a, b[, R N2 ) satisfy (5.1). If  ~: [0, d] --* R + is any function 
such that  (1.1) holds, then A �9 ~%(]a, b[,R N~) if and only ff A -1 �9 ~%(]a, b[,RY2). 

PROOF. - Suppose that  A �9 ~ (]a, b[,R N2). Then, sett ing 

I(xo, z) :=]xo - ~, Xo + z[c~]a, b[ ; 
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Suppose conversely A -~ e ~ ( ] a ,  b[,R N~) then by (5.1) 

f V 
((A-~)=~I~)N = (A(x)-~I~)NdX>~'~IA(x)-~I~>~ -M-~Iz.I ~ VZeRN;  

I(xo, z) 

hence [(A -1) ~]-1 exists and we can wri te  

f iA(x)_A~[2dx<~ f IA(x)-[(A-~)=]-~12dx= 
I(Xo, ~) I(xo, ~) 

= f I A(x)[(A-1)~-A(x)-I][(A-1)~] -ll2dx <<. 
I(xo, ~) 

<<. - -  iA(x) -1 - (A -1 )~ 12 dx <<- [~(~)]2 [A -1 ]to2 (~, b), 
y2 y 

I(xo, ~) 

that  is A e ~(]a,  b[,R N2) and [A]~(~,b)<~ (M2/v)[A-~]~(~,b). [] 

Now assume that  A e L ~ (]a, b[,R N~) n ~ ( ] a ,  b[,RN~), with r (1 + Ilg~l) -I, 
and suppose that  (5.1) holds. Then by Lemma 5.2 and (1.14) we get  that  A -1 is a mul- 
tiplier of BMO (in the sense that  A hk e M(BMO(]a, b[)) for h, k = 1, ..., N. As 

x---> f(x) - ffo(t) dt + c e BMO(]a, b[,RN), 
a 

by (5.3) we readily obtain u ' e  BMO(]a, b[ ,R N) and (5.4) follows easily. 
Conversely, suppose that  A ~ ~r b[,RN~); then also A -~ ~ ~r b[,R N2) (by 

Lemma 5.2). This implies, by (1.14), that, there  exist h, k e {1 , . . . ,N} such that 
(A-1)hk~ M(BMO)(]a, bD. As a consequence, we can find a scalar function g 
E BMO(]a, b[) such that (A -1 )hkg ~ BMO(]a, bD. 

Choose now 

fr:=fOg i f r r  
f : = { f r } ~ = l  ..... N, i f r = k .  

Then it is clear that  f e BMO(]a, b[,RN), but  A -1.f  ~ BMO(]a, b[,RN). 
Choosing also f0 := 0, we easily see that  the solution u of problem (5.3) is such that  

u' = A-1 ( f  + c) ~ BMO(]a, b[, R ~r ). The proof of Theorem 5.1 is complete. �9 

REMARK 5.3. - If  n~> 1 we can find an open set t~ and two functions A e 
L ~ N2n z g~O{~ RN~n2~'x ~ ~ R N 2 n 2 ~  (~2,R )~r  n2y~) (in fact, A e,~ ~ , ~ \  r , ,, and f e  
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BMO(t~,R Nn) such that the gradient of the solution of 

(5.5) 
Eu = - div f i n ~ ,  

u e HI (~, RN) ,  

does not belong to BMO(~,RNn).  Indeed, fix t~:=]O,l[ n, and A = {Aij}i,j= 1 ..... ~, 
Aij(x) :--" a(xl)I, a e C~ 1])\2~(]0, 1[), a(x) >I ,~ in [0, 1]; then 1/a also belongs to 
C~ 1])\2~(]0, 1D, so that we can select 

f :=  {f/}l<i-<~, )~(x) := (g(xl),O, ...,0) eBMO(t),R N) 

with g E BMO(]O, 1[) such that g/a ~ BMO(]O, 1[). Then the solution of (5.5) is 

U ( x )  . :  ( u ( x  1 ),  0 . . . ,  0), 

1 

�9 1 J d8 

u(xl)= - ~ d t  o 1 a(t)' 

o f ds o 
a(s) 

0 

and the gradient of U is not in BMO(~,R Nn) since 

D 1  U 1 ( x )  - -  u ' ( x  1 ) - - -  
g(x~) c 
a(xt) a(xl)' 

1 
f g(s) 

- ~ s  
0 

C - -  
1 

a(s) 
0 

This shows in particular that the BMO regularity for elliptic systems like (5.5), whose 
coefficients are merely continuous, is false. 

REMARK 5.4. - Arguing as in [5, Appendix I, Th. III] we see that u e HI(~Q, RN),  
Du e BMO(~,R ~ )  ~ u h e .~'~+2(t~), h = 1, . . . ,N (i.e. u e .~2'n+2(~,RN)), where 

~,~§ 

:=t (feL2(tg):[f]r~'~§ ~o~,~>0sup [I~ -2 a ER~,b inf {~ ~ e R  • q(xo, ~) [ f ( x ) - a ' x - b l 2 d x } l < ~  ] ' 

In particular [4, Th. 6.I], u is HSlder continuous with any exponent ~ e ]0, 1[. 
But we can be more precise: by a result of GREVHOLM [8], we have 

~12,~ +2 (t2, R N) _~ AI(~,RN), 
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where AI(-~,R N) is the Zygmund class, i.e. 

AI (~,RN ) := I f  e C~ (-~,RN): 
if(x) +f(y) - 2f((x + y) /2)  I ] 

[f]Al(~) := sup < ~ I" �9 ,~,(~ +y)/2 ~ ~ I x - Yl 

It  is well known that  ~ C~ N) (with proper 
0<~<i 

inclusions). 

Thus if D u e  BMO(t~,R ~N) we obtain that  u is Zygmund continuous in t~. 
For  the solutions of elliptic systems under  the assumptions of Theorem 2.2 this 

regulari ty result  is optimal, since u cannot be Lipschitz continuous in general: indeed 
u(x) := x lg x solves 

{ ~lu = (lg x)' in ]0, 1[, 

u(0) = u(1) = 0, 

and lgx  e BMO(O, 1), x lg x e AI([0, 1])/Lip ([0, 1]). 
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