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ABSTRACT LINEAR NON-AUTONOMOUS PARABOLIC EQUATIONS: A SURVEY
Paolo Acquistapace

0. Introduction.

Let E be a Banach space. Consider the abstract Cauchy problem

w (t)-Altlu(t)=flt), telo,Tl, (0.1)

u(0)=x, [0.2)

where T>0, x<E, feC{{0,T],E) and {A(t},te[0,TI} is a family of generators

of analytic semigroups in E; more precisely we assume for each t€[0,Ti:

A(t):DA )EE—%E is a closed linear operator,

{t
p(A(t}}QS(Gu]:={O}U{2EE:|arg zj<e } with 9 >u/2, (0.3]

-1 . H
NA-AC) Ty, = AT YAES(9 J.

The demains Da may depend on t and be not dense in E (however they are

necessarily degze if E is reflexive, see [15]1). Further regularity
assumpticns on the map t—A(t) will be introduced later; there is a lot of
different hypotheses of this kind in the literature, generally independent
of one another, which lead to existence and regularity results for strict
and classical solutiens of problem (0.1)-{0.2).

The aim of this paper is to describe the main known results, improve
some of them and, above all, show how slight modificaticns of a unique

approach naturally lead to consider such different kinds of assumptions.

1. Neotations.
In the sequel we write Au instead of A(-)u(-), and use the spaces
C([O,T].DA):ﬁ{VEC([O,T],E]: v{t}EDA“] vteld,T] and AveC({0,TI,E)}

and C[]D,T],DA), whose definiticn is similar.

A strict solution of (0.1) is a function ueCI(IO,T].E)nC([O,T],DA}
which satisfies (0.1) in {0,T}; a classical solutien is a functien
uEC([O,T],E]ﬂCI(}O.T],E)nC(]O,T],DA) which satisfies (0.1) in 10,T).

We will deal with the real interpolaticn spaces



N
distinct subsets A BSN and let eA,eEe[O,ll be such that
Dy i) :=(Duu 'E)i-ﬂ.m

i 0 if neN-A 0 1if neN-B
whose use is crucial in regularity questions; such spaces are exactly . (e ) =< (ea)n=<
» A n 1
1

1f nea if neB

characterized in several concrete cases {(for E=LP(Q} see {141, for E=C{d)

see [21,10,11). We will also use the space . = =
as ¢ is onto, there exist tA’tBE[O’l] such that @(tAJ—eA, @{tﬂ]-eg. Hence

B(O,T:D (8,@)):= i it is easy to deduce that
[ ) i

: . i £t )£t} =1,
{v. 0TI vitlel, (0,00 Veel0,T) ant s fu(t)], m‘“}- : R .
telo,T1] Afer

® and since {f(t },ASN} is uncountable, f{[0,1]) cannot be separable. o
Remark 1.1 The notation L (O,T;DA(ﬂ,m)J has no meaning in general. But A ;

even in the case D (#,2)=h_ (independent of t), an ziement of B{G,T;D.)
A ’ 0 @ 2. The autonomous case.
needs net be Bochner measurable with values in Dﬁ. i.e. L (D,T;Dﬂ] is : he foll
: = 4 i ifi ions in (0.3). Then the folleowing
strictly contained in B{O,T;De}, as the following example shows. : Assume A(t)=A, with obvious modification

facts are well known (see [22, Prop.2.4 and Thecrems 4.4, 4.5, 5.4, 5.5]):
Example 1.2 This example is due to T. Zabczyk (unpublished). Set T:=1,

E:=C([0,1]), A:=d2/dx2 with domain DA:={uECZ([O,1]);u’(o):u'(11:0}; thon 1t : Thecorem 2.1 (i) If a solution of (D.IJ—(O.Z}'exists, then it has the form
: e i} t
is known that DA{u/Z,m)*C (10.11) for each «el0,1[ (see [10]). We sketch w(t) = ety « I s (5)ds, tel0, T, {z.1)
the eonstruction of & function £eC([0,11,C([0,11))r8(0,1;%([0,1))) which 0

is not Bochner measurable as a C*{[0,1]]}-valued functicn. where the semigroup 1} is expressed by the Dunford integral

Firstly, we remark that there exists a sequence {p }<C(I0,1)) such
N : et = LI A s lan wesa, (2.2)
that Oswn(t)SI for each te[0,1}, and the map ®:[0,11{0,1)", defined by : 2ni ¥
@(t):={¢n(tJ}new, is onte (Peanc’s map). Next, we fix a strictly increasing
sequence {r“}S[D,I[ such that r0=0, r —1 as n—e, and
n

we define

s ik -1 it
¥ being a smooth path contained in S{ﬂol and jolning +we to +we
E [F -T )a<m; ow
ROt an e (n/220<8 ).

(ii) Assume either feC([0,T],E} or feC([O,T].E]r\B(O,T;DA@(s,m)J (0<e<1);

cn[x—rn)“ if xe[rh,(r +rn+1}/2], ; ~ then:
2 . . . —_— X
o (a} the solutlon is classical provided xEDA.
wn{X]: cn(rn+:_X) N XE{(rn+rn’1)/2,rh%4 (b} the solution is strict provided xeDA and Ax+f(O)EDA
¢ ve%hé?—fgg% ' . {c) The solution has the maximal regularity property, i.e. u' and Au
belong to the same space as f, provided xeDA and AX+f(O]EDA{E,m).D
where ¢ 1is such that Eﬂ] = 1 for each neN. Finally, we set
’ ¢ fo,) 5 We now wish to generalize Thecrem 2.1 to the non-autonomous case, by

{f(t}}(x] ; (thy (x) {t,xel0,11) a suitable perturbation argument.
=L b4 JXe[0,11).

n=0

3. The approach to the non-autoncmous case.
It is a straightforward task to show that this function belongs to

; : i f the non-autoncmous
C([D’ll'C({D’llJ)HB{O,l;Ca([O,I])). If £ were also Bochner measurable with : We proceed formally: let u be any solution o ) 1 ; -
i i £ iliar unc
values in Ca([O,l]]. then it is well known that its range £([0,1]) would be ; problem {(0.1)-(0.2)}. For fixed t&l0,T} intreduce the aux v

a separable subset of C“{[O,IJJ. But this is not the case: indeed, fix two



{t-a)B(t,s)
u

vis):=e {s), s<[0,1t], (3.1)

where B(t,s) is some operator to be chosen later, defined for Oss=t and
satisfying (0.3). Differentiating (3.1) with respect to s we get (using
(0.3)):

v (s)=

z[—B{t,s}e(t_B]B(t'S).‘.[a rB(t,s)}

5= ]u{s] + e(t_ﬂB(LS)[A(S)u(s)+f(s}};

r=t-g

taking into account (0.2), an integration frem 0 to t yields

A A
u(t]—eta(t’o}x - I e(t-s)ait,s)f(sjds N
. 0 {3.2)
+ J'[e‘t's’ﬁ‘“s’[A(s)—B(t.s]]+[g_e’3‘“5’} }u(s}ds.
o s r=t-s

This is a Volterra integral equation for the solution u, with kernel

r=t-=

. (t-s)B{t,5) _ 3 rBit,s)
K(t,s)i=e [ats) B[t,s)]+[5§e ] (3.3)

belonging to £(E}. Thus our strategy will be the following:

Step 1 find some assumption on t—3A(t), such that (3.2] is sclvable for
suitable data x,f;

Step 2 show that the solution of (3.2) is in fact the solution of problen
(0.13-(0.2]).

As a consequence of Step 1 we will get a representation formula, and
hence uniqueness, for the solution of (0.1)-(0.2); from Step 2 we will
deduce existence of (strict and classical) solutions and their maximal
regularity. According to different possible choices of Bi{t,s) we will need
different kinds of assumptions on the map t—A(t), corresponding to the
various, independent ones appeared in the literature.

We remark that using (3.3} and (2.2) we can rewrite the integral term
of (3.2) in the following way:

t
J K(t,alui{s}ds =
° {(3.4)
1

t
= Eiijojye(t'S)h[A~B(t,sl}‘1[A(SJ—B(t,s)+g§B{t,s)[R—B(t,s)]_j]u(s]dhds

or, atter an integration by parts,

t t _
J Kit,slulsids = -lfj f e‘L‘S’A[[A-E(t,s)] .
2nl
° o {3.5)

-[A(s}—B(t,s)+E%§(t.s),EA*B(Q}s)l_l}+{t-slg§B(t.s)]u{s)dAd&

where [U,V] stands for the commutator UV-VU.

We now have to choose B{t,s). Reasonable choices are the following:
I. B(t,s):=A(s), T1. Bit,s):=A(t},

t
II1. B(t,s):=A(Q), Iv. B(t,s):= E%EI Ale)do.
=

In the next section we will perform Step 1 with each one of the above

cholices of B(t,s)

4. Solving the integral equation (3.2),

4.1. The first choice, B(t,s)=A(s).

By (3.3)

t t _
IK[t,s)u(s]ds = i%Jojve(t—S)h %E[N*A(s]l Yuis)dads.
a

Hence in order to solve (3.2) one is lead to assume, for some aclQ,1[ and
N,#n>0,

s -2 ysel0.7T1. (2.1)

d -1
——[x-A(s)] =
"ds . ey 1+1a)®

= Njt-s|?  wt,sel0,T. (4.2)

d -1 a -1
——Alt) - —=A(s)
“dt dg 205

Conditions (4.1)-(4.2) were iptroduced in [18) and revisited in [3,11];
they - in fact (4.1) alone: (4.2} is needed only in Step 2 - allow to solve
the integral equation (3.2) in the space C{[0,T].E}, provided xeﬁ: and
feC{[0,T],E}: see [3, Proposition 1.9].

4.2, The second choice, Blt,s)=A(t).

The integral term {3.4) becomes



t t R
Iximsnngds=JA(me“*““’D(u*—Msrﬁamhusms
o [a]
Applying A({t) to both sides of (3.2) we get

thalt)
X

t
Alt)ult)-A(t)e = A(t]J e A payas 4
o

N (4.3)
. J ALY 2 TR )T A (5) T As Dl )ds,
0
and this is an integral equation in the unknown Au.
If we assume
-1 1 -1 t-s|”
[ACEY [A-ACE3] T [ALE) T -Als) Mg,s ¥ ¥t,5€[0,T], YAeS(s )
1+{a]?
(4.4)
3:=a+p—-120,
then it is easy to check that
face) % T Y A A My T o Vhiselo,TI, (4.5}
ft-s]

sa that (4.3) can be solved in C[[0,T],E) for suitable data x,f: see {9,
Propositien 3.1]. Of course, Step 2 will consist in showing that Auiv,
where v is the solution of (4.3), is in fact a strict sclution of (0.1) -
(0.2).

Condition (4.4), in a somewhat weaker form, was introduced in [2] (see
also [8,2]) and used in [30,31}.

4.3. The third choice, B(i,s)=A[0).

The integral equation (3.2} just reduces to the Korn device applied to

the usual variation of parameters formuyla (compare with (2.1)):

t
u(t) = e ¥y 4 J e O e ()4 [ALs)-AL0) Tuls)] ds. (4.6)
0
Assume:
] =D ; I%e}0,1[: D (o, m)=0 Yeelld,s+11-{1}
AL} AlL) [

(4.7}

AEC(IO,T],E{D,E]JanIO,T],E(Dﬁ+1,D§]];

this allows to solve (4.6]), by a fixed pelnt argument, in the space
K= Cl_ﬂ(]D.T].D)nBi(]O.TI.Dﬁ*l)

conslsting of functlons uEC[]O,T],D)hB(O,T,DG+1J such that

lull, = sup tl_ﬁuu(t}n + sup tﬂU(t]HD < e,
¥ t>o v t>0

Hr1

This is proved in [12], generalizing previous results of [13].

t
4.4, The fourth cholce, H(t,s)'tlsj Alc)de.
B

Firstly we remark that
(t-5)2B(t,5)=B(t,5)-Als)

so that the integral term (3.5) becomes

t
J.K(t,sJu(s)ds =

a {4.8}

t
1 (t-s)A -11 -1
= EEYIOI e A A-B(x, 611 [IA-Bit, 5))7 Als)Juls)dads.
T

We are then led to the feollowing assumption:

D =), D dense in E,
Al
AeC({0,T],¥%(D,E}),

J N (£.9)

-1 -1
1[A-B(t,s)] HE(E,E 5T la-B(t,s)} nf(an)ﬁ N,

(0<B<1.

-8, 8017 4ty 4=

N
1+|A|ﬁ€)
Furthermore, 1n Step 2 we will also need:

N

[A-Blt,s)]7} L S
I ! N

EE(D (n,m),n)$
* wnelo, 8], (4.10)
N

-1 = ———
[[A-Blt, ) ’A(S_)]HSB(D,DA(??,GI]J_ 1o ET

This set of assumptions was introduced by Sobolevskii [25]. By (4.8) and
(4.9) it is easy to deduce that



C
frie, s £ —
2 ]t—s]l”ﬁ
so that (3.2} can be solved in the space C{[0,TI,D).

5. Existence of solutioms of (0.1)-(0.2). :

For suitable data %,f we now have a solution v of the integral
equation (3.2) (cases I,I1II,IV} or (4.3} {case IT}, vhich can be written as
the sum of a uniformly convergent Neumann series; the goal of Step 2 is to
show that v coincides with u (cases I,III,IV) or Au (case I1), u being the

strict solution of (0.1)-(0.2). In fact, this goal is achieved in a

somewhat indirect method, since some different representation formulas are

used.

Theorem 5.1 {case I} Assume (0.3) and {4.1}-(4.2). Suppose that xeD ( and .
A0} i
either feCs{{O,T],E) or feC{[D.T],E]nB(D,T;DA(E,m)}; then the solution v of K

(3.2) is the unique classical soclution of problem (0.1)-(0.2). If in

-1 | —
(o 30d ALO)x+f{E)-dAlt) " /at], A(0)x e D, o + then v is ‘
strict. :

addition XGDA

Broof In [3] it is shown that any strict solution of (0.1)-(0.2) can be

represented as

t
u(t) = e % « J'e“'—su(u[(1+P]-1(f—P(',0)x)](s)ds, (s.13
Q

where P is the integral operator

3
(Pgl)(ti:=; P(t,s)gl(s)ds,
o

whose kernel P{t,s) is _

1 eemAd "
Pit,s): 2“1'[7& Tr[A-Att)] aa.

Then if feCe([O,T},E) all statemenis follow by direct computation (see
[3, Theorems 4.1-5.1]. On the other hand if fEC{[O,T],E]ﬁB[D,T;DA(E,m)]

we can rewrite (5.1) as

LA{t)
e X

t
ult) = [ e T pe-p e 0000 ] ()ds +

0 (5.2)

- ItE(L‘S)A(t)f[S)dS;
o
noW the first two terms represent the scolution of problem (0.1)-(0.2) with
right member -Prect({0,T1,E) {by [3, Propesition 3.5(v)]} and initial datum
%, s¢ that the previcus argument applies. The third term is in CC([O,T},DA)
A 10, T]LED by direct computation, as it is easlly seen using [11,lemma
2.5(i1)]. This implies the result. o

Theorem 5.2 (case 11} Assume (0.3) and {4.4), Suppese that XEDAm) and
either fECE([O,T}.E) or fEC([O,T],E]nB(D,T;D‘(s,m}); then the functien
A_iv, where v is the solution of (4.3}, is the unique classical solution of

(0.1)-(0.2}. If in addition xeDAw) and A[O)x+f(G)EDaw), then A'v is

strict.

Proof (See [9].) Consider the Yosida approximations An(t) of A(t), i.e.
A (£)=nAlt)(n=A{t}]™",  neN’. {5.3)
Let u be the solution of the Cauchy problem

{ u (t)-A (tiu (t)=f(t), teld,T1,

un(0)=x

(cbviously existing, since AHEC£{O.T],E(E))!}. Then A u is the solution of

an integral equation whose kernel is {compare with (4.5))

2 (t=s}A (t)
n

-1 -1
A (1) [ (£)7-A (s17],

and converges in £(E), as n—w, to the kernel of (4.3}. Then one sees that
u converges to seme u in C([0,T],E) and Anun—av in C{{0,T},E}; hence vsAu
n
and u'=A u +f—hu+f in C([0,T],E}, so that u’E{A_IV]' exists and is equal

n nn

to Autf, t.e. A''v solves (G.1)-{0.2). &

Theorem 5.3 (case ITI1] Assume (0.3} and (4.7). Suppose that XEDE and
fEC([O,T],E)nB(O,T;DE)); then the solution v of (3.2) (i.e. of (4.6])} 1s
the unique classical sclution of problem (0.1}-{C.2). If in additlon xeD

and A(0)xeD, then v is strict



Proof The first assertion feollows by direct computation (see {12, Theorem
2.21). Let us prove the second one: fix xeD such that A(0)xeD, and select a
sequence {xn}sD€+1 such that X — x in D. For each n let v be the strict
solution of {0.1)-(0.2) with data xn,f; then, by an argument used in [S],

we can wrlte a different representation formula for v
n
= -1 !t .
vt = AT OB (R0, 00x + LE)] (1)

where

(t-slalt)
,

t
Lit,s):=Alt)e {Lf) (2):=] Lit,s)f(s)ds,
o

t
(Bg} (t):=[ A0)e ™ ¥4 (1-attiace) rgls).
Q

Now it can be seen that L(-,0)e£(D,C{[0,T],E)} and [1—HJL152{C(£O,T},E)},
50 that v—uin Cc(fo,T],D), where

ult) = A7 [(1-0 7 Li-,00% + Lf)](ti. (5.5}

Moreover v;=Avn+f — Au+f in C([0,T],E), which implies that u is a strict
selution of (0.1)-(0.2). o

Theorem 5.4 {case IV) Assume (0.3) and (4.%)-{4.10). Suppose that xeF and
feC([O,T],E)nB(O,T;DE}}; then the solution v of (3.2) is the unique
classical solution of problem {0.1)}-(0.2}. If in addition x€D, then v is
strict.

Proof It is si@ilar Lo the case II: let u be the solution of preblem
(5.4}, with An(t] given by (5.3). 1f x€D, then u is the solution, in the

space C([0,T},D}, of an integral equation whose kernel is (compare with
(4.8)):

1 -8 - -
smr) o M AE )1 [ (e 7 A (s)] e,
? n

where
1
B (t,s):-mJA (o)de
n t-g, g P

hence the above kernel converges as n—m to the kernel of (4.8). As a

consequence we get un—av in C{[0,T]1,D) and, in particular, A u —Av in
nn .

10

CLO.T].E). But then w =AU +f->Avef, So that veC'([0,T],E) and v’ =avef. If
xeE only, the above argument works, with some more technicalities, in the

space X:=Cj_n(JO,T],Dn}ncl(]D,T],D). =]

Bemark 5.5 1In cases IIl and IV we are not able to find classical or strict
selutiens of problem (0.11-(0.2) with feCG(ID,T],E), because the A{t)'s are

Just centinucus in t.

6. Maximal! regularity,

There are two kinds of maximal regularity, namely with respect to time
and with respect to space: that is, there are certain subspaces M of
C([0,T],E), consisting either of E-valued H&lder continuous functions, or
of fupctions which are bounded with values in some interpelation space,
which have the following property: 1f the right member of (0.1)-{0.2)
belongs to M, then the solution u is such that both v’ and Au belong to M,
provided suitable compatibility conditions held. Such conditions turn cut

te be necessary and sufficient for maximal Tegularity.

Theorem 6.1 {case I} Assume (0.3} and (4.1)-(4.2), and fix e<]0,arn].
£ -1

vioye TEC (IO, THE) and A{Q)x+£(0)-[dA(t) " /at] _ A(O)x €
DA(O) i let u be the striect solution of preoblem (0.1)-(0.2}. Then u’,
Au e C°([0,T),E) 1f and only 1f A(Q)x+f(0)-[dA(t)7/at], A(0)x e
D, o {€+®)3 in this case, one has also u’-EdA{-]'l/dt]Au e
B{O,T;DA(E.mJ).

(ii) Suppese that XEDA[DJ, f e C[O,T],E} A B[O.T;D*(e,m)} and
A{D]x—[dA(t)_l/dt] A(D)x € D, let u be the strict sclution of

£=0 IC))

problem (0.1)}-{G.2). Then u', Au € B(O,T;Dh(s,m]) if and omnly if
AKO}K-[dA(t]_lldt]t_DA(O)x @ DA(O)[C’M]; in this case, one has also
Au-[dal-1"vat]au & C5(10,T1,E).

(1) Suppose xel

Proof The first assertion of (i) is proved in [3, Theorem 5.3] and [6,
Appendix]; let us prove the second one. To this purpose we need to rewrite
the Integral equation (3.2} with the choice II instead of I, i.e. taking
Blt,s)=A{t): then we get

(t-siAlt} 1

t
ute) = [Actle [AC) ™ -Als) ] AlsIuls)ds +
o

{6.1)

t
- t
" etA(t)x . J e(t s)AC )f(s)ds.
0

il



Next, we split it conveniently:

t .
ult) = J'A(t)e“'s’““{A(tr‘-Acs}"-(t—s)‘d‘—tA(t}‘l]A(sJu{s)ds -
o

v
(t-s)a{r) d -1
+ J;A(t}e (t-s)3zalt) [alsiuts)-alt)ult)]ds +

| + [te““’_A(t)"{e““*w1]]%¥A(t]'l-A(t]u(t} + et My

t
(t-s)YA(r) -
+ Le [Fis)-£(t)]ds + ACE) [P 1]F (1)

It 1s clear that each term belongs to D so that after a further

Att)?
splitting we easily have:

w () - AT A uct) = Aftdult) 4+ £(2) - Lacr ™At =

t
[ A MY ey s - Gac) A uts as +
Q

+

t
J-A(tlze(t_s“m{t~s)g—tA(t)-1[A(s)u[s)—A(t)u[t)]ds *
Q

.

d - - - -
A(t)et““[tﬁﬁx[t} AC()-A10)x] + [tAC) M eale) T ALe) 1]]A[D}x +

e

- 'e“‘“[[f(t)-f(o)] - SeAO T At )ule)-A0)x] -

d - d -
[d—EA{tJ 1'[&?‘“” I}M]me} - et“”[A[D)x+f(0)-{g—tA[t)-1]

t
J’ AL (g gs,
o

A(D)x] -

t=0

+

Now it is a straightforward task to verify that each term in the right-hand
side is in DA(tj(s,m), with bounded norms (using, for the last two, [11,
Lemma 2.5(1)~{1i)]}. This proves (i).

Let us prove (iij. We start from the last assertion. Using (5.3) we
see that

t
A(EIUCE) = AlEIW(t] + A{tjj LI Py
Q

"where w is the strict solution of problem (0.1)-(0.2) with data -Pf, x.
Hence Aw is in CE{KU,T],E) by (1), whereas the second term is in the same
space as remarked in the proef of Theorem 5.1. This proves the last

assertion of (ii). Finally, concerning the first one, starting from (&6.1)

12

we can repeat the argument used in the proof of the last part of (i}, and

the result follows. O

Theorem 6.2 (case II) Assume (0.3) and (4.4), and fix =e]0,8].

, £ec®([0,T1,E) and A(Q)x+f(0) € D . let u be the
A (0] ALD)

strict solutien of problem (0,1)-(0.2). Then w', Au € CE([O,T},E) if

(1) Suppose xeD

and only if A(Qlx+f{2) Dam)(e,m}; in this case, one has alsc u'e

B[D,T;DA(S,W)}.
{ii) Suppose that XEDA(O). f e C{{0,T].E) n B{O,T;DA(E.m)) and A(O)x =
DA(Df let u be the strict seolution of problem (0.1)-(0.2). Then u’,
Au e B(O,T;DA[s,m}} if and only if A{O)x ¢ DA(U)(c,wJ; in this case,

one has alsg Au € Ce([O,T],E].
Proof See [9, Theorems 6.1(iii)-6.2(11ii1)]. o

Theorem 6.3 (case II1I) Assume (0.3) and (4.7), and fix £€]0,¢]. Suppose
xeD, A(0)xeD and f£eC([0,T],EINR(G, T;0_)), and let u be the strict sclution
of problem (G.1)-{0.2). Then u', Au € B[O,T;Dg) if and only if A[D)xeDE.

Procf By direct computation, starting from (5.5) (the original proof is

different: see [12, Corsollary 2.3]). o

Theorem 6.4 (case IV) Assune (0.3} and (4.9)-(4.10), and fix e<l0Q,8[.
Suppose x€D and feC(EO,TI,E}nB(O,T;DE]}, and let u be the strict solution
of (0.1)~{0.2). Then u', Au € B[D,T;De) if and only if A[O}XEDC.

Proof The solution u is in C{[0,T],D) and sclves the integral equation

< t
u{t) - I K{t,s)uls)ds = BB, I e(t-ﬂa(hs)f(s)ds, (6.2)
o 0

with X{t,s) given by (4.8). Now it ls easily seen that, since ueC([0,T].D},
t
t—af %(t,s)ufs)ds € B(O,T;D_{n) v¥nel0, 81,
4
o

whereas it is not difficult to verify that the right member of (6.2}
belongs to B(O’T;D1+E] if and only if A(O]xeDC. Thus the result follows at
cnce. O

Bemark 6.5 In cases [I1 and IV one cannot expect maximal regularity in
time 1.e. that feC®([0,T],E) implies w,AeeCt(10,T],E): this is false even

in the scalar case E=R.
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7. The evolution operator.

In all cases I-...-IV one can construct the evolution operator
associated to problem (D.1), i.e. an operator U(t,s)e¥(E) defined for

O=s=t=T, such that

Ult,s) = Utt,v)UlT,s) vrels,t], Uit t)y = 1 vtefn,T1], (7.1)
g_t Uit,s) = Alt)I(t,s) Vtels,T], (7.2)
gg Ult,s) = - Ult,s)A(s) vselo,tl. (7.3)

More precisely:

Theorem 7.1 {case I) Assume (0.3) and (4.1}~(4.2). Then there exists a
unigue operator U{t,s) satisfying (7.1}-(7.2); moreover dU(t,s)/ds exists

in £(E) for each se[0,tl and satisfies (7.3) pointwise for each xeDA().
s

Proof The result is classical [18] in the case of dense domazins; for the

general case see [11], o

Theorem 7.2 {case II} Assume (0.3) and (4.4)}. Then there exists a unique
operator U{t,s) satisfying [7.1]—(7.2): if in addition the domains DA(ﬁ
are dense in F and the operators {A(t) } satisfy (0.3) and (4.4) in the
space E‘, then dU{t,sls/ds exlists in #£(E) for each s¢[0,t[ and satisfies

(7.3) pointwise for ezch XEDA(sf

Proof See {2] and [11]. a

Theorem 7.3 (case IIl) Assume (0.3} and (4.7). Then there exists a unicue
operator U(t,s) satisfying (7.1}-(7.2); moreover, setting ¥:={xeD:A{0)xeD},
du(t,s)/ds exists in £(X,E) for each se[0,t{ and satisfies (7.3).

Proof First of all, we remark that if xeX, then A(slIxeD for each se[0,T).
Now, the first assertion is essentially proved in [12]. Let us show {he

second one. Fix xeDl+€: by (5.5) we can write
Ut s)x = alt) 7 [U-0) LG, 00x) ] (1) =

(t-s)A{L)
= e

x + L AT LG,0x)]0) =
n=1

(t-slA(t) tor-s) A o)
=g X

o t
x+T A(t}'lj H (t,0)Alo)e do |
=

n=1

14

where H (t,¢) is the iterated kernel of the integral operator H', i.e.
n

3
Hl(t,a):=H(t,o); de(t,c):=I Hn[t.r]H(r.aldr YneN.
o

Now differentiating with respect to s we get

« -
St s)x = - At Y -y A ™l (ts)Ats)x -
n=1

« t
-7 A(t)"J H (t,0)A(e) e T34 g o

n=] -3 n

o
= A AAls) M Als)x - TR M A ey - T AT (t,5)A(s)x -
n=1

ot - T-aiAlg) 3
+ £ AWK (400801 (oate)ats) VAt indo -
n=1 s

=1}
- LA TE LG, 00as)x) ] (8] =

n=1

= ACE)TH (ts)Alsdx - e hre)x - ACEYTH (£,5)A0s)% +
n=l
(-] o«
+ T AT (t,5)A0s)x - T A TEN(LC,0)Als)Ix)] (1) =
n=t n+l =1
= - U{t,s5)A(s)x .

Thus (7.3) is established when xeD1+€. Finally we extend (7.3) to the whole

X by approaching any x€X by a suitable sequence {xn}SD1+e. o

Iheorem 7.4 (case IV) Assume (0.3} and (4.9)~(4.10). Then there exists a
unique cperator U(t,s) satisfying (7.1)-(7.2); morecver dU(i,s}/ds exists
in £(D,E} for each sel0,t] and satisfies (7.3).

Proof See [25]. o

Bemark 7.5 1In all cases the operators U{t,s) fulfill further regularity

properties with respect to t and 5. D

8. Examples and remarks.

Consider a general linear, non-autonomous parabolic initial-boundary
value problem. The various assumptions of cases I-...-IV correspond to

different concrete situations: case 1l means moderate regularity in t, with

15
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a strong parabolic structure, whereas case I allows a less stringent
parabolicity (the boundary operators may reduce thelr order for some t)
provided there is a very good dependence on t; on the other hand cases III
and IV concern very restrictlve boundary conditions {independent of t),
requiring however Just continuity with respect to t. Thus it is not
surprisiﬁg that the assumptions of the four cases are independent of cne
another. To verify this independence it is sufficlent to take a one space

dimension example. Consider a second crder operator
A{t,x,Dlu:= u" + al(t,x)u’ + blt,x)u, telC,Tl, xel0,11,
equipped with endpoint conditions
u{0} = 0, u{ll) + c(t)u' (1) = O;
here a,b:[0,T]Ix{0,1]—R and c:{0,T]—R are continuous functions, Next, set
o :={uek: A{t,+,DlucE, ul(0)=0, u[i)+9(t)u'(1)=0}

ALY
Altlu:=A{t,~,D)u

with E:=C([0,11).

Assume now asb=0, c(t)=1+t>"; then it is easy to see that assumptiecns
of case II held and assumptions of case I do not, and conversely, if we
take again a=b=0 and c{t)=t, then assumptions of case I hold and those
of case II do not (see [9, §7] . Moreover in both situations above the
assumptions of cases III and IV are not fulfilled {since Dn(t) is not
constant).

Cn the other hand, choose a=0, b(t,x)=w(t)y(x) and c=0, with
72CT(0,11) (D<e<1) and weC([0,T]) (but not Hilder continuous for any
a€]0,1[): then an easy inspection shows that assumptions of case III hold
but those of case IV do not (since the constant domain is not dense), and
assumpticns of cases I-II do not too (since w is not H&lder continuous).

Finally it does not seem easy to construct an example where
assumptions of case IV hold but assumptions of case III do noi: in fact the
hypotheses of case IV, and in particular the existence of the commutater
[[2-B(t,s317",A(s)] in £(D,E), seem to imply that D, (8+1,a) is
independent of t in all “reasonable" examples.

The assumpticns of cases I-...-IV cover most part of the available

literature. Case II generalizes the papers [23,4,5,24,16,17,7}; case I

16

contains [18,3,26,27,28], case 11l corresponds teo {12,13] and finally case
IV is introduced in [25]. It is to be noted that in the paper [29} there is
an assumption whieh is related to and weaker than that of case I: it
implies Theorem 7.1 and existence of classical solutlons if feCS([O,T],E),
bqt no maximal regularity results seem to hold in this case; in fact we are
not able even to include it in our unitary approach.

He alse have to mention the results of [19,20] where assumptions and
methods of case Il are generalized tc the more abstract setting of the sum
of two closed linear operators, with zpplications to elliptic as well as

parabolic problems.
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