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equation.
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1 Introduction

Utility maximization problems constitute a fundamental part of modern economic
growth models, since the works by Ramsey [10], Romer [11], Lucas [9], Barro and
Sala-i-Martin [2].

These models aim to formalize the dynamics of an economy throughout the quanti-
tative description of the consumers’ behaviour. Consumers are seen as homogeneous
entities, as far as their operative decisions are concerned; hence the time series of their
consuming choices, or consumption path, is represented by a single function, and they
as a collective are named social planner, or simply agent.

The agent’s purpose is to maximize the utility as a function of the consumption path
in a fixed time interval; this can be finite or more often (as far as economic growth
literature is concerned) infinite.

In order to enlarge the applicability range, we introduce in our model three main
features, which however imply additional technical difficulties.

First, the dynamics contains a convex–concave function representing production.
It is well known that the presence of non-concavity in an optimization problem may
complicate the study of the regularity properties of the value function.

Secondly, an additional state constraint is present—which may be called “static”
since it does not involve the derivative of the state variable. This makes any admissi-
bility proof much more involved than usual.

As a third relevant feature, we require that the admissible controls are not more
than locally integrable in the positive half-line: this is the maximal class if one wants
the control strategy to be a function and the state equation to have a solution. This is a
weak regularity requirement which is of very little help; on the other side, it generates
unexpected difficulties in various respects.

From the applications viewpoint, the target of the analysis is the study of the opti-
mal trajectories: regularity, monotonicity, asymptotic behaviour properties and similar
are expected to be investigated. These properties are still not characterized in recent
literature, at least in the above described case.

Hence the program is quite complex and has to be dealt with in many phases. Here
we undertake the work, providing an existence result and several necessary conditions
related to the Hamilton–Jacobi–Bellman problem (HJB), remembering Skiba [12]
and Askenazy–Le Van [1] and developing part of the studies carried on by Fiaschi and
Gozzi [6].

We can summarize the main criticalities as follows:

1. Certain questions arise, that in other bounded-control models are not even present.
For instance, the finiteness of the value function and the well-posedness of the
Hamiltonian problem, consisting in the question whether the value function is a
viscosity solution to the HJB equation. The notion of viscosity solution can be
characterized both in terms of super- and sub-differentials and of test functions; in
any case these auxiliary tools must match the necessary restrictions to the domain
of theHamiltonian function, at least for the solutionswe are interested in verifying.
We are able to prove certain regularity properties of the value function ensuring
that this is the case.
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2. As far as the existence of the optimum is concerned, we did not find a general
result covering our case, either in the classical literature, e.g. Fleming and Rishel
[7], Cesari [4], Zabczyk [14], Yong–Zhou [13], or in more recent publications,
such as the book by Carlson et al. [3] and Zaslavski’s books [15,16]. So we give a
direct proof of the existence of an optimal control for every fixed initial state. To
this purpose, it is a natural idea to make use of the traditional compactness results,
in order to generate a convergent approximation procedure. However, in presence
of unbounded controls and state constraints, the application of such compactness
results is not straightforward. Something more about the technical tools needed to
overcome these difficulties will be said at the end of the introduction.

3. Additional work to the usual proof of the fact that the value function solves HJB
is needed: we use a result which is involved in the construction of the optimum,
i.e. the fundamental Lemma 3.2.

4. The regularity property stated in Theorem 6.1(ii), which is necessary in order
that the HJB problem is well-posed, not only requires optimal controls. It can be
proven by a standard argument under the hypothesis that the admissible controls
are locally bounded; in our case it is useful to come back again to the preliminary
tools (Lemmas 3.2 and 3.3) in order to prove the result with merely integrable
controls.

The contents are consequently arranged. First, the reader will find a section which
intends to clear up the genesis of the model and the economic motivations for the
assumptions.

Then, the preliminary results that are crucial for the development of the theory are
proven.

Afterwards, some basic properties of the value function are proven, such as its
behaviour near the origin and near +∞. These results require careful manipulations
of the data and some standard results about ordinary differential equations, but do not
require the existence of optimal control functions.

In the subsequent section we prove the existence of an optimal control strategy for
every initial state. Here we make wide use of the preliminary lemmas in association
with a special diagonal procedure which we will speak about later.

After providing the existence theorem, we are able to prove other important regu-
larity properties of the value function (such as the Lipschitz continuity in the closed
intervals of (0,+∞)), using optimal controls.

Eventually we give an application of the methods of dynamic programming to
our model. As mentioned before, the proof of the admissibility of the value function
as a viscosity solution of HJB is made more complicated by the use of the prelimi-
nary lemmas, but it allows to obtain the result independently of the regularity of the
Hamiltonian function.

Many important results about infinite horizon optimal control were obtained during
the last 25 years. Several of them can be found in [3] and more recently in [15,16].
Our problem does not seem to fit into any of these results: indeed, first of all our
integrand is non-autonomous, due to the presence of the factor e−ρt , unlike the situation
described in Chapter 4 of [3]. Next, as previously remarked, we prove the existence
of an optimal control (a strongly optimal control, according to the terminology of
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[3]) without any compactness assumption on the set of admissible controls, whereas
in [3] some compactness hypotheses both on controls and on trajectories seem to be
essential in proving the existence of a weak over-taking optimal trajectory. Moreover,
in order to reach this goal, many control problems in that book are “deparametrized”
and transformed in a Lagrange-like problem of the calculus of variations. Although
this approach is interesting, the possibility of transforming the original problem into
a Lagrange one, and then going back after having found the maximum, is subject to a
list of assumptions which seem to us somewhat heavy.

We note that in [3] many other properties of the optimal trajectories are described,
such as asymptotics, stability and turnpike properties, but this matter is not the purpose
of our work. Similarly, [15,16] focus on turnpike properties of both discrete-time and
Lagrange-type control problems, reporting several interesting results which are far
from the goal of our paper.

Finally, a few words are worth spending about some mathematical tools that may
possibly be considered new. For the sake of generality we do not want to assume
the control space to be compact: this way, the admissible consumption strategies are
allowed to be unbounded on a bounded interval. In order to use a proper compactness
result to prove the existence of the optimum, we look for a procedure generating a
sequence of bounded controls from a given optimizing sequence; this procedure must
guarantee that the optimizing property is preserved. Due to the presence of the state
constraint, another issue steps in, since the bounding procedure may not guarantee the
admissibility of the new controls.

This leads to the construction of certain new mathematical tools, which may be
called “uniform localization” results.

Our localization result is Lemma 3.2, where we prove that the “localized” optimiz-
ing sequence is bounded in the L∞ norm, in every compact set [0, T ], independently
of the initial optimizing sequence.Moreover, the upper bound can be explicitly defined
as a function N of T and of the initial state, which is proven to be increasing in both
variables. This lemma can be considered an improvement of Lemma 5.3 in [8]—which
is used there to prove necessary conditions for optimality.

The uniform boundedness and the monotonicity of N make possible to use Lemma
3.2 in the existence proof. Indeed, by monotonicity we can define a diagonalization
procedure which is different from the traditional one (like Ascoli–Arzela’s theorem),
since it deals with two families of sequences, sayA andB, with the following property:
the i th sequence inB is extracted from the i th sequence inA, but the (i + 1)th sequence
inA is not extracted from the i th sequence inB ; it is instead generated by applying the
localization Lemma to the former. Here comes the monotonicity of the bound respect
to time, which allows to prove that an appropriate diagonal sequence is indeed weakly
convergent in the space L1 ([0, T ]) for every T > 0.

As a last remark, we observe that the localization Lemma turns out to be useful in
order to solve a different problem, namely the study of the value function. The question
whether the value function solves HJB (in some sense) is standard in the literature,
but apparently has not been answered yet for this particular type of models. We reach
the goal by proving property (ii) in Theorem 6.1 (ensuring the well posedness of the
problem), and Theorem 7.3, and both results make use of the localization Lemma.
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2 The Model

2.1 Qualitative Description

We assume the existence of a representative dynasty in which all members share the
same endowments and consume the same amount of a certain good. Our goal is to
describe the dynamics of the capital accumulated by each member of the dynasty in
an infinite-horizon period and to maximize its intertemporal utility (considered as a
function of the quantity of good c that has been consumed). Clearly, consuming is
seen as the agent’s control strategy, and the set of consumption functions (over time)
will be a superset of the set of the admissible control strategies.

First, we need a notion of instantaneous utility, depending on the consumptions, in
order to define the inter-temporal utility functional. We will assume that instantaneous
utility, which we denote by u, is a strictly increasing and strictly concave function of
the consumptions, and that it is twice continuously differentiable. Moreover, we will
assume the usual Inada’s conditions, that is to say:

lim
c→0+ u′ (c) = +∞, lim

c→+∞ u′ (c) = 0.

We will also use the following assumptions on u:

u (0) = 0, lim
c→+∞ u (c) = +∞.

With this material, we can define the inter-temporal utility functional, which, as usual,
must include a (exponential) discount factor expressing time preference for consump-
tion:

U (c (·)) :=
∫ +∞

0
e−ρ̂t ent u (c (t)) dt (1)

where ρ̂ ∈ R is the rate of time preference and n ∈ R is the growth rate of population.
The number of members of the dynasty at time zero is normalized to 1.

2.2 Production Function and Constraints

We consider the production or output, denoted by F , as a function of the average
capital of the representative dynasty, which we denote by k. First, we assume the usual
hypothesis of monotonicity, regularity and unboundedness about the production, that
is to say: F is strictly increasing and continuously differentiable from R to R, and

F (0) = 0, lim
k→+∞ F (k) = +∞

where we may assume F (x) < 0 for every x ∈ (−∞, 0), since the assumption that F
is defined in (−∞, 0) is merely technical, as we will see later; this way we distinguish
the “admissible” values of the production function from the ones which are not.
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Next, we make some specific requirements. As we want to deal with a non-
monotonic marginal product of capital, we assume that, in [0,+∞), F is first strictly
concave, then strictly convex and then again strictly concave up to +∞. This means
that in the first phase of capital accumulation, the production shows decreasing returns
to scale, which become increasing from a certain level of pro capite capital k. Then,
when pro capite endowment exceed a threshold k > k, decreasing returns to scale
characterize the production anew.

Moreover, we ask that themarginal product in+∞ is strictly positive, so that we can
deal with endogenous growth. Observe that this limit surely exists, as F ′ is (strictly)
decreasing in a neighbourhood of +∞. Of course the assumption is equivalent to the
fact that the average product of capital tends to a strictly positive quantity for large
values of the average stock of capital.Moreover, requiring that themarginal product has
a strictly positive lower bound is necessary to ensure a positive long-run growth rate.

As far as the agent’s behaviour is concerned, the following constraints must be
satisfied, for every time t ≥ 0:

k(t) ≥ 0, c(t) ≥ 0

i(t) + c(t) ≤ F(k(t)), k̇(t) = i(t)

where i(t) is the per capita investment at time t . Observe that the first assumption
is needed in order to make the agent’s optimal strategy possibly different from the
case of monotonic marginal product. In fact if condition ∀t ≥ 0:k(t) ≥ 0 were
not present, then heuristically the convex range of production function would be not
relevant to establish the long-run behaviour of economy, since every agent would
have the possibility to get an amount of resources such that he can fully exploit the
increasing return; therefore only the form of production function for large k would be
relevant.

Another heuristic remark turns out to be crucial: the monotonicity of u respect to
c implies that, if c is an optimal consumption path, then the production is completely
allocated between investment and consumption, that is to say i(t) + c(t) = F(k(t))
for every t ≥ 0. This remark, combined with the last of the above conditions implies
that the dynamics of capital allocation, for an initial endowment k0 ≥ 0, is described
by the following Cauchy’s problem:

{
k̇(t) = F(k(t)) − c(t) for t ≥ 0

k(0) = k0
(2)

Considering the first two constraints, the agent’s target can be expressed the follow-
ing way: given an initial endowment of capital k0 ≥ 0, maximize the functional in
(1), when c(·) varies among measurable functions which are everywhere positive in
[0,+∞) and such that the unique solution to problem (2) is also everywhere positive
in [0,+∞); the latter requirement is usually called a state constraint.

A few reflections are still necessary in order to begin the analytic work. First, we
will consider only the case when the time discount rate ρ̂ and the population growth
rate n satisfy
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ρ̂ − n > 0,

which is the most interesting from the economic point of view. Second, we weaken the
requirement that c is integrable and positive in [0,+∞) (in order that c is admissible) to
the requirement that c is locally integrable and almost everywhere positive in [0,+∞).

Finally, we need another assumption about instantaneous utility u so that the func-
tional in (1) is finite. To identify the best hypothesis, we temporarily restrict our
attention to the particular but significant case in which u is a concave power function
and F is linear; namely:

u (c) = c1−σ , c ≥ 0

F (k) = Lk, k ≥ 0

for some σ ∈ (0, 1) and L > 0 (of course in this case F does not satisfy all of
the previous assumptions). Using Gronwall’s Lemma, it is easy to verify that for
any admissible control c (starting from an initial state k0) and for every time t ≥ 0,∫ t
0 c (s) ds ≤ k0eLt . Hence, setting ρ = ρ̂ − n:

U (c(·)) = lim
T→+∞

∫ T

0
e−ρt u(c(t))dt

= lim
T→+∞ e−ρT

∫ T

0
u(c(s))ds + lim

T→+∞ ρ

∫ T

0
e−ρt

∫ t

0
u(c(s))dsdt.

Hence using Jensen inequality, we reduce the problem of the convergence ofU (c (·))
to the problem of the convergence of

∫ +∞

1
te−ρt eL(1−σ)tdt

which is equivalent to the condition L(1 − σ) < ρ. Perturbing this clause by the
addition of a positive quantity ε0 we get (L + ε0)(1 − σ) < ρ − ε0 which is

in its turn equivalent to the requirement that the function eε0t e−ρt
(
e(L+ε0)t

)1−σ =
eε0t e−ρt u

(
e(L+ε0)t

)
tends to 0 as t → +∞.

Turning back to the general case, we are suggested to assume precisely the same
condition, taking care of defining the constant L as limk→+∞ F ′ (k) (which has already
been assumed to be strictly positive).

2.3 Quantitative Description

Hence the mathematical frame of the economic problem can be defined precisely as
follows:

Definition 2.1 For every k0 ≥ 0 and for every c ∈ L1
loc ([0,+∞) , R):
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k (·; k0, c) is the only solution to the Cauchy’s problem

{
k (0) = k0
k̇ (t) = F (k (t)) − c (t) , t ≥ 0

(3)

in the unknown k, where F : R → R has the following properties:

F ∈ C1 (R, R) , F ′ > 0 in R, F (0) = 0, lim
x→+∞ F (x) = +∞, lim

x→+∞ F ′ (x) > 0,

F is concave in
[
0, k

] ∪ [
k,+∞)

for some 0 < k < k and F is convex over
[
k, k

]

Moreover, we set L := lim
x→+∞ F ′ (x).

Definition 2.2 Let k0 ≥ 0.
The set of admissible consumption strategies with initial capital k0 is

�(k0) :=
{
c ∈ L1

loc ([0,+∞) , R) /c ≥ 0 almost everywhere, k (·; k0, c) ≥ 0
}

The intertemporal utility functional U (·; k0):�(k0) → R is

U (c; k0) :=
∫ +∞

0
e−ρt u (c (t)) dt ∀c ∈ �(k0)

where ρ > 0, and the function u : [0,+∞) → R, representing instantaneous utility,
is strictly increasing and strictly concave and satisfies:

u ∈ C2 ((0,+∞) , R) ∩ C0 ([0,+∞) , R) , u (0) = 0, lim
x→+∞ u (x) = +∞

lim
x→0+ u′ (x) = +∞, lim

x→+∞ u′ (x) = 0 (4)

∃ε0 > 0 : lim
t→+∞ eε0t e−ρt u

(
e(L+ε0)t

)
= 0

The value function V : [0,+∞) → R is

V (k0) := sup
c∈�(k0)

U (c; k0) ∀k0 ≥ 0

Remark 2.1 The last condition in (4) implies:

∫ +∞

0
e−ρt u

(
e(L+ε0)t

)
dt < +∞,

∫ +∞

0
te−ρt u

(
e(L+ε0)t

)
dt < +∞.
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3 Preliminary Results

The main result of this section is the uniform localization Lemma 3.2.

Remark 3.1 Set

M := max
[0,+∞)

F ′ = max
{
F ′ (0) , F ′ (k̄) , L

}
.

Recalling that F is strictly increasing with F (0) = 0, we see that, for any x, y ∈
[0,+∞):

|F (x) − F (y)| ≤ M |x − y|
F (x) ≤ Mx

In particular F is Lipschitz-continuous.
This implies that the Cauchy’s problem (3) admits a unique global solution (that is

to say, defined on [0,+∞))—even if the dynamics is not continuous with respect to
the time variable.

Indeed the mapping

F (k) (t) := k0 +
∫ t

0
F (k (s)) ds −

∫ t

0
c (s) ds

is a contraction on the space X :=
(
C0

([
0, 1

1+M

])
, ‖·‖∞

)
, and so admits a unique

fixed point k (·; k0, c). Considering the mapping

F (k) (t) := k

(
1

1 + M
; k0, c

)
+
∫ t

1
1+M

F (k (s)) ds −
∫ t

1
1+M

c (s) ds

on the space X ′ :=
(
C0

([
1

1+M
, 2
1+M

])
, ‖·‖∞

)
, one can extend the function

k (·; k0, c) to the interval
[

1
1+M

, 2
1+M

]
, and so on.

In a fewwords, the existence and uniqueness of the solution depends on the fact that
the dynamics in Eq. (3) is defined for every state and is globally Lipschitz-continuous.

Remark 3.2 We recall that if k1 and k2 are two solutions of (3), then the function

h (t) :=
⎧⎨
⎩
F (k1 (t)) − F (k2 (t))

k1 (t) − k2 (t)
if k1 (t) = k2 (t)

F ′ (k1 (t)) if k1 (t) = k2 (t)

is continuous in [0,+∞).
As a consequence, we have a well known comparison result, which in our case can

be stated as follows:
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Let k1, k2 ≥ 0, c1, c2 ∈ L1
loc ([0,+∞) , R), T0 ≥ 0 and T1 ∈ (T0,+∞] such that

c1 ≤ c2 almost everywhere in [T0, T1]. Then the following implications hold:

k (T0; k1, c1) = k (T0; k2, c2) �⇒ ∀t ∈ [T0, T1] : k (t; k1, c1) ≥ k (t; k2, c2) (5)

k (T0; k1, c1) > k (T0; k2, c2) �⇒ ∀t ∈ [T0, T1] : k (t; k1, c1) > k(t; k2, c2). (6)

Lemma 3.1 There exists a function g : (0,+∞) → (0,+∞)which is convex, strictly
decreasing and such that

g (x) ≤ u′ (x) ∀x > 0.

Proof Let

�u′ :=
{
(x, y) ∈ (0,+∞)2 /y ≥ u′ (x)

}

Ku′ :=
⋂{

K ∈ P
(
R
2
)

/K = K , K is convex, K ⊇ �u′
}

.

In particular Ku′ is a closed-convex superset of �u′ . Observe that, for any x > 0, the
function Hx (y) := (x, y) belongs to C0 (R, R

2
)
, so any set of the form

{y ≥ 0/ (x, y) ∈ Ku′ } = H−1
x (Ku′)

⋂
[0,+∞)

is closed in R, and consequently it has a minimum element. Now define

∀x > 0 : g (x) := min {y ≥ 0/ (x, y) ∈ Ku′ } .

(i) This definition implies that for every (x, y) ∈ Ku′ , g (x) ≤ y; hence

g (x) ≤ u′ (x) ∀x > 0

because for any x > 0,
(
x, u′ (x)

) ∈ �u′ ⊆ Ku′ .
(ii) Secondly, g is convex in (0,+∞). Let x0, x1 > 0 and λ ∈ (0, 1). By definition

of g, (x0, g (x0)) , (x1, g (x1)) ∈ Ku′ , which is a convex set. Hence

(1 − λ) (x0, g (x0)) + λ (x1, g (x1)) ∈ Ku′ .

By the first property in (i), this implies

g ((1 − λ) x0 + λx1) ≤ (1 − λ) g (x0) + λg (x1) .

(iii) Observe that the definition of g does not exclude that g (x) = 0 for some x > 0.
Indeed we show that g > 0 in (0,+∞).
Fix x > 0, and consider the closed-convex approximation of �u′

Kx :=
{
(t, y) ∈ [0, x] × [0,+∞) /y ≥ u′ (x)

x
(x−t)

}⋃
[x,+∞) × [0,+∞) .
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By construction Ku′ ⊆ Kx which implies (t, g (t)) ∈ Kx for any t > 0. In
particular, for every t ∈ (0, x):

g (t) ≥ u′ (x)
x

(x − t) > 0

because u′ > 0. Hence g > 0 in (0, x). Since x > 0 is generic, we obtain g > 0
in (0,+∞).

(iv) Finally we show that g is strictly decreasing. Take 0 < x0 < x1. By (ii) and by
definition of convexity, for every n ∈ N:

g (n (x1 − x0) + x0) ≥ n [g (x1) − g (x0)] + g (x0) .

Hence by the assumptions on u and by (i):

0 = lim
n→+∞ u′ (n (x1 − x0) + x0) ≥ lim sup

n→+∞
g (n (x1 − x0) + x0)

≥ lim
n→+∞ n [g (x1) − g (x0)] + g (x0)

which implies g (x1) < g (x0), remembering that g > 0 by (iii).

��

Remark 3.3 The function h defined in Remark 3.2 satisfies

|h| ≤ M .

where M is defined as in Remark 3.1.

Remark 3.4 Let k0 ≥ 0 and c ∈ �(k0). Then, for every t ≥ 0:

k (t; k0, c) ≤ k0e
Mt

∫ t

0
c (s) ds ≤ k0e

Mt

Indeed, by Remark 3.1 and remembering that c ≥ 0, we have, for every t ≥ 0,
k̇ (t; k0, c) ≤ Mk (t; k0, c)—which implies by (5):

k (t; k0, c) ≤ k0e
Mt ∀t ≥ 0.

Now integrating both sides of the state equation, again by Remark 3.1 and by the fact
that k (·; k0, c) ≥ 0 we see that, for every t ≥ 0:
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∫ t

0
c (s) ds = k0 − k (t; k0, c) +

∫ t

0
F (k (s; k0, c)) ds

≤ k0 + M
∫ t

0
k (s; k0, c) ds

≤ k0 + Mk0

∫ t

0
eMsds = k0e

Mt .

Lemma 3.2 There exists a function N : (0,+∞)2 → (0,+∞), increasing in both
variables, such that:

for every (k0, T ) ∈ (0,+∞)2 and every c ∈ �(k0), there exists a control function
cT ∈ �(k0) satisfying

U
(
cT ; k0

) ≥ U (c; k0)
cT = c ∧ N (k0, T ) almost everywhere in [0, T ]

In particular, cT is bounded above, in [0, T ], by a quantity which does not depend on
the original control c, but only on T and on the initial status k0.

Proof Let g be the function defined in Lemma 3.1 and β := log
(
1+M

)
M

. Define, for

every (k0, T ) ∈ (0,+∞)2 :

α (k0, T ) := βe−ρ(T+β)g

[
k0

(
eM(T+β)

β
+ eMT

)]

N (k0, T ) := inf
{
Ñ > 0/∀N ≥ Ñ : u′ (N ) < α (k0, T )

}

= inf
{
Ñ > 0/u′ (Ñ) < α (k0, T )

}
.

In the first place, N (k0, T ) = +∞, because α (k0, T ) > 0 for every k0 > 0, T > 0
and limN→+∞ u′ (N ) = 0.

In the second place, u′ ((0,+∞)) = (0,+∞), which implies N (k0, T ) > 0:
otherwise, since

(
u′)−1

(α (k0, T )) > 0, there would exist N > 0 such that

N <
(
u′)−1

(α (k0, T ))

u′ (N ) < α (k0, T )

which is absurd because u′ is decreasing; hence the quantity u′ (N (k0, T )) is well
defined. Moreover by the continuity of u′,

u′ (N (k0, T )) = α (k0, T ) . (7)

The function N (·, ·) is also increasing in both variables, because α (·, ·) is decreasing
in both variables and u′ is decreasing.
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Indeed, for k0 ≤ k1 and for a fixed T > 0, suppose that N (k1, T ) < N (k0, T ).
Then by definition of infimumwe could choose Ñ ∈ [N (k1, T ) , N (k0, T )) such that

u′
(
Ñ
)

< α (k1, T ), which implies

u′ (Ñ) < α (k0, T )

by the monotonicity of α. Since Ñ > 0, this implies N (k0, T ) ≤ Ñ , a contradiction.
With an analogous argument we prove that N (·, ·) is increasing in the second variable.

Now let k0, T > 0 and c ∈ �(k0) as in the hypothesis. If c ≤ N (k0, T ) almost
everywhere in [0, T ], then define cT := c. If, on the contrary, c > N (k0, T ) in a
non-negligible subset of [0, T ], then define:

cT (t) :=

⎧⎪⎨
⎪⎩
c (t) ∧ N (k0, T ) if t ∈ [0, T ]

c (t) + IT if t ∈ (T, T + β]

c (t) if t > T + β

where IT := ∫ T
0 e−ρt (c (t) − c (t) ∧ N (k0, T )) dt . Observe that by Remark 3.4:

0 < IT ≤
∫ T

0
(c (t) − c (t) ∧ N (k0, T )) dt

≤
∫ T

0
c (t) dt

≤ k0e
MT (8)

In order to prove the admissibility of such control function, we compare the orbit
k := k (·; k0, c) to the orbit kT := k

(·; k0, cT ). In the first place, observe that by (5)
and by definition of cT :

kT (t) ≥ k (t) ∀t ∈ [0, T ] (9)

Now by the state equation, we have:

˙kT − k̇ = F
(
kT

)
− F (k) + c − cT . (10)

Set for every t ≥ 0:

h (t) :=
{

F
(
kT (t)

)−F(k(t))
kT (t)−k(t)

if kT (t) = k (t)

F ′ (k (t)) if kT (t) = k (t)

Hence by (10)

˙kT (t) − k̇ (t) = h (t)
[
kT (t) − k (t)

]
+ c (t) − cT (t) ∀t ≥ 0.
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ByRemark 3.2, the function h is continuous in [0,+∞), so this is a typical linear equa-
tion with measurable coefficient of degree one, satisfied by kT −k. Hence, multiplying

both sides by the continuous function t → exp
(
− ∫ t

0 h (s) ds
)
, we obtain:

d

dt

{[
kT (t) − k (t)

]
e− ∫ t

0 h(s)ds
}

=
[
c (t) − cT (t)

]
e− ∫ t

0 h(s)ds ∀t ≥ 0

which implies, integrating between 0 and any t ≥ 0:

kT (t) − k (t) =
∫ t

0

[
c (s) − cT (s)

]
e
∫ t
s h(r)dr (11)

Now observe that

h ≤ M in [0,+∞) and h ≥ 0 in [0, T ] (12)

by (9) and the monotonicity of F . Set t ∈ (T, T + β]; then by (11) and (12):

kT (t) − k (t) =
∫ T

0
[c (s) − c (s) ∧ N (k0, T )] e

∫ t
s h(r)dr − IT ·

∫ t

T
e
∫ t
s h(r)dr

≥
∫ T

0
[c (s) − c (s) ∧ N (k0, T )] ds − IT ·

∫ t

T
eM(t−s)ds

≥
∫ T

0
e−ρs [c (s) − c (s) ∧ N (k0, T )] ds − IT ·

∫ T+β

T
eM(T+β−s)ds

= IT

(
1 − eMβ − 1

M

)
= 0 (13)

This also implies, by (5) and by definition of cT ,

kT (t) ≥ k (t) ∀t ≥ T + β

Such inequality, together with (9) and (13), gives us the general inequality

kT (t) ≥ k (t) ≥ 0 ∀t ≥ 0.

This implies, associated with the obvious fact that cT ≥ 0 almost everywhere in
[0,+∞), that cT ∈ �(k0).

Now we prove the “optimality” property of cT respect to c. By the concavity of u,
and setting N := N (k0, T ) for simplicity of notation, we have:
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U (c; k0) −U
(
cT ; k0

)
=
∫ +∞

0
e−ρt

[
u (c (t)) − u

(
cT (t)

)]
dt

=
∫
[0,T ]∩{c≥N }

e−ρt [u (c (t)) − u (c (t) ∧ N )] dt

+
∫ T+β

T
e−ρt [u (c (t)) − u (c (t) + IT )] dt

≤
∫
[0,T ]∩{c≥N }

e−ρt u′ (c (t) ∧ N ) [c (t) − c (t) ∧ N ] dt

−IT

∫ T+β

T
e−ρt u′ (c (t) + IT ) dt

= u′ (N )

∫ T

0
e−ρt [c (t) − c (t) ∧ N ] dt

−IT

∫ T+β

T
e−ρt u′ (c (t) + IT ) dt

= IT

[
u′ (N ) −

∫ T+β

T
e−ρt u′ (c (t) + IT ) dt

]
(14)

Now we exhibit a certain lower bound which is independent on the particular control
function c. By Jensen inequality, by Lemma 3.1 and by (8), we have:

∫ T+β

T
e−ρt u′ (c (t) + IT ) dt ≥

∫ T+β

T
e−ρt g (c (t) + IT ) dt

≥ e−ρ(T+β)

∫ T+β

T
g (c (t) + IT ) dt

≥ βe−ρ(T+β)g

(
1

β

∫ T+β

T
[c (t) + IT ] dt

)

≥ βe−ρ(T+β)g

(
1

β

∫ T+β

0
c (t) dt + IT

)

≥ βe−ρ(T+β)g

[
k0

(
eM(T+β)

β
+ eMT

)]

= α (k0, T ) .

Hence by (7) and (14):

U (c; k0) −U
(
cT ; k0

)
≤ IT

[
u′ (N (k0, T )) −

∫ T+β

T
e−ρt u′ (c (t) + IT ) dt

]

≤ IT
[
u′ (N (k0, T )) − α (k0, T )

] = 0.

��
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Lemma 3.3 Let 0 < k0 < k1 and c ∈ �(k0). Then there exists a control function
ck1−k0 ∈ �(k1) such that

U
(
ck1−k0; k1

)
−U (c; k0) ≥ u′ (N (k0, k1 − k0) + 1)

∫ k1−k0

0
e−ρtdt

where N is the function defined in Lemma 3.2.

Proof Fix k0, k1 and c as in the hypothesis and take ck1−k0 as in Lemma 3.2 (where it
is understood that T = k1 − k0).Then define:

ck1−k0 (t) :=
{
ck1−k0 (t) + 1 if t ∈ [0, k1 − k0)

ck1−k0 (t) if t ≥ k1 − k0

In the first place we prove that ck1−k0 ∈ �(k1), showing that

k := k
(
·; k1; ck1−k0

)
> k

(
·; k0, ck1−k0

)
=: k (15)

over (0,+∞). Suppose by contradiction that this is not true; take
τ := inf

{
t > 0/k (t) ≤ k (t)

}
. Then by the continuity of the orbits, k (τ ) ≤ k (τ ),

which implies τ > 0. Considering the orbits as solutions to an integral equation we
have:

k (τ ) = k0 +
∫ τ

0
F (k (t)) dt −

∫ τ

0
ck1−k0 (t) dt

k (τ ) = k1 +
∫ τ

0
F
(
k (t)

)
dt −

∫ τ

0
ck1−k0 (t) dt − min {τ, k1 − k0} .

Hence

0 ≥ k (τ ) − k (τ ) = k1 − k0 +
∫ τ

0

[
F
(
k (t)

) − F (k (t))
]
dt − min {τ, k1 − k0}

≥
∫ τ

0

[
F
(
k (t)

) − F (k (t))
]
dt

By the definition of τ and the strict monotonicity of F , this quantity must be strictly
positive, which is absurd. Hence

k
(
·; k1; ck1−k0

)
> k

(
·; k0, ck1−k0

)
≥ 0 in [0,+∞)

ck1−k0 ≥ ck1−k0 ≥ 0 a.e. in [0,+∞)

which implies ck1−k0 ∈ �(k0).
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In the second place, remembering the properties of ck1−k0 given by Lemma 3.2, we
have

U
(
ck1−k0; k1

)
−U (c; k0) ≥ U

(
ck1−k0; k1

)
−U

(
ck1−k0; k0

)

=
∫ k1−k0

0
e−ρt

[
u
(
ck1−k0 (t) + 1

)
− u

(
ck1−k0 (t)

)]
dt

≥
∫ k1−k0

0
e−ρt u′ (ck1−k0 (t) + 1

)
dt

≥ u′ (N (k0, k1 − k0) + 1)
∫ k1−k0

0
e−ρtdt

which concludes the proof. ��
Remark 3.5 In the previous Lemma, the property (15) can also be proved with the
“comparison technique”, like we did for the admissibility of cT in Lemma 3.2.

More generally, it can be proved that

k (·; k1, cH ) > k (·; k0, c)

where k1 > k0 ≥ 0, c ∈ L1
loc ([0,+∞) , R), H > 0 and

cH (t) :=
{
c (t) + H if t ∈ [0, δH )

c (t) if t ≥ δH

and δH > 0 satisfies δH · H ≤ k1 − k0.
Indeed, set kH := k (·; k1, cH ) and k := k (·; k0, c) and suppose by contradiction

that −∞ < inf {t > 0/kH (t) ≤ k (t)} =: τ . Then for a suitable, positive continuous
function h : [0,+∞) → R, the following equality holds:

kH (τ ) − k (τ ) = e
∫ τ
0 h(r)dr

[
k1 − k0 +

∫ τ

0
(c (s) − cH (s)) e− ∫ s

0 h(r)dr
]

.

Moreover τ ≤ δH , because on the contrary we would have kH > k in [0, δH ]; then
remembering (6) and the definition of cH we would conclude that kH > k everywhere
in [0,+∞), which contradicts τ > −∞. Moreover kH (τ ) = k (τ ) by the continuity
of kh and k and by definition of infimum. Then the above equality implies

0 = k1 − k0 − H
∫ τ

0
e− ∫ s

0 h(s)ds > k1 − k0 − τH ≥ k1 − k0 − δH H ≥ 0.

At the same time kH (τ ) ≤ k (τ ) by the continuity of kh and k and by definition of
infimum (in fact the equality holds, again by continuity); hence we have reached the
desired contradiction.

123



Appl Math Optim

Next we establish a simple characterisation of the admissible constant controls,
which will prove itself useful afterwards.

Proposition 3.1 Let k0, c ≥ 0. Then

(i) k (·; k0, F (k0)) ≡ k0
(ii) the function constantly equal to c is admissible at k0 (which we write c ∈ �(k0))

if, and only if

c ∈ [0, F (k0)] .

In particular the null function is admissible at any initial state k0 ≥ 0.

Proof (i) By the uniqueness of the orbit.
(ii) (⇐�) In the first place, observe that F (k0) ∈ �(k0), by (i). In the second place,

assume c ∈ [0, F (k0)) and set k := k (·; k0, c). Hence

k̇ (0) = F (k0) − c > 0

which means, by the continuity of k̇, that we can find δ > 0 such that k is strictly
increasing in [0, δ]. In particular k̇ (δ) = F (k (δ)) − c > F (k0) − c because
F is strictly increasing too. By the fact that k̇ (δ) > 0 we see that there exists

δ̂ > δ such that k is strictly increasing in
[
0, δ̂

]
—and so on. Hence k is strictly

increasing in [0,+∞) and in particular k ≥ 0. This shows that c ∈ �(k0).
(�⇒) Suppose that c > F (k0) and set again k := k (·; k0, c). Then

k̇ (0) = F (k0) − c < 0

so that we can find δ > 0 such that k is strictly decreasing in [0, δ], and
k̇ (δ) = F (k (δ)) − c < F (k0) − c < 0. Hence one can arbitrarily extend the
neighbourhood of 0 in which k̇ is strictly less than the strictly negative constant
F (k0) − c, which implies that

lim
t→+∞ k (t) = −∞.

Hence k cannot be everywhere-positive and c /∈ �(k0).
��

Corollary 3.1 The set sequence (� (k))k≥0 is strictly increasing, that is:

�(k0) � �(k1)

for every 0 ≤ k0 < k1.

Proof For every c ∈ �(k0), k (·; k0, c) ≤ k (·; k1, c) by (5), which implies the second
orbit being positive, and so c ∈ �(k1).

On the other hand, by Proposition 3.1 and by the strict monotonicity of F , the

constant control ĉ ≡ F
(
k̂
)
belongs to �(k1) \ �(k0) for any k̂ ∈ (k0, k1]. ��
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4 Basic Qualitative Properties of the Value Function

4.1 Finiteness of the Value Function

Nowwe deal with the first problem one has to solve in order to develop the theory: the
finiteness of the value function. The asymptotic properties of F ′ make F sub-linear:
this allows us to prove certain uniform estimates (Lemma 4.1) leading to the desired
result. These estimates will also reveal themselves useful both in the construction of
the optimal control (as they assure the dominated convergence in a crucial step of the
approximation) and in the characterization of the latter appearing in the Sect. 7.

Remark 4.1 Set M0, M̂ ≥ 0 such that:

∀x ≥ M0 : F (x) ≤ (L + ε0) x

M̂ := max
[0,M0]

F.

(which is possible because limx→+∞ F(x)
x = L). Hence, for every x ≥ 0:

F (x) ≤ (L + ε0) x + M̂

Remark 4.2 Since u is a concave function satisfying u (0) = 0, u is sub-additive in
[0,+∞) and satisfies:

∀x > 0 : ∀K > 1 : u (Kx) ≤ Ku (x)

Lemma 4.1 Let k0 ≥ 0. There exists a number M (k0) > 1 and a continuous, strictly
positive function ψk0 : (0,+∞) → R such that, for any c ∈ �(k0):

(i) ∀t ≥ 0 :
∫ t

0
c (s) ds ≤ tM (k0)

[
1 + e(L+ε0)t

]
+ M (k0)

L + ε0

(ii) ∀t > 0 : e−ρt
∫ t

0
u (c (s)) ds ≤ ψk0 (t)

(iii) U (c; k0) = ρ

∫ +∞

0
e−ρt

∫ t

0
u (c (s)) dsdt.

Both M (k0) and ψk0 depend only on k0 and the problem’s data (in particular they
don’t depend on c). Moreover ψk0 satisfies

lim
t→+∞ ψk0 (t) = 0,

∫ +∞

0
ψk0 (t) dt < +∞

Proof (i) Set κ := k (·; k0, c) and M (k0) := 1+max
{
(L + ε0) k0, M̂

}
, where M̂ is

the quantity defined in Remark 4.1. Observe that, by Remark 4.1, for every x ≥ 0:

F (x) ≤ (L + ε0) x + M (k0) .
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Fix t ≥ 0; by the state equation, we have for any s ∈ [0, t]

κ (s) ≤ k0 + sM (k0) + (L + ε0)

∫ s

0
κ (τ) dτ

which implies by Gronwall’s inequality:

κ (s) ≤ [k0 + sM (k0)] e
(L+ε0)s ∀s ∈ [0, t] ,

as s → k0 + sM (k0) is increasing. So

∫ t

0
(L + ε0) κ (s) ds ≤ k0 (L + ε0)

∫ t

0
e(L+ε0)sds

+M (k0) (L + ε0)

∫ t

0
s · e(L+ε0)sds

= k0e
(L+ε0)t − k0 + tM (k0) e

(L+ε0)t

− M (k0)

(L + ε0)
e(L+ε0)t + M (k0)

(L + ε0)

= tM (k0) e
(L+ε0)t +

[
k0 − M (k0)

(L + ε0)

]
e(L+ε0)t

+ M (k0)

(L + ε0)
− k0

≤ tM (k0) e
(L+ε0)t + M (k0)

(L + ε0)
− k0

Hence, again by the state equation, for every t ≥ 0:

∫ t

0
c (s) ds = k0 − κ (t) +

∫ t

0
F (κ (s)) ds

≤ k0 + tM (k0) +
∫ t

0
(L + ε0) κ (s) ds ≤ tM (k0)

[
1 + e(L+ε0)t

]

+ M (k0)

(L + ε0)
.

which proves the first assertion.
(ii) In the second place, it follows by Jensen inequality, the monotonicity of u and

Remark 4.2, that for every t ≥ 0:

0 ≤ e−ρt
∫ t

0
u (c (s)) ds ≤ te−ρt u

(∫ t
0 c (s) ds

t

)
≤ te−ρt u

×
(
M (k0)

[
1 + e(L+ε0)t

]
+ M (k0)

t (L + ε0)

)
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≤ te−ρt
{
u (M (k0)) + M (k0) u

(
e(L+ε0)t

)

+ u

(
M (k0)

t (L + ε0)

)}

=: ψk0 (t) .

This proves the inequality in (ii); from the last assumption on u in (4) we deduce
that

lim
t→+∞ ψk0 (t) = 0.

Hence limT→∞ e−ρT
∫ T
0 u (c (s)) ds = 0 and this implies the identity in (iii)

by a simple integration by parts.
It remains to be proven that ψk0 ∈ L1 ([0,+∞)). We have:

∫ +∞

0
ψk0 (t) dt =

∫ +∞

0
te−ρt

{
u (M (k0)) + M (k0) u

(
e(L+ε0)t

)

+ u

(
M (k0)

t (L + ε0)

)}
dt

≤ u (M (k0))
∫ +∞

0
te−ρtdt+M (k0)

∫ +∞

0
te−ρt u

(
e(L+ε0)t

)
dt

+ u

(
M (k0)

L + ε0

){∫ 1

0
e−ρtdt +

∫ +∞

1
te−ρtdt

}
.

This estimate follows again by the monotonicity of u and the concavity properties
stated in Remark 4.2. By Remark 2.1 the upper bound is finite.

��
So we have established the starting point of the theory.

Corollary 4.1 The value function V : [0,+∞) → R is well defined; that is, for every
k0 ≥ 0, V (k0) < +∞.

Proof By Lemma 4.1 we have:

V (k0) = sup
c∈�(k0)

U (c; k0) ≤ ρ

∫ +∞

0
ψk0 (t) dt < +∞.

��

4.2 Asymptotic Behaviour of the Value Function

These properties are called “basic” because they don’t rely on optimal controls. Nev-
ertheless, their proof is not straightforward.
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Theorem 4.1 The value function V : [0,+∞) → R satisfies:

(i) lim
k→+∞ V (k) = +∞

(ii) lim
k→+∞

V (k)

k
= 0

(iii) lim
k→0

V (k) = V (0) = 0

Proof (i) For every k0 ≥ 0 the constant control F (k0) is admissible at k0 by Propo-
sition 3.1; hence

V (k0) ≥ U (F (k0) ; k0) = u (F (k0))

ρ
→ +∞

as k0 → +∞, by the assumptions on u and F .
(ii) Set M̂ > 0 as in Remark 4.1 and k0 > 0 such that:

k0 >
1

L + ε0
M̂ (16)

Hence, for every x > 0:

F (x) ≤ (L + ε0) (x + k0) (17)

By reasons that will be clear later, suppose also that:

k0 >
1

L + ε0
(18)

Observe that the proof of Lemma 4.1, (i) only requires M (k0) ≥ M̂, k0 (L + ε0);
hence (16) and (17) imply that this property holds for M (k0) = k0 (L + ε0)—
which means that:

∀t ≥ 0 :
∫ t

0
c (s) ds ≤ k0 + tk0 (L + ε0)

[
1 + e(L+ε0)t

]
. (19)

In particular

∀t ≥ 1 :
∫ t
0 c (s) ds

t
≤ k0 + k0 (L + ε0) + k0 (L + ε0) e

(L+ε0)t . (20)

Now set

Jc (α, β) :=
∫ β

α

te−ρt u

(∫ t
0 c (s) ds

t

)
dt (21)

and fix N > 0.
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We provide three different estimates, over Jc (0, 1), Jc (1, N ) and Jc (N ,+∞),
using Remark 4.2.
First, we have by (19):

Jc (0, 1) ≤
∫ 1

0
te−ρt 1

t
u

(∫ 1

0
c (s) ds

)
dt

≤ u
[
k0
(
1 + (L + ε0)

(
1 + e(L+ε0)

))] 1 − e−ρ

ρ

≤ u (k0)
1 − e−ρ

ρ

[
1 + (L + ε0)

(
1 + e(L+ε0)

)]
.

Moreover, by (20):

Jc (1, N ) ≤
∫ N

1
te−ρt u

(
k0 + k0 (L + ε0) + k0 (L + ε0) e

(L+ε0)t
)
dt

≤ u (k0 + k0 (L + ε0))

∫ N

1
te−ρtdt

+ u (k0 (L + ε0))

∫ N

1
te−ρt e(L+ε0)tdt

≤ u [k0 (1 + L + ε0)]
(
1 + e(L+ε0)N

) ∫ N

1
te−ρtdt

Finally, remembering that k0 (L + ε0) > 1 by (18),

Jc(N ,+∞) ≤
∫ +∞

N
te−ρt u

(
k0 + k0 (L + ε0) + k0 (L + ε0) e

(L+ε0)t
)
dt

≤ u (k0 + k0 (L + ε0))

∫ +∞

N
te−ρtdt + k0 (L + ε0)

×
∫ +∞

N
te−ρt u

(
e(L+ε0)t

)
dt

Now we show that

lim
k→+∞

V (k)

k
= 0.

Fix η > 0; by Remark 2.1, we can choose Nη > 0 such that

(L + ε0)

∫ +∞

Nη

te−ρt u
(
e(L+ε0)t

)
dt < η.
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Hence for k0 satisfying:

k0 > max

{
1

L + ε0
M̂,

1

L + ε0

}

and for every c ∈ �(k0), the above estimates imply:

U (c; k0) = ρ

∫ +∞

0
e−ρt

∫ t

0
u (c (s)) dsdt

≤ ρ Jc (0, 1) + ρ Jc
(
1, Nη

) + ρ Jc
(
Nη,+∞)

≤ u (k0)
(
1 − e−ρ

) [
1 + (L + ε0)

(
e(L+ε0) + 1

)]

+ u (k0) (1 + L + ε0)
(
1 + e(L+ε0)Nη

) ∫ Nη

1
te−ρtdt

+ u (k0) (1 + L + ε0)

∫ +∞

Nη

te−ρtdt + k0η (22)

following Remark 4.2, Lemma 4.1, (iii), (21) and Jensen inequality. Now observe
that:

lim
k0→+∞

u (k0)

k0
= lim

k0→+∞ u′ (k0) = 0.

Hence for k0 sufficiently large (say k0 > k∗):

u (k0)

k0
< η

{(
1 − e−ρ

) [
1 + (L + ε0)

(
e(L+ε0) + 1

)]

+ (1 + L + ε0)
(
1 + e(L+ε0)Nη

) ∫ Nη

1
te−ρtdt + (1 + L + ε0)

×
∫ +∞

Nη

te−ρtdt

}−1

Observe that this is possible because the expression into the brackets does not
depend on k0. In fact, like Nη, it depends only on η and on the problem’s data L ,
ε0, ρ—and so does k∗.
By (22), this implies for every c ∈ �(k0):

U (c; k0) ≤ 2k0η

which gives, taking the sup over �(k0):

V (k0) ≤ 2k0η.
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Hence the assertion is proven, because the previous inequality holds for every

k0 > max

{
1

L + ε0
M̂,

1

L + ε0
, k∗

}
,

and the last quantity is a threshold depending only on η and on the problem’s data.
(iii) In the first place, we prove that

V (0) = 0.

Let c ∈ �(0) ; by definition, c ≥ 0 so that

∀t ≥ 0 : k̇ (t; 0, c) ≤ F(k(t; 0, c)).

Observe that F is precisely the function which defines the dynamics of k (·; 0, 0),
hence by (5):

∀t ≥ 0 : k (t; 0, c) ≤ k (t; 0, 0) = 0

where the last equality holds by Lemma 3.1, (i).
Hence k (·; 0, c) ≡ 0 which together with F (0) = 0 implies c ≡ 0. So �(0) =
{0}, which implies

V (0) = U (0; 0) =
∫ +∞

0
e−ρt u (0) dt = 0

Now we show that

lim
k→0

V (k) = 0.

In this case we have to study the behaviour of V (k0) when k0 → 0, so we use
the sublinearity of F(x) for x → +∞ and the concavity of F near 0.
As a first step, we construct a linear function which is always above F with these
two tools. Indeed we show that there is m > 0 such that the function

G (x) :=
{
mx if x ∈ [

0, k̄
]

(L + ε0)
(
x − k̄

) + mk̄ if x ≥ k̄

satisfies

∀x ≥ 0 : F (x) ≤ G (x) . (23)

If F ′ (k̄) ≤ L + ε0 then it is enough to choosem > max
{
F ′ (0) , F ′ (k̄) ,

F(k̄)
k̄

}
.
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If F ′ (k̄) > L + ε0 then take x̄ > k̄ such that F ′ ≤ L + ε0 in (x̄,+∞); a
first-order development in x̄ with Lagrange remainder shows that

∀x > k̄ : F (x) < F (x̄) + (L + ε0)
(
x − k̄

) + max[
k̄,x̄

] F.

Hence it is enough to choose m > max
{
F ′ (0) , F ′ (k̄) ,

F(x̄)+M
k

}
(where M =

max[k̄,x̄] F) in order that condition (23) is satisfied.

Observe that condition m > F ′ (k̄) is still necessary to ensure that mx > F (x)
for x ∈ [

k, k̄
]
(Lagrange’s theorem proves that it is sufficient).

Suppose also, for reasons that will be clear later, that

m > 1. (24)

Now take k0 > 0, c ∈ �(k0) and consider the function h : [0,+∞) → R which
is the unique solution to the Cauchy’s problem

{
h (0) = k0
ḣ (t) = G (h (t)) t ≥ 0

Hence, by (23) and (5), k := k (·; k0, c) ≤ h. So, setting

t̄ := 1

m
log

(
k̄

k0

)
and k̂ := k̄ (m − L − ε0)

we get, for every t ∈ [
0, t̄

]
:

h (t) = k0e
mt

and, for every t ≥ t̄ :

h (t) = e(L+ε0)t
∫ t

t̄
e−(L+ε0)s k̂ds + k̄e−(L+ε0)t̄

= k̂e−(L+ε0)t̄

L + ε0
e(L+ε0)t + k̄e−(L+ε0)t̄ − k̂

L + ε0

=: ω0 (k0) e
(L+ε0)t + ω1 (k0) − k̂

L + ε0
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where by definition of t̄ the functions ωi satisfy:

ω0 (k0) = k̂

L + ε0
e−(L+ε0)t̄ = k̂

L + ε0

(
k0
k

) L+ε0
m

ω1 (k0) = ke−(L+ε0)t̄ = k

(
k0
k

) L+ε0
m

.

Using the state equation,we deduce by the above computations of h two estimates
for the integrals of c.
For every t ∈ [

0, t̄
]
(remembering thath is increasing so that∀s ≤ t : h (s) ≤ k̄):

∫ t

0
c (s) ds ≤ k0 +

∫ t

0
F (k (s)) ds ≤ k0 +

∫ t

0
G (h (s)) ds

= k0 +
∫ t

0
mk0e

msds = k0e
mt . (25)

Instead, for every t > t̄ :

∫ t

0
c (s) ds ≤ k0 +

∫ t̄

0
G (h (s)) ds +

∫ t

t̄
G (h (s)) ds

≤ k0e
mt̄ +

∫ t

t̄

{
(L + ε0) h (s) + k̂

}
ds

≤ k̄ + (
t − t̄

)
k̂ + (L + ε0)

×
∫ t

t̄

{
ω0 (k0) e

(L+ε0)s + ω1 (k0) − k̂

L + ε0

}
ds

≤ k̄ + ω0 (k0)
[
e(L+ε0)t − e(L+ε0)t̄

]
+ (L + ε0)

(
t − t̄

)
ω1 (k0)

≤ k̄ + ω0 (k0) e
(L+ε0)t − k̂

L + ε0
+ (L + ε0)

(
t − t̄

)
ω1 (k0) (26)

where we have used h (s) ≥ k̄ for s ∈ (
t̄, t

)
and the fact that k0emt̄ = k̄.

Now observe that

lim
k0→0

ω0 (k0) = lim
k0→0

ω1 (k0) = 0

lim
k0→0

t̄ = lim
k0→0

1

m
log

(
k̄

k0

)
= +∞. (27)

Hence if k0 is small enough (say k0 < k∗), wemay assume t̄ > 1 andωi (k0) ≤ 1
for i = 0, 1, so that (26) implies, for every t > t̄ :
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∫ t
0 c (s) ds

t
≤ k̄ + e(L+ε0)t + (L + ε0)

(
t − t̄

)
t

≤ k̄ + e(L+ε0)t + (L + ε0)

(28)

Hence, by Lemma 4.1, (iii), by Remark 4.2, and by (25), (28), the following
inequality holds for every k0 < k∗ and every c ∈ �(k0):

0 ≤ U (c; k0)=ρ

∫ +∞

0
e−ρt

∫ t

0
u (c (s)) dsdt

≤ ρ

∫ +∞

0
te−ρt u

(∫ t
0 c (s) ds

t

)
dt

≤ ρ

∫ 1

0
e−ρt u

(∫ t

0
c (s) ds

)
dt + ρ

∫ t̄

1
te−ρt u

(
k0emt

t

)
dt

+ρ

∫ +∞

t̄
te−ρt u

(
k̄ + e(L+ε0)t + (L + ε0)

)
dt

≤ ρ

∫ 1

0
e−ρt u

(
k0e

mt) dt + ρu

(
k0emt̄

t̄

)∫ t̄

1
te−ρtdt

+ ρu
(
k̄ + (L + ε0)

) ∫ +∞

t̄
te−ρtdt

+ ρ

∫ +∞

t̄
te−ρt u

(
e(L+ε0)t

)
dt

≤ ρu
(
k0e

m) ∫ 1

0
e−ρtdt + ρu

(
k̄

t̄

)
e−ρ (1 + ρ)

ρ2

+ ρu
(
k̄ + (L + ε0)

) ∫ +∞

t̄
te−ρtdt

+ ρ

∫ +∞

t̄
te−ρt u

(
e(L+ε0)t

)
dt

where we used also the fact that the function t → emt

t is increasing for t > 1, by
condition (24).
It follows from (27) and the fact that limx→0 u (x) = 0, together with Remark
2.1, that the above quantity tends to 0 as k0 → 0; moreover, that quantity does
not depend on c.
Hence, noticing that k∗ depends only on the data andm, we see that for any ε > 0
there exists δ ∈ (0, k∗] such that for every k0 ∈ (0, δ) and for every c ∈ �(k0):

U (c; k0) ≤ ε,

which implies, taking the sup over �(k0), that V (k0) ≤ ε - and the assertion
follows.

��
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5 Existence of the Optimal Control

In this section we deal with a fundamental topic of any optimization problem: the
existence of an optimal control. For any fixed k0 ≥ 0, we look for a control c∗ ∈ �(k0)
satisfying

U
(
c∗; k0

) = sup
c∈�(k0)

U (c; k0) = V (k0) .

We preliminary observe that the peculiar features of our problem, particularly the
absence of any boundedness conditions on the admissible controls, force us to make
use of this result in proving certain regularity and monotonicity properties of the value
function which usually do not require such a settlement—and which we postpone for
this reason.

First observe that by Theorem 4.1, (iii) if we set c0 :≡ 0, then U (c0, 0) = 0 =
V (0); hence c0 is optimal at 0.

Let k0 > 0; this will be the initial state which we will refer to during the whole
section—hence the meaning of this symbol will not change in this context.

We split the construction in various steps; first we make a simple but important

Remark 5.1 Suppose that ( fn)n∈N , f belong to L1
loc ([0,+∞) , R), and are such that

for every N ∈ N, fn ⇀ f in L1 ([0, N ] , R). If T > 0, T ∈ R, then it follows from
the definition of weak convergence that, for g ∈ L∞ ([0, T ] , R):

∫ T

0
g (s) fn (s) ds =

∫ [T ]+1

0
χ[0,T ]g (s) fn (s) ds →

∫ [T ]+1

0
χ[0,T ]g (s) f (s) ds

=
∫ T

0
g (s) f (s) ds.

Hence fn ⇀ f in L1 ([0, T ] , R), for every T > 0, T ∈ R.

Step 1 The first step is to find a maximizing sequence of controls which are admis-
sible at k0 and a function γ ∈ L1

loc ([0,+∞) , R), such that the sequence weakly
converges to γ in L1 ([0, T ] , R), for every T > 0.

By definition of supremum, we can find a maximizing sequence; that is to say, there
exist a sequence (cn)n∈N ⊆ �(k0) of admissible controls satisfying:

lim
n→+∞U (cn; k0) = V (k0) .

In order to apply the tools we set up at the beginning of the chapter, we need the
following result.

Lemma 5.1 Let T ∈ N and ( fn)n∈N ⊆ L1
loc ([0,+∞) , R), M (T ) > 0 such that

∀n ∈ N : ‖ fn‖∞,[0,T ] ≤ M (T ) .
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Then there exist a subsequence
(
f n
)
n∈N of ( fn)n∈N and a function f ∈ L1 ([0, T ] , R)

such that

f n ⇀ f in L1 ([0, T ] , R) .

Proof For every 0 ≤ t0 < t1 ≤ T :

∫ t1

t0
| fn (s)| ds ≤ ‖ fn‖∞,[0,T ] · (t1 − t0) ≤ M (T ) · (t1 − t0) .

Hence, by the fact that the family {(t0, t1) ∈ P ([0, T ]) /t0, t1 ∈ [0, T ]} generates the
Borel σ -algebra in [0, T ], and by the regularity property of the Lebesgue measure, it
is easy to verify that the latter relation holds for every measurable set E ⊆ [0, T ]; that
is to say

∫
E

| fn (s)| ds ≤ M (T ) · μ (E) .

This implies easily that the densities {dn/n ∈ N} given by dn (E) := ∫
E fn (s) ds are

absolutely equicontinuous. So the thesis follows from the Dunford–Pettis criterion.
Observe that the third condition required by such theorem, that is to say, for any ε > 0
there exists a compact set Kε ⊆ [0, T ] such that

∀n ∈ N :
∫
[0,T ]\Kε

fn (s) ds ≤ ε

is obviously satisfied. ��
Nowwe applyLemma3.2 to (cn)n∈N in order to find a new sequence

(
c1n
)
n∈N ⊆ �(k0)

such that, for every n ∈ N:

U
(
c1n; k0

)
≥ U (cn; k0)

c1n = cn ∧ N (k0, 1) a.e. in [0, 1] .

In particular
(
c1n
)
n∈N ⊆ L1

loc ([0,+∞) , R) and
∥∥c1n

∥∥∞,[0,1] ≤ N (k0, 1) for every

n ∈ N. Hence by Lemma 5.1, there exists a sequence
(
c1n
)
n∈N extracted from

(
c1n
)
n∈N

and a function c1 ∈ L1 ([0, 1] , R) such that

c1n ⇀ c1 in L1 ([0, 1] , R) .

Now define, for every n ∈ N:

c2n :=
(
c1n
)2
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where
(
c1n
)2

is understood with the notation of Lemma 3.2.
Hence for every n ∈ N:

U
(
c2n; k0

)
≥ U

(
c1n; k0

)

c2n = c1n ∧ N (k0, 2) a.e. in [0, 2] .

Again by Lemma 5.1, we can exhibit a subsequence
(
c2n
)
n∈N of

(
c2n
)
n∈N and a function

c2 ∈ L1 ([0, 2] , R) such that

c2n ⇀ c2 in L1 ([0, 2] , R) .

Following this pattern we are able to give a recursive definition of a family{((
cTn
)
n∈N ,

(
cTn
)
n∈N , cT

)
/T ∈ N

}
and a family of sequences of indices

{σT (·) : N → N/T ∈ N} satisfying, for every T, n ∈ N:

σT (·) is strictly increasing and σT (n) ≥ n

cTn ∈ �(k0) , cTn = cTσT (n)

U
(
cT+1
n ; k0

)
≥ U

(
cTn ; k0

)

cT+1
n = cTn ∧ N (k0, T + 1) a.e. in [0, T + 1]

cTn ⇀ cT in L1 ([0, T ] , R) (29)

Now fix T ∈ N. The above relations clearly imply that for every n ∈ N there exist
sets UT

n , V T
n ⊆ [0, T ] such that μ

(
[0, T ] \UT

n

) = μ
(
[0, T ] \ V T

n

) = 0 and

cT+1
n = cT+1

σT+1(n) = cTσT+1(n) ∧ N (k0, T + 1) in UT
n

cTσT+1(n) = cTσT ◦σT+1(n) ≤ N (k0, T ) in V T
n

By the monotonicity of the function N (·, ·) in the second variable (Lemma 3.2) we
obtain

cT+1
n = cTσT+1(n) inWT

n := UT
n ∩ V T

n . (30)

Hence
(
cT+1
n

)
n coincides, as a sequence, with

(
cTσT+1(n)

)
n
in

⋂
n W

T
n —that is to

say almost everywhere in [0, T ]. By the properties of σT+1 in (29), the latter is a
subsequence of

(
cTn
)
n . By the essential uniqueness of the weak limit in L1 ([0, T ])we

have:

cT+1 = cT almost everywhere in [0, T ] . (31)
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It remains to be constructed a maximizing sequence (γn)n∈N ⊆ �(k0) and a function
γ ∈ L1

loc ([0,+∞) , R) such that

γn ⇀ γ in L1 ([0, T ] , R) ∀T > 0.

Definition 5.1 (i) γ : [0,+∞) → R is the function

γ (t) := c[t]+1 (t) ∀t ≥ 0

(ii) ∀n ∈ N: γn := cnn .

Now, if we consider (for any fixed T ∈ N), the restriction to [0, T ] of the sequence
γT , γT+1, γT+2, . . . we see that there exists a subset of [0, T ], with negligible com-
plementary, in which such sequence coincides with a subsequence of

(
cTn
)
n . Indeed,

by computations similar to those carried out after Remark 30 we find that:

γT = cTT

γT+1 = cTσT+1(T+1) in WT
T+1

γT+2 = cTσT+1◦σT+2(T+2) in WT+1
T+2 ∩ WT

σT+2(T+2) ∩ [0, T ]

. . .

Any of these sets almost coincides with [0, T ] (and so does the intersection); moreover
by the properties of the σn’s we have T < σT+1 (T + 1) < σT+1 ◦ σT+2 (T + 2).

Now we can state the following

Proposition 5.1 Let (γn)n∈N, γ as in Definition 5.1. Then we have (γn)n∈N ⊆ �(k0),
γ ∈ L1

loc ([0,+∞) , R) and

lim
n→+∞U (γn; k0) = V (k0) .

Moreover, for every T ∈ N, (γn)n≥T , as a sequence, coincides almost everywhere in
[0, T ] with a subsequence of

(
cTn
)
n∈N. Consequently

‖γn‖∞,[0,T ] ≤ N (k0, T ) ∀T, n ∈ N, n ≥ T,

γn ⇀ γ in L1 ([0, T ] , R) ∀T > 0, T ∈ R.

Proof By Definition 5.1 and by the second condition in (29), γn = cnσn(n) ∈ �(k0).

Moreover, for every T ∈ N, γ = cT almost everywhere in [0, T ]; hence γ ∈
L1 ([0, T ] , R), which implies γ ∈ L1

loc ([0,+∞) , R) because T is generic.
Now fix n ∈ N. The above equality for γn cannot be developed in [0,+∞), but the

second and third condition in (29) imply that the following chain of inequalities for
the functional holds:
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U (γn; k0) ≥ U
(
cn−1
σn(n); k0

)
= U

(
cn−1
σn−1◦σn(n); k0

)

≥ U
(
cn−2
σn−1◦σn(n); k0

)
≥ · · · ≥ U

(
c1σ2◦···◦σn(n); k0

)

= U
(
c1σ1◦σ2◦···◦σn(n); k0

)
≥ U

(
cσ1◦σ2◦···◦σn(n); k0

)
.

Thus

|U (γn; k0) − V (k0)| = V (k0) −U (γn; k0)
≤ V (k0) −U

(
cσ1◦σ2◦···◦σn(n); k0

)
= ∣∣U (

cσ1◦σ2◦···◦σn(n); k0
) − V (k0)

∣∣ ;
since σ1 ◦ · · · ◦ σn (n) ≥ n, the fact that (γn)n∈N is a maximizing sequence follows
from the fact that, by assumption, (cn)n∈N is a maximizing sequence.

Now fix T ∈ N and observe that the argument developed after Definition 5.1
inductively shows that, for every k ∈ N:

γT+k = cTνT (k) (where νT (k) = σT+1 ◦ · · · ◦ σT+k (T + k))

in [0, T ] ∩ WT+k−1
T+k ∩

k−1⋂
p=1

WT+k−1−p⊙p−1
j=0 σT+k−(p−1− j)

(32)

Since by construction any set of the form [0, T ]\WT+k−1−p
m , p = 0, .., k−1 has null

Lebesgue measure, the above relation imply ‖γT+k‖∞,[0,T ] =
∥∥∥cTνT (k)

∥∥∥∞,[0,T ]
. This

quantity is bounded above by N (k0, T ), by the second and fourth condition in (29).
Moreover, the intersection for k ∈ N of the sets in (32) has negligible complemen-

tary in [0, T ]; since νT is strictly increasing, this implies that (γn)n≥T , as a sequence,
coincides almost everywhere in [0, T ] with a subsequence of

(
cTn
)
n∈N. In particular

γn ⇀ γ in L1 ([0, T ] , R) by the last condition in (29) and by the fact that γ = cT

almost everywhere in [0, T ].
As this holds for every T ∈ N, it is a consequence of Remark 5.1 that it must hold

for every real number T > 0. ��
The first step is then accomplished.

Step 2 The next step is to show that γ is admissible at k0. For this purpose, it is
enough to prove the following

Proposition 5.2 Let T > 0. Hence γ ≥ 0 almost everywhere in [0, T ], and, for every
t ∈ [0, T ], k (t; k0, γ ) ≥ 0.

Proof It is well known that the weak convergence of (γn)n∈N to γ in L1 ([0, T ] , R),
ensured by Proposition 5.1, implies that

lim inf
n→+∞ γn (t) ≤ γ (t) ≤ lim sup

n→+∞
γn (t) for almost every t ∈ [0, T ] . (33)
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By Proposition 5.1 we also have

∀n ∈ N : for almost every t ∈ [0, T ] : 0 ≤ γn (t) ≤ N (k0, T ) . (34)

We can interchange the quantifiers in the previous relation, since a numerable inter-
section of full-measure sets is a full-measure set. Consequently, taking the intersection
with the set where (33) holds, we have

0 ≤ γ ≤ N (k0, T ) a.e. in [0, T ]

k (·; k0, 0) ≥ κ ≥ k (·; k0, N (k0, T )) in [0, T ]

k (·; k0, 0) ≥ κn ≥ k (·; k0, N (k0, T )) in [0, T ] , ∀n ∈ N

where κ := k (·; k0, γ ) and κn := k (·; k0, γn); observe that the constant control
N (k0, T ) need not be admissible. The second relation follows from the first byRemark
3.2 and the third relation follows directly from (34). Hence:

|κ − κn| ≤ k (·; k0, 0) − k (·; k0, N (k0, T )) in [0, T ] , ∀n ∈ N. (35)

Fix n ∈ N. Subtracting the state equation for κ from the state equation for κn , we
obtain, for every t ∈ [0, T ]:

κ̇n (t) − κ̇ (t) = F (κn (t)) − F (κ (t)) − [
γn (t) − γ (t)

]
= hn (t) [κn (t) − κ (t)] − [

γn (t) − γ (t)
]
,

where hn is the (continuous) function defined taking k1 = κn and k2 = κ in Remark
3.2.

Integrating both sides of this equation between 0 and t , then taking absolute values
leads to:

|κn (t) − κ (t)| ≤ ∫ t
0 |hn (s)| |κn (s) − κ (s)| ds +

∣∣∣∣
∫ t

0

[
γ (s) − γn (s)

]
ds

∣∣∣∣. (36)

Observe that, for every s ∈ [0, t]:

|hn (s)| |κn (s) − κ (s)| ≤ M [k (s; k0, 0) − k (s; k0, N (k0, T ))] ,

by Remark 3.3 and by (35).
This holds for every n ∈ N and for every fixed t ∈ [0, T ]. Since the function of s on

the right hand side obviously belongs to L1 ([0, t])we obtain from (36) (remembering
that γn ⇀ γ in L1 ([0, t])):
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lim sup
n→+∞

|κn (t) − κ (t)| ≤ lim sup
n→+∞

∫ t

0
|hn (s)| |κn (s) − κ (s)| ds

≤
∫ t

0
lim sup
n→+∞

|hn (s)| |κn (s) − κ (s)| ds (37)

≤
∫ t

0
M lim sup

n→+∞
|κn (s) − κ (s)| ds.

Hence by Gronwall’s inequality:

lim sup
n→+∞

|κn (t) − κ (t)| = 0,

for every t ∈ [0, T ]. This is equivalent to

lim
n→+∞ κn = κ in [0, T ] .

Since any κn is non-negative in [0, T ], the second assertion of the theorem is also
proved. ��

Remark 5.2 The argument behind (37) goes as follows. Let

an := sup
j≥n

∣∣h j
∣∣ ∣∣κ j − κ

∣∣ .

Then

|an| = an ≤ M [k (·; k0, 0) − k (·; k0, N (k0, T ))] ∀n ∈ N

an ↓n→+∞ lim sup
m→+∞

|hm | |κm − κ| in [0, t] .

Then by Dominated Convergence:

inf
n∈N

∫ t

0
an (s) ds =

∫ t

0
lim sup
m→+∞

|hm (s)| |κm (s) − κ (s)| ds.

Moreover for every n ∈ N and every i ≥ n:

an = sup
j≥n

∣∣h j
∣∣ ∣∣κ j − κ

∣∣ ≥ |hi | |κi − κ| ,

which implies, passing to the integrals and then taking the sup for i ≥ n:

∫ t

0
an (s) ds ≥ sup

i≥n

∫ t

0
|hi (s)| |κi (s) − κ (s)| ds ∀n ∈ N.

123



Appl Math Optim

Hence, passing to the inf for n ∈ N:

inf
n∈N

∫ t

0
an (s) ds ≥ lim sup

m→+∞

∫ t

0
|hm (s)| |κm (s) − κ (s)| ds.

As a consequence of Proposition 5.2, γ is almost everywhere non-negative in [0,+∞)

and k (·; k0, γ ) is everywhere non-negative in [0,+∞) - which precisely means that
γ ∈ �(k0). Hence the second step is also ended.

Step 3Now it is time to define the control which is optimal at k0. In order to do this,
we need to extract a subsequence from (γn)n∈N because the weak convergence to γ in
the intervals could not be enough to ensure that limn→+∞ U (γn; k0) = U (γ ; k0); we
will also need the admissibility of γ . By the penultimate assertion stated in Proposition
5.1, and by the monotonicity of u, we have:

‖u (γn)‖∞,[0,1] ≤ u (N (k0, 1)) ∀n ∈ N.

Hence by Lemma 5.1, there exists a function f 1 ∈ L1 ([0, 1] , R) and a sequence(
u
(
γ1,n

))
n∈N extracted from (u (γn))n∈N, such that

u
(
γ1,n

)
⇀ f 1 in L1 ([0, 1] , R) .

Again by Proposition 5.1 and the monotonicity of u,

∥∥u (γ1,n)∥∥∞,[0,2] ≤ u (N (k0, 2)) ∀n ∈ N

which implies by Lemma 5.1 the existence of f 2 ∈ L1 ([0, 2] , R) and of a sequence(
u
(
γ2,n

))
n∈N extracted from

(
u
(
γ1,n

))
n∈N such that

u
(
γ2,n

)
⇀ f 2 in L1 ([0, 2] , R) ;

in particular f 2 = f 1 almost everywhere in [0, 1] by the essential uniqueness of the
weak limit.

Going on this way we see that there exists a family
{(
u
(
γT,n

)
n∈N , f T

)
/T ∈ N

}
satisfying, for every T ∈ N:

∥∥u (γT,n
)∥∥∞,[0,T ] ≤ u (N (k0, T )) ∀n ∈ N(

u
(
γT+1,n

))
n∈N is extracted from

(
u
(
γT,n

))
n∈N

f T+1 = f T almost everywhere in [0, T ]

u
(
γT,n

)
⇀ f T in L1([0, T ], R).

Hence, for every T ∈ N, the sequence
(
u
(
γn,n

))
n≥T is extracted from

(
u
(
γT,n

))
n∈N.

If we define f (t) := f [t]+1 (t), then f = f T almost everywhere in [0, T ]. So

u
(
γn,n

)
⇀ f in L1 ([0, T ] , R) ∀T > 0. (38)
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by construction and by Remark 5.1. This implies that

0 ≤ lim inf
n→+∞ u

(
γn,n (t)

) ≤ f (t)

for almost every t ∈ R.
Now define c∗ : [0,+∞) → R as

c∗ (t) :=
{
u−1 ( f (t)) if f (t) ≥ 0

0 if f (t) < 0.

Obviously c∗ ≥ 0 everywhere in [0,+∞). Moreover, again by the properties of the
weak convergence, for any T ∈ N and for almost every t ∈ [0, T ]:

f (t) ≤ lim sup
n→+∞

u
(
γn,n (t)

) ≤ u (N (k0, T )) .

This implies, together with the fact that u−1 is increasing, that c∗ is bounded above
by N (k0, T ) almost everywhere in [0, T ]. As this holds for every T ∈ N,

c∗ ∈ L∞
loc ([0,+∞) , R) . (39)

To complete the proof of the admissibility of c∗, we show that c∗ ≤ γ almost every-
where in [0,+∞).

Fix T > 0 and let t0 ∈ [0, T ] be a Lebesgue point for both f and γ in [0, T ]; then
take t1 ∈ (t0, T ). By the concavity of u and by Jensen inequality:

∫ t1
t0
u
(
γn,n (s)

)
ds

t1 − t0
≤ u

(∫ t1
t0

γn,n (s) ds

t1 − t0

)
(40)

Observe that
(
γn,n

)
n≥1 is a subsequenceof

(
γ1,n

)
n∈N,which is in its turn extracted from

(γn)n∈N. Hence γn,n ⇀ γ in L1 ([0, T ] , R), which implies limn→+∞
∫ t1
t0

γn,n (s)

ds = ∫ t1
t0

γ (s) ds. So taking the limit for n → +∞ in (40), by the continuity of u and
by (38), we have:

∫ t1
t0

f (s) ds

t1 − t0
≤ u

(∫ t1
t0

γ (s) ds

t1 − t0

)
.

As t0 is a Lebesgue point for both f and γ in [0, T ], we can take the limit for t1 → t0
in the previous inequality and get f (t0) ≤ u (γ (t0)).

By the Lebesgue Point Theorem, this argument works for almost every t0 ∈ [0, T ].
So by the monotonicity of u−1 we deduce

c∗ ≤ γ almost everywhere in [0, T ] .
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Because T is generic, we have by (5): k (t; k0, c∗) ≥ k (t; k0, γ ) for every t ∈ R.
Hence by the admissibility of γ at k0, k (·; k0, c∗) ≥ 0. This implies, together with
(39) and c∗ ≥ 0 in [0,+∞),

c∗ ∈ �(k0) .

Finally, observe that by Lemma 4.1 we can apply the Dominated Convergence
Theorem to the functions t → e−ρt

∫ t
0 u

(
γn,n (s)

)
ds, n ∈ N.

Hence, using the functional form established in the same Lemma, part (iii), by
Proposition 5.1, by the fact that

(
γn,n

)
n∈N is extracted from (γn)n∈N, and by (38):

V (k0) = lim
n→+∞U (γn; k0) = lim

n→+∞U
(
γn,n; k0

)

= lim
n→+∞ ρ

∫ +∞

0
e−ρt

∫ t

0
u
(
γn,n (s)

)
dsdt

= ρ

∫ +∞

0
e−ρt lim sup

n→+∞

∫ t

0
u
(
γn,n (s)

)
dsdt

= ρ

∫ +∞

0
e−ρt

∫ t

0
f (s) dsdt

= ρ

∫ +∞

0
e−ρt

∫ t

0
u
(
c∗ (s)

)
dsdt = U

(
c∗; k0

)
.

So we have proved the following

Theorem 5.1 For every k0 ≥ 0 there exists c∗ ∈ �(k0) which is optimal at k0 and
everywhere positive in [0,+∞), satisfying:

c∗ ∈ L∞
loc([0,+∞), R).

6 Further Properties of the Value Function: Regularity and
Monotonicity

Now it is possible to establish some regularity andmonotonicity properties of the value
function, with the help of optimal controls. The next theorem uses the monotonicity
with respect to the first variable of the function defined in Lemma 3.2.

Theorem 6.1 The value function V : [0,+∞) → R satisfies:

(i) V is strictly increasing in [0,+∞).
(ii) For every k0 > 0, there exists C (k0) , δ > 0 such that for every h ∈ (−δ, δ):

V (k0 + h) − V (k0)

h
≥ C (k0)

(iii) V is Lipschitz-continuous in every closed sub-interval of (0,+∞).
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Proof (i) Let 0 < k1. Set c ∈ (0, F (k1)] and c1 ≡ c in [0,+∞); hence by Propo-
sition 3.1 and by Theorem 4.1,

V (0) = 0 <
u (c)

ρ
= U (c1; k1) ≤ V (k1) .

The implication 0 < k0 < k1 �⇒ V (k0) < V (k1) follows from point (ii).
(ii) We split the proof in two parts.

First, take k0, h > 0, c optimal at k0 and set k1 := k0 + h. Because k1 > k0 we
can choose ck1−k0 = ch ∈ �(k0 + h) as in Lemma 3.3. Hence

V (k0 + h) − V (k0) ≥ U
(
ch; k0 + h

)
−U (c; k0)

≥ u′ (N (k0, h) + 1)
∫ h

0
e−ρtdt

Now, by the fact that limh→0
1
h

∫ h
0 e−ρtdt = 1 and that N (k0, ·) is increasing,

there exists δ > 0 such that, for any h ∈ (0, δ):

V (k0 + h) − V (k0)

h
≥ u′ (N (k0, h) + 1)

∫ h
0 e−ρtdt

h
≥ u′ (N (k0, 1) + 1)

2
=: C (k0)

In the second place, fix k0 > 0, h < 0 and c optimal at k0 + h.
Then again take ck0−(k0+h) = c−h ∈ �(k0) as in Lemma 3.3. Hence

V (k0 + h) − V (k0) ≤ U (c; k0 + h) −U
(
c−h; k0

)

≤ −u′ (N (k0 + h,−h) + 1)
∫ −h

0
e−ρtdt.

We can assume that − 1
h

∫ −h
0 e−ρtdt ≥ 1

2 for −δ < h < 0. Hence, by the
monotonicity of N (·, ·) in both variables, for every h ∈ (−δ, 0):

V (k0 + h)−V (k0)

h
≥ u′ (N (k0+h,−h)+1)

2
≥ u′ (N (k0, 1) + 1)

2
= C (k0) .

(iii) Let 0 < k0 < k1. We need a reverse inequality for V (k1) − V (k0), so take
c1 ∈ �(k1) optimal at k1. In order to define the proper c0 ∈ �(k0), observe that
the orbit k = k (·; k0, 0) (with null control) satisfies k̇ = F (k).With an argument
similar to the one used in Proposition 3.1 we can see that k̇ (t) > F (k0) > 0 for
every t > 0, and so limt→+∞ k (t) = +∞.
Then byDarboux’s property there exists t̄ > 0 such that k

(
t̄
) = k1. Observe that,

since k and F are strictly increasing functions, k̇ must also be strictly increasing.
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Hence applying Lagrange’s theorem to k gives for some ξ ∈ (
0, t̄

)
:

k1 − k0 = k
(
t̄
) − k (0) = t̄ · k̇ (ξ) > t̄ k̇ (0) = t̄ F (k0) (41)

Now define

c0 (t) :=
{
0 if t ∈ [

0, t̄
]

c1
(
t − t̄

)
if t > t̄

It is easy to check that c0 ∈ �(k0), because

k (t; k0, c0) = k (t; k0, 0) > 0 ∀t ∈ [
0, t̄

]
k
(
t + t̄; k0, c0

) = k (t; k1, c1) ≥ 0 ∀t ≥ 0

by the uniqueness of the orbit; as far as the second equality is concerned, observe
that both orbits pass through (0, k1) and satisfy the differential equation con-
trolled with c1 for t > 0. Hence by (41):

V (k1)−V (k0) ≤ U (c1; k1)−U (c0; k0)=
∫ +∞

0
e−ρt [u (c1 (t))−u (c0 (t))] dt

=
∫ +∞

0
e−ρt u (c1 (t)) dt −

∫ +∞

t̄
e−ρt u

(
c1
(
t − t̄

))
dt

=
∫ +∞

0
e−ρt u (c1 (t)) dt −

∫ +∞

0
e−ρ(s+t̄)u (c1 (s)) ds

=
(
1 − e−ρ t̄

)
U (c1; k1)

=
(
1 − e−ρ t̄

)
V (k1) ≤ ρ t̄ V (k1) < ρV (k1)

k1 − k0
F (k0)

So by the monotonicity of V and F we have, for a ≤ k0 < k1 ≤ b:

V (k1) − V (k0) ≤ ρ
V (b)

F (a)
(k1 − k0) .

��

7 Dynamic Programming

7.1 Dynamic Programming Principle and Characterization of Optimal Controls

In this section we study the properties of the value function as a solution to Bellman
and HJB equations.

First observe that we can translate an orbit by translating the control, according to
the next remark.
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Remark 7.1 (Translation of the orbit) For every k0, τ ≥ 0 and every c ∈
L1
loc[(0,+∞) , R):

k (·; k (τ ; k0, c) , c (· + τ)) = k (· + τ ; k0, c)

by the uniqueness of the orbit. In particular, if c ∈ �(k0) then c (· + τ) ∈
�(k (τ ; k0, c)).
Thefirst step consists in proving a suitable version ofDynamicProgrammingPrinciple.

Theorem 7.1 For every τ > 0, the value function V : [0,+∞) → R satisfies the
following functional equation:

∀k0 ≥ 0 : v (k0) = sup
c∈�(k0)

{∫ τ

0
e−ρt u (c (t)) dt + e−ρτv (k (τ ; k0, c))

}
(42)

in the unknown v : [0,+∞) → R.

Proof Fix τ > 0 and k0 ≥ 0, and set

σ (τ, k0) := sup
c∈�(k0)

{∫ τ

0
e−ρt u (c (t)) dt + e−ρτV (k (τ ; k0, c))

}
.

We prove that

σ (τ, k0) = sup
c∈�(k0)

U (c; k0).

In the first place, we show that σ (τ, k0) is an upper bound of {U (c; k0) / c ∈ �(k0)}.
Fix c ∈ �(k0); then by Remark 7.1 c (· + τ) ∈ �(k (τ ; k0, c)); hence

σ (τ, k0) ≥
∫ τ

0
e−ρt u (c (t)) dt + e−ρτV (k (τ ; k0, c))

≥
∫ τ

0
e−ρt u (c (t)) dt + e−ρτU (c (· + τ) ; k (τ ; k0, c))

=
∫ τ

0
e−ρt u (c (t)) dt +

∫ +∞

0
e−ρ(t+τ)u (c (t + τ)) dt

=
∫ τ

0
e−ρt u (c (t)) dt +

∫ +∞

τ

e−ρsu (c (s)) dt = U (c; k0)

In the second place, fix ε > 0, and take

0 < ε′ ≤ 2ε(
1 + e−ρτ

) .

Hence there exists c̃ε ∈ �(k0) and ˜̃cε ∈ �(k (τ ; k0, c̃ε)) such that
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σ (τ, k0) − ε ≤ σ (τ, k0) − ε′

2

(
1 + e−ρτ

)

≤
∫ τ

0
e−ρt u (c̃ε (t)) dt + e−ρτV (k (τ ; k0, c̃ε)) − e−ρτ ε′

2

≤
∫ τ

0
e−ρt u (c̃ε (t)) dt + e−ρτU

( ˜̃cε; k (τ ; k0, c̃ε)
)

=
∫ τ

0
e−ρt u (c̃ε (t)) dt +

∫ +∞

0
e−ρ(t+τ)u

( ˜̃cε (t)
)
dt

Now set

cε (t) :=
{
c̃ε (t) if t ∈ [0, τ ]
˜̃cε (t − τ) if t > τ

Hence cε ∈ L1
loc ([0,+∞) , R) and ∀t > 0 : cε (t + τ) = ˜̃cε (t). So:

σ (τ, k0) − ε ≤
∫ +∞

0
e−ρt u (cε (t)) dt (43)

Finally, it is easy to show that cε ∈ �(k0). Observe that k (·; k0, cε) = k (·; k0, c̃ε) in
[0, τ ] by definition of cε and by uniqueness. In particular k (τ ; k0, cε) = k (τ ; k0, c̃ε),

so that k (· + τ ; k0, cε) and k
(
·; k (τ ; k0, c̃ε) , ˜̃cε

)
have the same initial value; more-

over, these two orbits satisfy the same state equation (i.e. the equation associated to
the control cε (· + τ)) and so they coincide, again by uniqueness. Recalling that by
definition c̃ε ∈ �(k0) and ˜̃cε ∈ �(k (τ ; k0, c̃ε)), we have k (t; k0, cε) ≥ 0 for all
t ≥ 0. Hence by (43) we can write

σ (τ, k0) − ε ≤ U (cε; k0)

and the assertion is proven. ��
Equation (42) is called Bellman Functional Equation.

A consequence of the above theorem is that every control which is optimal respect
to a state, is also optimal respect to every following optimal state. But Theorem 7.1 also
suggests and partially imply a useful characterization of optimal controls as solutions
of a certain integral equation.

Theorem 7.2 Let k0 ≥ 0, c∗ ∈ �(k0). Hence the following are equivalent:

(i) c∗ is optimal at k0
(ii) For every τ > 0:

V (k0) =
∫ τ

0
e−ρt u

(
c∗ (t)

)
dt + e−ρτV

(
k
(
τ ; k0, c∗))

Moreover, (i) or (ii) imply that for every τ > 0, c∗ (· + τ) is admissible and
optimal at k (τ ; k0, c∗).
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Proof (i) ⇒ (ii) Let us assume that c∗ is admissible and optimal at k0 ≥ 0 and fix
τ > 0. Observe that c∗ (· + τ) is admissible at k (τ ; k0, c∗) by Remark 7.1. Hence, by
Theorem 7.1:

V (k0) ≥
∫ τ

0
e−ρt u

(
c∗ (t)

)
dt + e−ρτV

(
k
(
τ ; k0, c∗))

≥
∫ τ

0
e−ρt u

(
c∗ (t)

)
dt + e−ρτU

(
c∗ (· + τ) ; k (τ ; k0, c∗))

=
∫ +∞

0
e−ρt u

(
c∗ (t)

)
dt = U

(
c∗; k0

) = V (k0) . (44)

Hence

V (k0) =
∫ τ

0
e−ρt u

(
c∗ (t)

)
dt + e−ρτV

(
k
(
τ ; k0, c∗)) . (45)

(ii) ⇒ (i) Suppose that c∗ ∈ �(k0) and (45) holds for every τ > 0. For every ε > 0
pick ĉε ∈ �

(
k
( 1

ε
; k0, c∗)) such that:

V

(
k

(
1

ε
; k0, c∗

))
− ε ≤ U

(
ĉε; k

(
1

ε
; k0, c∗

))
. (46)

Then define

cε (t) :=
{
c∗ (t) if t ∈ [

0, 1
ε

]
ĉε

(
t − 1

ε

)
if t > 1

ε

By the same arguments we used in the proof of Theorem 7.1, cε ∈ �(k0) and,
obviously, cε

(
t + 1

ε

) = ĉε (t) for every t > 0.
Hence, taking τ = 1/ε in (45), we have by (46):

V (k0) − εe−ρ/ε =
∫ 1/ε

0
e−ρt u

(
c∗ (t)

)
dt + e−ρ/ε

[
V

(
k

(
1

ε
; k0, c∗

))
− ε

]

≤
∫ 1/ε

0
e−ρt u

(
c∗ (t)

)
dt + e−ρ/εU

(
ĉε; k

(
1

ε
; k0, c∗

))

=
∫ 1/ε

0
e−ρt u

(
c∗ (t)

)
dt +

∫ +∞

0
e
−ρ

(
t+ 1

ε

)
u

(
cε

(
t + 1

ε

))
dt

=
∫ 1/ε

0
e−ρt u

(
c∗ (t)

)
dt +

∫ +∞

1/ε
e−ρsu (cε (s)) ds (47)

Nowwe show that the second addend tends to 0 as ε → 0. First, using Jensen inequality
and the properties of the function ψk0 established in Lemma 4.1, we see that for every
T ≥ 1/ε:
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∫ T

1/ε
e−ρsu (cε (s)) ds =

[
e−ρs

∫ s

1/ε
u (cε (τ )) dτ

]s=T

s=1/ε

+ρ

∫ T

1/ε
e−ρs

∫ s

1/ε
u (cε (τ )) dτds

≤ e−ρT
∫ T

0
u (cε (τ )) dτ + ρ

∫ T

1/ε
e−ρs

∫ s

0
u (cε (τ )) dτds

≤ ψk0 (T ) + ρ

∫ T

1/ε
se−ρsu

(∫ s
0 cε (τ ) dτ

s

)
ds

→ ρ

∫ +∞

1/ε
se−ρsu

(∫ s
0 cε (τ ) dτ

s

)
ds as T → +∞ (48)

(remembering that cε is admissible at k0). By point (i) of Lemma 4.1, for every ε < 1
and every s ≥ 1/ε:

se−ρsu

(∫ s
0 cε (τ ) dτ

s

)
≤ se−ρsu

(
M (k0)

[
1 + e(L+ε0)s

]
+ M (k0)

s (L + ε0)

)

≤ se−ρs
{
u (M (k0)) + M (k0) u

(
e(L+ε0)s

)
+ u

(
M (k0)

L + ε0

)}

(remembering that u is increasing and has the properties in Remark 4.2) which implies,
together with (48), for every ε < 1:

0 ≤
∫ +∞

1/ε
e−ρsu (cε (s)) ds ≤ ρ

∫ +∞

1/ε
se−ρsu

(∫ s
0 cε (τ ) dτ

s

)
ds

≤ ρ

[
u (M (k0)) + u

(
M (k0)

L + ε0

)]∫ +∞

1/ε
se−ρsds

+ ρM (k0)
∫ +∞

1/ε
se−ρsu

(
e(L+ε0)s

)
ds.

By Remark 2.1 the last integral converges, hence the upper bound tends to 0 as ε → 0.
Hence, letting ε → 0 in (47), we find:

V (k0) ≤
∫ +∞

0
e−ρt u

(
c∗ (t)

)
dt = U

(
c∗; k0

)

which implies that c∗ is optimal at k0.
Finally, if (i) holds, then by (44):

V
(
k
(
τ ; k0, c∗)) = U

(
c∗ (· + τ) ; k (τ ; k0, c∗)) .

��
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7.2 The Value Function as a Viscosity Solution of HJB

In many interesting cases the value function V is non-differentiable. Moreover, in
general it is not possible to prove the differentiability of V relying only on the fact
that it solves the Bellman Functional Equation, or BFE (in our case, Eq. (42)), since
the latter needs not have a unique regular solution. Of course such equation has a
natural “infinitesimal version” (usually called Hamilton–Jacobi–Bellman equation, or
HJB, which is in general a first order non-linear PDE), and it can be proven that any
continuously differentiable solution to BFE is indeed a solution of HJB. This is of no
help without information about the regularity of V ; furthermore, HJB could have no
classical solution (see e.g. [13]).

This is why the theory of viscosity solutions plays a key role in Dynamic Program-
ming methods: one wonders if the value function is a solution of HJB in a weaker
sense. As pointed out in the introduction, our case is a bit special meaning that the
problem itself of the value function being a viscosity solution of HJB equation must
be proven to be well-posed. Indeed the “right” equation involves an Hamiltonian func-
tion whose domain is not R

N (in our case R
2), so the test functions involved in the

definition of viscosity solution must match this restriction. This is ensured by asking
that the candidate solution has a special property, stronger than monotonicity.

Definition 7.1 Let f ∈ C0 ((0,+∞) , R); we say that f ∈ C+ ((0,+∞) , R) if, and
only if, for every k0 > 0 there exist δ,C+,C− > 0 such that

f (k0 + h) − f (k0)

h
≥ C+ ∀h ∈ (0, δ)

f (k0 + h) − f (k0)

h
≥ C− ∀h ∈ (−δ, 0)

We note that by Theorem 6.1, (ii) the value function V satisfies

V ∈ C+ ((0,+∞) , R) . (49)

Definition 7.2 The function H : [0,+∞) × (0,+∞) → R defined by

H (k, p) := − sup {[F (k) − c] · p + u (c) / c ∈ [0,+∞)}

is called Hamiltonian.
The equation

ρv (k) + H
(
k, v′ (k)

) = 0 ∀k > 0 (50)

in the unknown v ∈ C+ ((0,+∞) , R) ∩ C1 ((0,+∞) , R) is called HJB equation.

Observe that any solution of (50) must be strictly increasing, by Definition 7.1.

Remark 7.2 The Hamiltonian is always finite. Indeed

− sup
c∈[0,+∞)

{[F (k) − c] · p + u (c)} > −∞ ⇐⇒ p > 0.
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If p > 0, since limc→+∞ u′ (c) = 0 we can choose cp ≥ 0 such that u′ (cp) ≤ p; this
implies by the concavity of u:

∀c ≥ 0 : u (c) − cp ≤ u (c) − u′ (cp) c ≤ u
(
cp
) − u′ (cp) cp,

so that

−F (k) p − sup
c∈[0,+∞)

{u (c) − cp} ≥ −F (k) p − u
(
cp
) + u′ (cp) cp > −∞.

Otherwise, when p ≤ 0, since limc→+∞ u (c) = +∞ we have

−F (k) p − sup
c∈[0,+∞)

{u (c) − cp} ≤ −F (k) p − sup
c∈[0,+∞)

u (c) = −∞.

Definition 7.3 A function v ∈ C+ ((0,+∞) , R) is called a viscosity subsolution
[supersolution] of (HJB) if, and only if:

for every ϕ ∈ C1 ((0,+∞) , R) and for every local maximum [minimum] point
k0 > 0 of v − ϕ:

ρv (k0) − sup
{
[F (k0) − c] · ϕ′ (k0) + u (c) / c ∈ [0,+∞)

} =
ρv (k0) + H

(
k0, ϕ

′ (k0)
) ≤ 0

[≥ 0]

If v is both a viscosity subsolution of (HJB) and a viscosity supersolution of (HJB),
then we say that v is a viscosity solution of (HJB).

Remark 7.3 The latter definition is well posed. Indeed, let v ∈ C+ ((0,+∞) , R) and
ϕ ∈ C1 ((0,+∞) , R). If k0 is a local maximum for v − ϕ in (0,+∞), then for h < 0
big enough we have:

v (k0) − v (k0 + h) ≥ ϕ (k0) − ϕ (k0 + h) �⇒
0 < C− ≤ v (k0) − v (k0 + h)

h
≤ ϕ (k0) − ϕ (k0 + h)

h
.

If k0 is a local minimum for v − ϕ in (0,+∞), then for h > 0 small enough we have:

v (k0) − v (k0 + h) ≤ ϕ (k0) − ϕ (k0 + h) �⇒
0 < C+ ≤ v (k0) − v (k0 + h)

h
≤ ϕ (k0) − ϕ (k0 + h)

h
.

In both cases, we have ϕ′ (k0) > 0, so the quantity H
(
k0, ϕ′ (k0)

)
involved in the

definition is well-defined.

Thus we see that the value function is a good candidate to be a viscosity solution
of HJB. We are now going to prove that this is indeed the case. As pointed out in the
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introduction, this will be done without any regularity assumption on H ; nevertheless,
this function can be easily shown to be continuous, since for every k ≥ 0, p > 0:

H (k, p) = F (k) p + (−u)∗ (p) ,

where (−u)∗ is the (convex) conjugate function of the convex function −u.

Lemma 7.1 Let k0 > 0 and (cT )T>0 ⊆ �(k0) satisfying:

‖cT ‖∞,[0,T ] ≤ N (k0, T ) ∀T > 0.

where N is the function defined in Lemma 3.2. Hence

∀T ∈ [0, 1] : ∀t ∈ [0, T ] : |k (t; k0, cT ) − k0| ≤ T eM̄t [F (k0) + N (k0, 1)] .

In particular k (T ; k0, cT ) → k0 as T → 0.

Proof Set k0 and (cT )T>0 as in the hypothesis and fix 0 ≤ T ≤ 1. Hence integrating
both sides of the state equation we get, for every t ∈ [0, T ]:

k (t; k0, cT ) − k0 =
∫ t

0
[F (k0) − cT (s)] ds +

∫ t

0
[F (k (s; k0, cT )) − F (k0)] ds

which implies by Remark 3.3:

|k (t; k0, cT ) − k0| ≤
∫ t

0
|F (k0) − cT (s)| ds +

∫ t

0
|F (k (s; k0, cT )) − F (k0)| ds

≤
∫ T

0
|F (k0) − cT (s)| ds + M̄

∫ t

0
|k (s; k0, cT ) − k0| ds

Hence by Gronwall’s inequality and by the monotonicity of N (k0, ·), for every T ∈
[0, 1] and every t ∈ [0, T ]:

|k (t; k0, cT ) − k0| ≤ eM̄t
∫ T

0
|F (k0) − cT (s)| ds

≤ T eM̄t [F (k0) + N (k0, T )]

≤ T eM̄t [F (k0) + N (k0, 1)] .

��
Theorem 7.3 The value function V : [0,+∞) → R is a viscosity solution of (HJB).

Consequently, if V ∈ C1 ([0,+∞), R), then V is strictly increasing and is a solution
of (HJB)- (50) in the classical sense.
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Proof In the first place, we show that V is a viscosity supersolution of (HJB).
Let ϕ ∈ C1 ((0,+∞), R) and k0 > 0 be a local minumum point of V − ϕ, so that

V (k0) − V ≤ ϕ (k0) − ϕ (51)

in a proper neighbourhood of k0. Now fix c ∈ [0,+∞) and set k := k (·; k0, c). As
k0 > 0, there exists Tc > 0 such that k > 0 in [0, Tc]. Hence the control

c̃ (t) :=
{
c if t ∈ [0, Tc]

0 if t > Tc

is admissible at k0. Then by Theorem 7.1, for every τ ∈ [0, Tc]:

V (k0) − V (k (τ )) ≥
∫ τ

0
e−ρt u (c̃ (t)) dt + V (k (τ ))

[
e−ρτ − 1

]

= u (c)
∫ τ

0
e−ρtdt + V (k (τ ))

[
e−ρτ − 1

]
.

Hence by (51) and by the continuity of k, we have for every τ > 0 sufficiently small:

ϕ (k (0)) − ϕ (k (τ ))

τ
≥ u (c)

∫ τ

0 e−ρtdt

τ
+ V (k (τ ))

[
e−ρτ − 1

]
τ

.

Letting τ → 0 and using the continuity of V and k:

−ϕ′ (k0) [F (k0) − c] ≥ u (c) − ρV (k0)

which implies, taking the sup for c ≥ 0:

ρV (k0) + H
(
k0, ϕ

′ (k0)
) ≥ 0

Secondly we show that V is a viscosity subsolution of HJB.
Let ϕ ∈ C1 ((0,+∞), R) and k0 > 0 be a local maximum point of V − ϕ, so that

V (k0) − V ≥ ϕ (k0) − ϕ (52)

in a proper neighborhood N (k0) of k0.
Fix ε > 0 and, using the definition of V , define a family of controls

(
cT,ε

)
T>0 ⊆

�(k0) such that for every T > 0:

V (k0) − T ε ≤ U
(
cT,ε; k0

)
. (53)
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Now take
(
cT,ε

)T as in Lemma 3.2 and set c̄T,ε := (
cT,ε

)T for simplicity of notation
(so that c̄T,ε ∈ �(k0)). We have:

V (k0) − T ε ≤ U
(
cT,ε; k0

) ≤ U
(
c̄T,ε; k0

)

=
∫ T

0
e−ρt u

(
c̄T,ε (t)

)
dt+e−ρT

∫ +∞

T
e−ρ(s−T )u

(
c̄T,ε (s−T+T )

)
ds

=
∫ T

0
e−ρt u

(
c̄T,ε (t)

)
dt + e−ρTU

(
c̄T,ε (· + T ) ; k (T ; k0, c̄T,ε

))

≤
∫ T

0
e−ρt u

(
c̄T,ε (t)

)
dt + e−ρT V

(
k
(
T ; k0, c̄T,ε

))

where we have used Remark 7.1.
By Lemma 7.1 we have for T > 0 sufficiently small (say T < T̂ ),

k
(
T ; k0, c̄T,ε

) ∈ N (k0) .

Hence, setting k̄T,ε := k
(·; k0, c̄T,ε

)
, for every T < T̂ , we have by (52):

ϕ (k0)−ϕ
(
k̄T,ε (T )

)−e−ρT V
(
k̄T,ε (T )

) ≤ V (k0)−V
(
k̄T,ε (T )

)−e−ρT V
(
k̄T,ε (T )

)

≤
∫ T

0
e−ρt u

(
c̄T,ε (t)

)
dt−V

(
k̄T,ε (T )

)+T ε

which implies

∫ T

0
− {

ϕ′ (k̄T,ε (t)
) [

F
(
k̄T,ε (t)

) − c̄T,ε (t)
] + e−ρt u

(
c̄T,ε (t)

)}
dt

≤ V
(
k̄T,ε (T )

) [
e−ρT − 1

]
+ T ε. (54)

Observe that the integral at the left hand member is bigger than:

∫ T

0
− {[

ϕ′ (k0) + ω1 (t)
] [

F (k0) − c̄T,ε (t) + ω2 (t)
] + u

(
c̄T,ε (t)

)}
dt

=
∫ T

0
− {

ϕ′ (k0)
[
F (k0) − c̄T,ε (t)

] + u
(
c̄T,ε (t)

)}
dt

+
∫ T

0
− {

ϕ′ (k0) ω2 (t) dt + ω1 (t)
[
ω2 (t) + F (k0) − c̄T,ε (t)

]}
dt (55)

where ω1, ω2 are functions which are continuous in a neighborhood of 0 and satisfy:

ω1 (0) = ω2 (0) = 0.
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This implies, for T < 1:

∣∣∣∣
∫ T

0
ϕ′ (k0) ω2 (t) dt +

∫ T

0
ω1 (t)

[
ω2 (t) + F (k0) − c̄T,ε (t)

]
dt

∣∣∣∣
≤ ∣∣ϕ′ (k0)

∣∣ o1 (T ) + o2 (T ) +
∫ T

0
|ω1 (t)| [F (k0) + c̄T,ε (t)

]
dt

≤ ∣∣ϕ′ (k0)
∣∣ o1 (T ) + o2 (T ) + [F (k0) + N (k0, T )] o3 (T )

≤ ∣∣ϕ′ (k0)
∣∣ o1 (T ) + o2 (T ) + [F (k0) + N (k0, 1)] o3 (T )

where

lim
T→0

oi (T )

T
= 0

for i = 1, 2, 3. Observe that this is true even if the oi s depend on T , by Lemma 7.1.
For instance,

|o1 (T )| =
∣∣∣∣
∫ T

0
ω2 (t) dt

∣∣∣∣ ≤ T max
[0,T ]

|ω2| = T |ω2 (τT )|
= T

∣∣F (
k̄T,ε (τT )

) − F (k0)
∣∣

≤ MT
∣∣k̄T,ε (τT ) − k0

∣∣ ≤ MT 2eM̄τT [F (k0) + N (k0, 1)]

Moreover, by the fact that V ∈ C+ ([0,+∞) , R) and by Remark 7.3, we have for any
t ∈ [0, T ]:

− {
ϕ′ (k0)

[
F (k0) − c̄T,ε (t)

] + u
(
c̄T,ε (t)

)} ≥ − sup
c≥0

{
ϕ′ (k0) [F (k0) − c] + u (c)

}

= H
(
k0, ϕ

′ (k0)
)

> −∞,

by which we can write:

∫ T

0
− {

ϕ′ (k0)
[
F (k0) − c̄T,ε (t)

] + u
(
c̄T,ε (t)

)}
dt ≥ T · H (

k0, ϕ
′ (k0)

)
.

Hence, by (54) and (55):

V
(
k̄T,ε (T )

) [
e−ρT − 1

]
+ T ε

≥ −
∫ T

0

{
ϕ′ (k0)

[
F (k0) − c̄T,ε (t)

] + u
(
c̄T,ε (t)

)}
dt

+
∫ T

0
− {

ϕ′ (k0) ω2 (t) dt + ω1 (t)
[
ω2 (t) + F (k0) − c̄T,ε (t)

]
dt
}

≥ T · H (
k0, ϕ

′ (k0)
) + oT→0 (T )
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for any 0 < T < 1, T̂ . Hence dividing by T , and then letting T → 0, again by Lemma
7.1 and the continuity of V we obtain:

−ρV (k0) + ε ≥ H
(
k0, ϕ

′ (k0)
)

which proves the assertion since ε is arbitrary. ��
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