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a b s t r a c t

We study a non-standard infinite horizon, infinite dimensional linear–quadratic
control problem arising in the physics of non-stationary states (see e.g. Bertini
et al. (2004, 2005)): finding the minimum energy to drive a given stationary
state x̄ = 0 (at time t = −∞) into an arbitrary non-stationary state x (at
time t = 0). This is the opposite to what is commonly studied in the literature
on null controllability (where one drives a generic state x into the equilibrium
state x̄ = 0). Consequently, the Algebraic Riccati Equation (ARE) associated with
this problem is non-standard since the sign of the linear part is opposite to the
usual one and since its solution is intrinsically unbounded. Hence the standard
theory of AREs does not apply. The analogous finite horizon problem has been
studied in the companion paper (Acquistapace and Gozzi, 2017). Here, similarly
to such paper, we prove that the linear selfadjoint operator associated with the
value function is a solution of the above mentioned ARE. Moreover, differently to
Acquistapace and Gozzi (2017), we prove that such solution is the maximal one.
The first main result (Theorem 5.8) is proved by approximating the problem with
suitable auxiliary finite horizon problems (which are different from the one studied
in Acquistapace and Gozzi (2017)). Finally in the special case where the involved
operators commute we characterize all solutions of the ARE (Theorem 6.5) and
we apply this to the Landau–Ginzburg model.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

We study a non-standard infinite dimensional, infinite horizon, linear–quadratic control problem as
follows. Take two real separable Hilbert spaces: the state space X and the control space U . Consider the
inear controlled dynamical system

y′(t) = Ay(t) + Bu(t), t ≤ 0, (1)
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where y : ] − ∞, 0] → X is the state, u : ] − ∞, 0] → U is the control, A : D(A) ⊆ X → X is the generator
f a C0-semigroup and B : U → X is a linear bounded operator (the “control operator”). The goal is to find
he minimum energy, i.e. the minimum of the functional∫ 0

−∞
∥u(t)∥2

U dt

mong all controls u which drive a given stationary state x̄ = 0 (at time t = −∞) into an arbitrary
on-stationary state x (at time t = 0).

This kind of problems arises in the control representation of the rate function for a class of large deviation
roblems (see e.g. [1] and the references quoted therein; see also [2, Chapter 8] for an introduction to the
ubject). It is motivated by applications in the physics of non-equilibrium states and in this context it has
een studied in various papers, see e.g. [3–8] (see Section 3 for a description of a model case).

In such applications a departure point of the theory is to apply the dynamic programming approach to
haracterize the value function as the unique (or maximal/minimal) solution of the associated Hamilton–
acobi–Bellman (HJB) equation, a problem left open e.g. in [6,8]. This problem is quite difficult since it
eals with the opposite to what is commonly studied in the literature on null controllability (where one
rives a generic state x into the equilibrium state x̄ = 0). For this reason we start studying here the simplest
ase, i.e. when the state equation is linear and the energy functional is purely quadratic: so the problem
alls into the class of linear–quadratic optimal control problems, the value function is quadratic, and the
ssociated HJB equation reduces to an Algebraic Riccati Equation (ARE), which can be formally written
with unknown R) as

0 = −⟨Ax, Ry⟩X − ⟨Rx, Ay⟩X − ⟨B∗Rx, B∗Ry⟩U , x, y ∈ D(A). (2)

he above feature (i.e. the fact we bring 0 to x instead of the opposite) implies that the ARE associated
ith this problem is non-standard for two main reasons: first, the sign of the linear part is opposite to the
sual one; second, the set of “reachable states” (i.e. the set, which we will call H, of all x ∈ X such that there
xists at least a control u(·) steering the solution of (1) from 0 to x) is strictly smaller than the whole state
pace X, so that the solution R is intrinsically unbounded in X. The combination of these two difficulties
oes not allow to apply the standard theory of AREs (described e.g. in [9, pp. 390–394 and 479–486], see
lso [10, p. 1018]). Therefore we are driven to use a different approach, that exploits the structure of the
roblem; we partly borrow some ideas from [10] and from the literature about model reduction1 (see e.g. [11]
nd [12]: indeed our results partly generalize Theorem 2.2 of [12], see Remark 5.5).

In the companion paper [13] we studied, as a first step, the associated finite horizon case. Here we partially
xploit the results of such paper to deal with the more interesting infinite horizon case, which is the one that
rises in the above mentioned papers in physics.

Our first main result (Theorem 5.8) shows that, under a null controllability assumption (after a given
ime T0 ≥ 0) and a condition on the range of the control operator B, the linear selfadjoint operator

associated with the value function is the maximal solution (over a slightly restricted class of solutions
, see Definition 4.8) of the above mentioned ARE.
The second main result (Theorem 6.5) looks at the case where A is selfadjoint and the operators A, BB∗

ommute, characterizing all solutions of the ARE without any null controllability assumption, any condition
n the control operator and any restriction on the class of solutions. This allows to apply such result to the
ase of Landau–Ginzburg model.

This is only partially similar to what has been done in [13]. Indeed, concerning the first main result,
heorem 5.8, the proof that R is a solution of the above ARE is substantially similar to what is done

1 We thank prof. R. Vinter for providing us these references.
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in [13, Section 4.3]. On the other hand, while in [13, Section 4.4] we prove a partial uniqueness result
(i.e. uniqueness in a suitable family of invertible operators), here we are able to prove, through a delicate
comparison argument (based on a non-trivial approximation procedure), that R is the maximal solution
f the associated ARE in a wider class which goes beyond the one of invertible operators. To prove the
omparison argument (which is the content of the key Lemma 4.10) we need to introduce a family of auxiliary
nite horizon problems (see Section 4), which are different from the one studied in [13], and to rewrite the
nknown R of the ARE (2) as R = QP , where Q is a given unbounded operator in X, and P , the new

unknown, is a bounded operator on the set H of reachable states, endowed with a suitable Hilbert structure.
Finally, concerning the second main result, Theorem 6.5, we characterize all solutions of the ARE (2)

with a completely new approach that still uses the new unknown P introduced right above.

1.1. Plan of the paper

In Section 2 we present the setting of the problem, some preliminary results and the strategy to show the
main results. It is divided in five subsections:

• the first one (Section 2.1) is devoted to introduce some notation;
• the second one (Section 2.2) presents the basic setting and the assumptions used in the paper;
• Section 2.3 provides few basic results on the state equation;
• Section 2.4 concerns the minimum energy problem and the associated ARE;
• Section 2.5 describes the properties of the “reachable space” H.

In Section 3 we present, as an example, a special case of the motivating problem given in [6] (the case of the
so-called Landau–Ginzburg model): we show that it falls into the class of problems treated in this paper.

Section 4 concerns the auxiliary problem. After devoting the first part of the section to some basic results
on it, we show, in Section 4.1, the comparison Lemma 4.10 which will be used to prove the maximality result
in the infinite horizon case.

In Section 5 we state and prove the main maximality result.
In Section 6 we analyze the important case when the operators A and BB∗ commute: this case is applied

to the motivating example of Section 3.

2. Setting and preliminary material

2.1. Notation

• Given any two Banach spaces Y and Z, we denote by L(Y, Z) the set of all linear bounded operators
from Y to Z, writing L(Y ) when Z = Y . The adjoint of an operator T will be denoted by T ∗. We denote
by IY the identity operator on Y . When Y is a Hilbert space we denote by S+(Y ) the set of all elements
of L(Y ) which are selfadjoint and nonnegative. The domain of an operator T will be denoted by D(T )
and its range by R(T ).

• Given a possibly unbounded linear operator T : D(T ) ⊆ Y → Y and λ in the resolvent set ρ(T ), we call
R(λ, T ) = (λIY − T )−1 the associated resolvent operator.

• Given a linear operator F : X → Y , where X and Y are Hilbert spaces, we define, as in [14, p. 209] (see
also [15, p. 429]), the pseudoinverse F † of F as the linear operator

F † : D(F †) ⊆ Y → X,

with domain D(F †) = R(F ), where F †y is the element of the fiber F −1({y}) with minimal norm. Note
that R(F †) = [ker F ]⊥. Moreover

†
FF y = y, ∀y ∈ R(F ) ⊆ Y,

3
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while
F †Fx = Πx ∀x ∈ X,

where Π : X → X is the orthogonal projection onto the subspace [ker F ]⊥.

.2. Basic setting and assumptions

Let −∞ ≤ s < t < +∞. Consider the abstract linear equation{
y′(r) = Ay(r) + Bu(r), r ∈ ]s, t],
y(s) = x ∈ X

(3)

here, when s = −∞ the initial condition is meant to be limt→−∞ y(t) = x), under the following assumption,
hich will be always in force from now on, without mentioning it.

ypothesis 2.1.
i) X, the state space, and U , the control space, are real separable Hilbert spaces;
ii) A : D(A) ⊆ X → X is the generator of a C0-semigroup on X such that

∥etA∥L(X) ≤ Me−ωt, t ≥ 0, (4)

for given constants M ≥ 1 and ω > 0;
iii) B : U → X is a bounded linear operator;
iv) u, the control strategy, belongs to L2(s, t; U).

To prove our main results (Theorems 5.8 and 6.5) we will also need three more assumptions: the first and
he second only for Theorem 5.8, while the third only for Theorem 6.5.

The first one is the following null controllability assumption.

ypothesis 2.2. There exists T0 ≥ 0 such that

R(eT0A) ⊆ R(Q1/2
T0

). (5)

here the so-called controllability operator is given by

Qt =
∫ t

0
esABB∗esA∗

ds, t ∈ [0, +∞].

The second one is an assumption on the image of the operator B.

ypothesis 2.3. It holds
R(BB∗) = R(BB∗) = R(Q∞). (6)

The third one concerns the special commuting case.

Hypothesis 2.4. The operator A is selfadjoint and invertible, and commutes with BB∗, i.e. for every
x ∈ D(A) we have BB∗x ∈ D(A) and ABB∗x = BB∗Ax.

Since the last three assumptions will not be used everywhere, we will explicitly mention them whenever
hey are used. Note, in particular, that the first equality of Hypothesis 2.3 is always true when X is
nite dimensional, while the second one is always true in the commuting case of Hypothesis 2.4 (see
13, Proposition C.1-(iii)]).
4
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2.3. The state equation

We recall the following well known result, pointed out e.g. in [13, Proposition 2.2].

Proposition 2.5. For −∞ < s < t < +∞, x ∈ X and u ∈ L2(s, t; U), the mild solution of (3), defined by

y(r; s, x, u) = e(r−s)Ax +
∫ r

s

e(r−σ)ABu(σ) dσ, r ∈ [s, t], (7)

s in C([s, t], X).

We now consider the state equation in the half-line ] − ∞, t]:{
y′(r) = Ay(r) + Bu(r), r ∈ ] − ∞, t],

lim
s→−∞

y(s) = 0. (8)

ince (8) is not completely standard we introduce the following definition of solution.

efinition 2.6. Given u ∈ L2(−∞, t; U), we say that y ∈ C( ] − ∞, t]; X) is a solution of (8) if for every
∞ < r1 ≤ r2 ≤ t we have

y(r2) = e(r2−r1)Ay(r1) +
∫ r2

r1

e(r2−τ)ABu(τ)dτ. (9)

and
lim

s→−∞
y(s) = 0. (10)

emma 2.7. Given any u ∈ L2(−∞, t; U), there exists a unique solution of the Cauchy problem (8) and it
s given by

y(r; −∞, 0, u) :=
∫ r

−∞
e(r−τ)ABu(τ) dτ, r ≤ t. (11)

roof. We prove first that the function y(·; −∞, 0, u) given by (11) is continuous. Fixed r1 < r2 ≤ t, we
ave

y(r2; −∞, 0, u) − y(r1, −∞, 0, u)

=
∫ r2

−∞
e(r2−τ)ABu(τ) dτ −

∫ r1

−∞
e(r1−τ)ABu(τ) dτ

=
∫ r1

−∞

(
e(r2−r1)A − I

)
e(r1−τ)ABu(τ) dτ +

∫ r2

r1

e(r2−τ)ABu(τ) dτ,

and then continuity follows by standard arguments. We now prove that (9) holds. For −∞ < r1 ≤ r2 ≤ t,
we have

y(r2; −∞, 0, u) =
∫ r2

−∞
e(r2−τ)ABu(τ) dτ

= e(r2−r1)A

∫ r1

−∞
e(r1−τ)ABu(τ) dτ +

∫ r2

r1

e(r2−τ)ABu(τ) dτ

= e(r2−r1)Ay(r1; −∞, 0, u) +
∫ r2

r1

e(r2−τ)ABu(τ) dτ,

so (9) is satisfied. Moreover letting r → −∞, since u ∈ L2(−∞, t; U) and thanks to inequality (4), we have
y(r; −∞, x, u) → 0 as r → −∞.
5
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In order to prove uniqueness, consider two solutions y1(·) and y2(·) and a point r ∈ ] − ∞, t[ . Since y1(·)
and y2(·) satisfy (9), for their difference we have, for r0 < r < t,

∥y1(r) − y2(r)∥X = ∥e(r−r0)A(y1(r0) − y2(r0))∥X ≤ M e−(r−r0)ω∥(y1(r0) − y2(r0))∥X .

s y1(·) and y2(·) satisfy (10), letting r0 → −∞ above we get y1(r) = y2(r) for every r < t. □

emark 2.8. Notice that, if the initial condition (10) is not zero, then the above equation cannot have
ny solution. Indeed any solution y(·; −∞, x, u) of the state equation (8), with 0 replaced by x ∈ X \ {0} in
10), must satisfy (9) and lims→−∞ y(s) = x. But, as r1 → −∞, (9) implies, as in (11), that

y(r2; −∞, x, u) :=
∫ r2

−∞
e(r2−τ)ABu(τ)dτ, r2 ≤ t. (12)

aking the limit as r2 → −∞ we get x = 0, a contradiction. □

.4. Minimum energy problems with infinite horizon and associated ARE

We now give a precise formulation of our minimum energy problem putting together the finite and the
nfinite horizon case (see [13, Section 2.2 and Remark 2.8]).

We take the Hilbert spaces X (state space) and U (control space), as well as the operators A and B, as in
ypothesis 2.1. Given −∞ ≤ s < t < +∞, an initial state z ∈ X and a control u ∈ L2(s, t; U) we consider

he state equation (3), which we rewrite here:{
y′(r) = Ay(r) + Bu(r), r ∈ ]s, t],
y(s) = z

(13)

when s = −∞ we agree that z = 0). Denote by y(·; s, z, u) the mild solution of (13) as in Proposition 2.5
for s > −∞) and Lemma 2.7 (for s = −∞). We define the class of controls u(·) bringing the state y(·) from
fixed z ∈ X at time s (z = 0 when s = −∞) to a given target x ∈ X at time t:

U[s,t](z, x) def=
{

u ∈ L2(s, t; U) : y(t; s, z, u) = x
}

. (14)

onsider the quadratic functional (the energy)

J[s,t](u) = 1
2

∫ t

s

∥u(r)∥2
U dr. (15)

he minimum energy problem at (s, t; z, x) is the problem of minimizing the functional J[s,t](u) over all
∈ U[s,t](z, x). The value function of this control problem (the minimum energy) is

V1(s, t; z, x) def= inf
u∈U[s,t](z,x)

J[s,t](u), (16)

ith the agreement that the infimum over the emptyset is +∞. Similarly to what we did in [13, Section 2.2],
iven any z ∈ X we define the reachable set in the interval [s, t], starting from z, as

Rz
[s,t]

def=
{

x ∈ X : U[s,t](z, x) ̸= ∅
}

. (17)

nd set
R̄[s,t]

def=
⋃

Rz
[s,t]. (18)
z∈X

6
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(

Define the operators

Ls,t : L2(s, t; U) → X, Ls,tu =
∫ t

s

e(t−τ)ABu(τ) dτ, −∞ ≤ s < t < +∞ (19)

Lt : L2(0, t; U) → X, Ltu =
∫ t

0
e(t−τ)ABu(τ) dτ, t ∈ [0, +∞] (20)

and
Qtx =

∫ t

0
erABB∗erA∗

x dr, x ∈ X, t ∈ [0, +∞]. (21)

We have the following, mostly well known, result.

Theorem 2.9. Let −∞ ≤ s < t < +∞ and let z, x ∈ X.

(i) Let s > −∞. The set U[s,t](z, x) is nonempty if and only if

x − e(t−s)Az ∈ R
(
Ls,t

(
L2(s, t; U)

))
= R

(
Lt−s

(
L2(0, t − s; U)

))
= R(Q1/2

t−s).

In particular we have

Rz
[s,t] = e(t−s)Az + Ls,t

(
L2(s, t; U)

)
= e(t−s)Az + R(Q1/2

t−s). (22)

(ii) Let s = −∞. The set U[−∞,t](0, x) is nonempty if and only if

x ∈ R
(
L−∞,t

(
L2(−∞, t; U)

))
= R

(
L∞

(
L2(0, +∞; U)

))
= R(Q1/2

∞ ).

In particular we have
R0

[−∞,t] = L−∞,t

(
L2(s, t; U)

)
= R(Q1/2

∞ ). (23)

iii) Let s > −∞: then

V1(s, t; z, x) = V1(s − t, 0; 0, x − e(t−s)Az) = V1(0, t − s; 0, x − e(t−s)Az). (24)

Hence from now on we set, for simplicity of notation,

V (t, x) = V1(−t, 0; 0, x) = inf
u∈U[−t,0](0,x)

J[−t,0](u), t ∈ ]0, +∞[ , x ∈ X. (25)

(iv) Let s = −∞: then
V1(−∞, t; 0, x) = V1(−∞, 0; 0, x). (26)

Hence from now on we set, for simplicity of notation,

V∞(x) = V1(−∞, 0; 0, x) = inf
u∈U[−∞,0](0,x)

J[−∞,0](u), x ∈ X. (27)

(v) If t > 0 and x ∈ R(Q1/2
t ), there is exactly one minimizing strategy ût,x for the functional J[−t,0] over

U[−t,0](0, x), and moreover
V (t, x) = J[−t,0](ût,x) = 1

2∥(Q1/2
t )†x∥2

X , (28)

where, for t > 0, (Q1/2
t )† : R(Q1/2

t ) → [ker Q
1/2
t ]⊥ is the pseudoinverse of Q

1/2
t .

(vi) If t > 0 and x ∈ R(Qt) then V (t, x) = 1
2 ⟨Q†

tx, x⟩X , where Q†
t : R(Qt) → [ker Qt]⊥ is the pseudoinverse

of Qt.
7
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Proof. Statements (i)–(iv)–(v) are classical, see e.g. [14, Theorem 2.3, p.210] or [13, Theorem 2.7]).
tatement (iii) is given in [13, Proposition 2.6]).

We now look at statement (ii). The fact that U[−∞,t](0, x) is nonempty if and only if

x ∈ R
(
L−∞,t

(
L2(−∞, t; U)

))
= R

(
L∞

(
L2(0, +∞; U)

))
follows immediately from the form of the mild solution when s = −∞ given in Lemma 2.7 and, for the second
quality, by a standard change of variable. The last equality in (ii) follows from the fact that Q∞ = L∞L∗

∞
and from [15, Proposition B.1] (see also [13, Proposition A.1]).

We finally look at statement (iv). Recalling that

U[−∞,t](0, x) =
{

u ∈ L2(−∞, t; U) : y(t; −∞, 0, u) = x
}

, (29)

y a simple change of variable we get

u(·) ∈ U[−∞,t](0, x) ⇐⇒ u(· − t) ∈ U[−∞,0](0, x). (30)

Hence

V1(−∞, s; 0, x) = inf
u∈U[−∞,s](0,x)

J[−∞,s](u) = inf
u∈U[−∞,0](0,x)

J[−∞,0](u) = V1(−∞, 0; 0, x),

with the agreement that the infimum over the empty set is +∞. This implies (26). □

We take now s = −∞ and, based on the result above, t = 0. The peculiarity of this problem with
espect to the most studied minimum energy problems in Hilbert spaces (see e.g. [1,10,16–19], and the
eneral surveys [9,14,20–23]) is the “time reversal” of the formulation. If we apply the dynamic programming
rinciple, we find the following Algebraic Riccati Equation (ARE from now on) in the state space X, with
nknown R:

0 = −⟨Ax, Ry⟩X − ⟨Rx, Ay⟩X − ⟨B∗Rx, B∗Ry⟩U , x, y ∈ D(A) ∩ D(R). (31)

r, in operator form,

0 = −RA − A∗R − RBB∗R.

he time reversal of the problem is reflected in two main features of the above ARE which, to our knowledge,
revent the application to it of the standard theory developed in the current literature:

• the ‘wrong’ sign2 of the linear term RA + A∗R;
• the fact that the value function V∞ is finite only in the reachable set R0

[−∞,t] = R(Q1/2
∞ ), which in

general is not closed and is properly contained in X (see e.g. the diagonal example in [13, p. 29] where
[ker Q∞]⊥ = X and R(Q1/2

∞ ) = D((−A)1/2) is strictly contained in X).

o deal with such issues we find convenient to endow the space R(Q1/2
∞ ) (which we will call H) with a

uitable Hilbert structure which is defined in next Section 2.5, together with some useful lemmas. Later, in
ections 5 and 6, we will exploit such structure to study (31) in a more convenient form.

2 Evidently the linear and the quadratic terms in Eq. (31) have the same sign, while in the standard case they do not. We
infer that the ‘wrong’ sign is in the linear term looking at the corresponding finite horizon problem in [13].
8
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2.5. The space H and its properties

We define the already announced space H:

H = R(Q1/2
∞ ). (32)

f course it holds
H ⊆ R(Q1/2

∞ ) = [ker Q1/2
∞ ]⊥ = [ker Q∞]⊥.

As shown right above, the inclusion is in general proper.
Define in H the inner product

⟨x, y⟩H = ⟨(Q1/2
∞ )†x, (Q1/2

∞ )†y⟩X , x, y ∈ H, (33)

and, consequently, the norm
∥x∥H = ∥(Q1/2

∞ )†x∥X , x ∈ H. (34)

ote that (33) implies
⟨Q1/2

∞ z, Q1/2
∞ w⟩H = ⟨z, w⟩X , z, w ∈ [ker Q∞]⊥. (35)

ome useful results on the space H, which form the ground for our main results and are partly proved in [13],
re recalled in the remainder of this subsection, together with some new results.

Next Lemma 2.10 is exactly [13, Lemma 4.2], except for the statement (v): indeed here we need a slight
odification which can be proved exactly in the same way.

emma 2.10.

(i) The space H is a Hilbert space continuously embedded into X.
(ii) The space R(Q∞) is dense in H.
iii) The operator (Q1/2

∞ )† is an isometric isomorphism from H to [ker Q
1/2
∞ ]⊥.

(iv) We have Q
1/2
∞ ∈ L(H) and

∥Q1/2
∞ ∥L(X) = ∥Q1/2

∞ ∥L(H).

(v) Let Z be another real separable Hilbert space. For every F ∈ L(Z, X) such that R(F ) ⊆ H we have
(Q1/2

∞ )†F ∈ L(Z, X), so that F ∈ L(Z, H).

Next Lemma 2.11 is an extension of [13, Lemma 4.3].

emma 2.11.

(i) Let Hypothesis 2.2 hold. Then, for every t ∈ [T0, +∞], the space Qt(D(A∗)) is dense in H and contained
in D(A).

(ii) Let Hypothesis 2.4 hold. Then, for every t ∈ ]0, +∞], the space Qt(D(A∗)) is dense in H and contained
in D(A).

n particular D(A) ∩ H is dense in H.

roof. Part (i) and the last statement are proved in [13, Lemma 4.3].

art (ii) can be proved in the same way, simply changing the last part as follows. First of all, when
ypothesis 2.4 holds, by [13, Proposition C.2-(iii)] one has R(Q1/2

t ) = R(Q1/2
∞ ) for all t > 0. Hence, by

he closed graph theorem, the operator (Q1/2)†Q
1/2 : X → X is bounded.
∞ t

9
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Now fix x ∈ H and t ∈ ]0, +∞]. Then there is a unique z ∈ [ker Q∞]⊥ = [ker Qt]⊥ such that Q
1/2
t z = x.

ecalling that
[ker Q∞]⊥ = R(Q∞) = R(Q1/2

∞ ) = R(Q1/2
t ),

here exists {zn} ⊂ X such that Q
1/2
t zn → z in X. Since D(A∗) is dense in X, for each n ∈ N \ {0} we can

find yn ∈ D(A∗) such that ∥yn − zn∥X < 1/n, so that Q
1/2
t yn → z in X, too. Hence, as n → ∞,

∥Qtyn − x∥H = ∥(Q1/2
∞ )†Qtyn − (Q1/2

∞ )†x∥X = ∥(Q1/2
∞ )†Qtyn − (Q1/2

∞ )†Q
1/2
t z∥X

≤ ∥(Q1/2
∞ )†Q

1/2
t ∥L(X)∥Q

1/2
t yn − z∥X → 0,

i.e. x belongs to the closure of Qt(D(A∗)) in H. □

Remark 2.12. The above lemma immediately implies that, for every t ∈ [T0, +∞] (when Hypothesis 2.2
holds) or for every t ∈ ]0, ∞] (when Hypothesis 2.4 holds), Qt(D(A∗)) is dense in [ker Q∞]⊥ with the
topology inherited by X, since the inclusion of H into [ker Q∞]⊥ is continuous.

Now we state and prove four very useful lemmas.

Lemma 2.13. Assume either Hypothesis 2.2 or Hypothesis 2.4. Then we have the following:

(i) For every z ∈ H and r ≥ 0 we have erAz ∈ H; moreover the semigroup etA|H is strongly continuous in
H. In particular, for each T > 0 there exists cT > 0 such that

∥erAz∥H ≤ cT ∥z∥H ∀z ∈ H, ∀r ∈ [0, T ].

We denote by A0 the generator etA|H and set etA0 := etA|H .
(ii) For every λ ∈ ρ(A) we have λ ∈ ρ(A0) and R(λ, A0) = R(λ, A)|H .
iii) The operator A0 is given by {

D(A0) = {x ∈ D(A) ∩ H : Ax ∈ H}
A0x = Ax ∀x ∈ D(A0). (36)

Proof. (i) Fix any z ∈ H. When Hypothesis 2.2 holds, for t > T0 we have z ∈ R(Q1/2
∞ ) = R(Q1/2

t ) =
R(L−t,0) (see (23)). When Hypothesis 2.4 holds, we have the same for all t > 0 (see [13, Proposition
C.2-(iii)]). Hence there exists u ∈ L2(0, r; U) such that

z = L−t,0(u) =
∫ 0

−t

e−σA Bu(σ) dσ.

Thus, for every r > 0,

erAz =
∫ 0

−t

e(r−σ)A Bu(σ) dσ =
∫ r

−t

e(r−σ)A Bu(σ) dσ,

here
u(s) =

{
u(s) if s ∈ [−t, 0]
0 if s ∈ [0, r].

etting r − σ = −s and v(s) = u(s + r), it follows that

erAz =
∫ 0

−t−r

e−sA Bu(r + s) ds = L−t−r,0(v) ∈ R(L−t−r,0) = R(Q1/2
t+r) = R(Q1/2

∞ ) = H.

et us now prove that the restriction of erA to H has closed graph in H: if z, w, {zn} ⊂ H and if zn → z in
, erAzn → w in H, then, since H is continuously embedded into X,

zn → z in X, erAzn → w in X;

ut erA ∈ L(X), so that w = erAz. Thus erAz → erAz in H, and it follows that erA ∈ L(H).
n

10
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Now fix x ∈ H and consider for t > 0 the quantity etAx − x. We have

∥etAx − x∥H = sup
∥y∥H =1

⟨etAx − x, y⟩H .

ow, for every ε ∈ ]0, 1[ there exists yε ∈ H with ∥yε∥H = 1 such that

∥etAx − x∥H < ε + ⟨etAx − x, yε⟩H ;

hen, using Lemma 2.11 and choosing zε ∈ R(Q∞) such that ∥zε − yε∥H < ε, we obtain

∥etAx − x∥H < ε + ⟨etAx − x, yε − zε⟩H + ⟨etAx − x, zε⟩H

≤ ε + ∥etAx − x∥H ∥yε − zε∥H + ⟨etAx − x, Q†
∞zε⟩X

≤ ε + ∥etAx − x∥H ε + ∥etAx − x∥X ∥Q†
∞zε∥X .

ence
(1 − ε)∥etAx − x∥H < ε + ∥etAx − x∥X ∥Q†

∞zε∥X ,

and letting t → 0+ we get
lim sup

t→0+
∥etAx − x∥H ≤ ε

1 − ε
+ 0.

he arbitrariness of ε leads to the conclusion.
(ii) Let λ ∈ ρ(A). Then, by the resolvent formula (see [24, Theorem II.1.10]),

R(λ, A)x =
∫ +∞

0
e−λtetAx dt ∀x ∈ X.

The same holds, in particular, for x ∈ H; by [24, Theorem II.1.10-(i)], this implies that λ ∈ ρ(A0) and that
the above integral is equal to R(λ, A0).

(iii) Let z ∈ D(A0) ⊆ H. By definition we have

lim
t→0+

etA0z − z

t
= A0z in H.

ence the above incremental ratio must also converge in the topology of X. This means that z ∈ D(A) ∩ H

nd Az = A0z ∈ H. This proves that

D(A0) ⊆ {x ∈ D(A) ∩ H : Ax ∈ H} .

To prove the converse we first observe that, using (ii) and the definition of resolvent, we get, for n ∈ N \ {0}
and x ∈ H,

nAR(n, A)x = nx − n2R(n, A)x = nx − n2R(n, A0)x = nA0R(n, A0)x.

We also recall that, by the properties of Yosida approximations of A0 (see [25, Section 1.3]), we get

nR(n, A0)x → x in H ∀x ∈ H. (37)

ow assume that z ∈ D(A) ∩ H with Az ∈ H. To prove that z ∈ D(A0) it is enough to show that
0nR(n, A0)z converges to some element y of H when n → +∞: in this case, since A0 is a closed operator,

uch element is A0z. To do this we observe that, by the above remarks for the resolvents and by the
assumptions on z, we have

nA0R(n, A0)z = nAR(n, A)z = nR(n, A)Az = nR(n, A0)Az.

he latter, by (37), converges in H to Az as n → +∞, since Az ∈ H. This shows that z ∈ D(A0) and
z = Az. □
0

11
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Lemma 2.14. Assume Hypothesis 2.4. Then we have the following:

(i) Q∞ and Q
1/2
∞ commute with R(λ, A) for every λ ∈ ρ(A), and with etA for every t ≥ 0. Moreover, for

every x ∈ D(A) we have Q∞x ∈ D(A), Q
1/2
∞ x ∈ D(A) and

AQ∞x = Q∞Ax, AQ1/2
∞ x = Q1/2

∞ Ax, ∀x ∈ D(A),

i.e. Q∞ and Q
1/2
∞ commute with A.

(ii) Q†
∞ and (Q1/2

∞ )† commute with R(λ, A) for every λ ∈ ρ(A), and with etA for every t ≥ 0. This means that
for every x ∈ R(Q∞) (respectively x ∈ R(Q1/2

∞ )) we have etAx ∈ R(Q∞) (respectively etAx ∈ R(Q1/2
∞ )),

and
Q†

∞etAx = etAQ†
∞x (respectively (Q1/2

∞ )†etAx = etA(Q1/2
∞ )†x),

and similarly for R(λ, A).
iii) We have

∥etA0∥L(H) ≤ Me−ωt ∀t ≥ 0,

where M and ω are the constants in (4).

Proof. (i) Hypothesis 2.4 and [13, Lemma B.2] easily imply that Q∞ commutes with A, R(λ, A) and etA.
y [26, Theorem VI.9] we immediately deduce that Q

1/2
∞ commutes with R(λ, A) and etA: so in particular

t commutes with A−1. Hence, for all z ∈ H

Q1/2
∞ A−1z = A−1Q1/2

∞ z.

et x ∈ D(A) be such that z = Ax. Then the above implies

Q1/2
∞ x = A−1Q1/2

∞ Ax.

his in turn gives Q
1/2
∞ x ∈ D(A) and the claim.

(ii) We just prove the result for (Q1/2
∞ )† and etA, as the others are completely similar. Let z ∈ H: then,

ince etAz = etA0z ∈ H, we have
Q1/2

∞ (Q1/2
∞ )†etAz = etAz.

oreover, since Q
1/2
∞ and etA commute, and z ∈ H,

Q1/2
∞ etA(Q1/2

∞ )†z = etAQ1/2
∞ (Q1/2

∞ )†z = etAz.

t then follows
Q1/2

∞ (Q1/2
∞ )†etAz = Q1/2

∞ etA(Q1/2
∞ )†z.

pplying (Q1/2
∞ )† on both sides we get the claim.

(iii) Let x ∈ H and t > 0. We have, using the above statement (ii),

∥etA0x∥H = ∥etAx∥H = ∥Q1/2
∞ (Q1/2

∞ )†etAx∥H = ∥(Q1/2
∞ )†etAx∥X

= ∥etA(Q1/2
∞ )†x∥X ≤ Me−ωt∥(Q1/2

∞ )†x∥X = Me−ωt∥x∥H . □

emma 2.15. Assume either Hypothesis 2.2 or Hypothesis 2.4. Then we have the following:

(i) Q∞(H) is dense in H.
(ii) Q∞(D(A∗

0)) is dense in H.
iii) Let Hypothesis 2.4 hold. Then Q∞(D(A∗

0)) ⊆ D(A0); moreover A0 is selfadjoint in H.
12
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Proof. (i) Since ker Q
1/2
∞ = ker Q∞, we have R(Q1/2

∞ ) = R(Q∞). Fix x ∈ H and set z := Q
−1/2
∞ x ∈

R(Q1/2
∞ ). Then there exists {wn} ⊂ X such that, defining zn = Q∞wn ∈ R(Q∞), we have zn → z in X. Set

xn = Q1/2
∞ zn = Q1/2

∞ Q∞wn = Q∞Q1/2
∞ wn.

Clearly xn ∈ Q∞(H). Moreover

∥xn − x∥H = ∥Q1/2
∞ zn − x∥H = ∥zn − z∥X → 0 as n → +∞,

which proves the claim.
(ii) Fix x ∈ H. By part (i) there exists {xn} ⊂ Q∞(H) such that xn → x in H. We must have xn = Q∞zn,

with zn ∈ H. Since D(A∗
0) is dense in H, then, for every n ∈ N \ {0} there exists wn ∈ D(A∗

0) such that
∥zn − wn∥H < 1/n. Consequently, setting yn = Q∞wn, we have, using Lemma 2.10(iv),

∥yn − x∥H ≤ ∥Q∞(wn − zn)∥H + ∥xn − x∥H ≤ ∥Q∞∥L(H)
1
n

+ ∥xn − x∥H .

This proves the claim.
(iii) Let A be selfadjoint and commuting with BB∗. Observe first that D(A∗

0) ⊆ D(A∗) = D(A). Indeed,
hen x ∈ D(A∗

0), the linear map y → ⟨x, A0y ⟩H is bounded in H. Using such boundedness and the fact
hat A and Q∞ commute (see [13, Lemma B.2 or Proposition C.1-(v)])), we get, for every y ∈ D(A),

⟨x, Ay ⟩X = ⟨x, Q∞Ay ⟩H = ⟨x, AQ∞y ⟩H = ⟨x, A0Q∞y ⟩H = ⟨A∗
0x, Q∞y ⟩H ≤ C∥Q∞y∥H ≤ C ′∥y∥X ,

hich implies x ∈ D(A∗) = D(A).
Now, let x ∈ Q∞(D(A∗

0)) (which is contained in D(A) by Lemma 2.11, since D(A∗
0) ⊆ D(A∗)) and let

∈ D(A∗
0) be such that x = Q∞z. Using again the fact that A and Q∞ commute, we get Ax = AQ∞z =

∞Az ∈ H. Hence, by definition of A0, we deduce that x ∈ D(A0) and A0x = Ax.
Now we prove that A0 is selfadjoint in H. Let x ∈ D(A0) and y ∈ Q∞(D(A∗

0)). Then for some z ∈ D(A∗
0)

e have y = Q∞z and Q†
∞y = z + z0, where z0 ∈ ker Q∞. Hence it must be ⟨Ax, z0 ⟩X = 0, since

x = A0x ∈ H ⊆ [ker Q∞]⊥. Using this fact, we get

⟨A0x, y ⟩H = ⟨Ax, y ⟩H = ⟨Ax, Q†
∞y ⟩X = ⟨Ax, z ⟩X = ⟨x, Az ⟩X

= ⟨x, Q∞Az ⟩H = ⟨x, AQ∞z ⟩H = ⟨x, Ay ⟩H = ⟨x, A0y ⟩H ,

here in the last step we used the inclusion D(A∗
0) ⊆ D(A), the fact that Q∞ and A commute, and the

nclusion Q∞(D(A∗
0)) ⊆ D(A0). This implies that, for every x ∈ D(A0), the linear map y → ⟨x, A0y ⟩H

s defined on Q∞(D(A∗
0)) (which is dense in H) and is bounded in H. This implies that x ∈ D(A∗

0) and
∗
0x = A0x. Hence A∗

0 extends A0. Since both A0 and A∗
0 generate a semigroup, we can choose λ > 0 such

hat λ ∈ ρ(A0) ∩ ρ(A∗
0). For such λ we now prove that R(λ, A∗

0) = R(λ, A0), which immediately implies that
(A0) = D(A∗

0). Indeed for z ∈ H we have

z = (λ − A0)R(λ, A0)z = (λ − A∗
0)R(λ, A0)z,

here in the last equality we used that D(A0) ⊆ D(A∗
0) and that A∗

0x = A0x for all x ∈ D(A0). Applying
(λ, A∗

0) to both sides we get the claim. □

. A motivating example: from equilibrium to non-equilibrium states

In this section we describe, in a simple one-dimensional case, the optimal control problem outlined
n the papers [3–8]. Such special case fits into the application studied e.g. in [6,8], in the case of the

andau–Ginzburg model.

13
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We consider a controlled dynamical system whose state variable is described by a function ρ : ]−∞, 0]
the choice of the letter ρ comes from the fact that in many physical models ρ is a density). The control
ariable is a function F : ]−∞, 0] × [0, 1] → R which we assume to belong to L2 (

−∞, 0; L2(0, 1)
)
. The state

quation is formally given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ρ
∂t (t, x) = 1

2
∂2ρ
∂x2 (t, x) + ∇F (t, x) , t ∈ ] − ∞, 0[ , x ∈ ]0, 1[ ,

ρ (−∞, x) = ρ̄(x), x ∈ [0, 1],
ρ (t, 0) = ρ−, ρ (t, 1) = ρ+, t ∈ ] − ∞, 0[ ,

ρ (0, x) = ρ0 (x) , x ∈ [0, 1],

(38)

here ρ+, ρ− ∈ (0, 1), and ρ̄ is an equilibrium state for the uncontrolled problem. Hence ρ̄ is the unique
olution of the following system ⎧⎨⎩ v′′ (x) = 0,

v (0) = ρ−,
v (1) = ρ+;

so we have ρ̄(x) = (ρ+ − ρ−)x + ρ− .
For any datum ρ0 ∈ L2(0, 1) we consider any control driving (in Eq. (38)) the equilibrium state ρ̄ (at time

t = −∞) to ρ0 (at time t = 0). Then we consider the problem of minimizing, over the set of such controls,
the energy functional

J0
∞ (F ) = 1

2

∫ 0

−∞
∥F (s)∥2

L2(0,1) ds.

iven the above structure it is natural to consider the new control

ν = ∇F ∈ L2 (
−∞, 0; H−1(0, 1)

)
nd take both the state space X and the control space U equal to H−1(0, 1): here H−1(0, 1) is the dual
pace of H1

0 (0, 1).
We now rewrite (38) in our abstract setting as follows. First we denote by A the Laplace operator in the

pace H−1(0, 1) with Dirichlet boundary conditions, i.e.

D (A) = H1
0 (0, 1) , Aη = η′′ ∀η ∈ H1

0 (0, 1) .

s A is dissipative, the fractional powers (−A)α of −A are well defined (see [9, Proposition 6.1, p. 113]).
ence, formally, the state equation (38) becomes{

ρ′(t) = A[ρ(t) − ρ̄] + ν(t), t < 0,
ρ(−∞) = ρ̄.

(39)

sing a standard argument (see e.g. [27, Appendix C]), the state equation (38) can be rewritten in the space
and in the new variable y(t) := ρ(t) − ρ̄ as{

y′(t) = Ay(t) + ν(t), t < 0,
y(−∞) = 0.

(40)

he function
y(t; −∞, 0, ν) =

∫ t

−∞
e(t−s)Aν(s) ds, t ≤ 0, (41)

orresponding to ρ(t; ν) = ρ̄+
∫ t

−∞ e(t−s)Aν(s) ds, is the unique solution of (40), adopting Definition 2.6 and
pplying Lemma 2.7.

The energy functional, in the new control variable ν, becomes

J̄0
∞ (ν) = 1 ∫ 0

∥(−A)−1/2ν(s)∥2
L2(0,1) ds = 1 ∫ 0

∥ν(s)∥2
H−1(0,1) ds.
2 −∞ 2 −∞

14
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The set of admissible controls here is exactly U[−∞,0](0, y0) (see Section 2.4), which is nonempty if and only
f y0 ∈ H := R(Q1/2

∞ ) = D((−A)1/2) = L2(0, 1) (see e.g. [13, Section 5.2]). The value function V∞ is defined
s

V∞ (y0) := inf
ν∈U[−∞,0](0,y0)

J̄0
∞ (ν) . (42)

Now, recalling that X = U = H−1(0, 1) and setting B = IH−1(0,1) ∈ L(U, X), this problem belongs to the
class of the minimum energy problems studied in this paper and, in particular, all Hypotheses 2.1, 2.2, 2.3, 2.4
hold true. Hence all the results of the subsequent sections apply: in particular Proposition 5.4, Theorems 5.8
and 6.5, Corollary 6.8. In the last Remark 6.10 we summarize what can be said using such results in this
case.

4. The auxiliary problem

In this section we introduce an auxiliary problem which can be considered a “time reversed” version of
the auxiliary problem considered in [10] (see also Remark 4.3 about this). This problem will be a key tool to
prove our first main result, Theorem 5.8. Indeed, as we will see, any solution of our Algebraic Riccati Eq. (31)
can be associated, under appropriate assumptions, with a constant solution of this auxiliary problem with
itself as initial datum; a comparison argument will then lead to the main result.

In this section we consider, for x ∈ X, the following set of controls:

U [−t,0](x) = {(z, u) ∈ H × L2(−t, 0; U) : y(0) = x}, (43)

here y(·) := y(·; −t, z, u) is the solution of the Cauchy problem (similar to (3) but with [s, t] replaced by
−t, 0]), i.e. {

y′(r) = Ay(r) + Bu(r), r ∈ ] − t, 0],
y(−t) = z.

(44)

ote that a control in U [−t,0](x) is a pair: an initial point z ∈ H and a control u ∈ U[−t,0](z, x), where (see
14))

U[−t,0](z, x) = {u ∈ L2(−t, 0; U) : y(0; −t, z, u) = x}. (45)

he following is true:

roposition 4.1. The set U [−t,0](x) introduced in (43) is nonempty if and only if x ∈ R̄[−t,0]. Moreover
we have

R̄[−t,0] ⊆ H. (46)

urthermore, if Hypothesis 2.2 holds, we have equality in (46) for t ≥ T0. Finally, if Hypothesis 2.4 holds, we
ave equality in (46) for t > 0.

roof. The first statement is an immediate consequence of the definition of reachable set in (17) and of
heorem 2.9(i). The second one follows from (22), Lemma 2.13(i), the fact that R(Q1/2

t ) ⊆ R(Q1/2
∞ ) (with

quality for t ≥ T0, when Hypothesis 2.2 holds, and for t > 0, when Hypothesis 2.4 holds), and the equality,
roved in Theorem 2.9(i)–(ii),

R (L−t,0) = R0
[−t,0] = R(Q1/2

t ), t ∈ [0, +∞] (47)
(here L−t,0 is the operator defined in (19)). □
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Given a bounded selfadjoint positive operator N on H we want to minimize, in the class U [−t,0](x), the
following functional with an initial cost:

JN
[−t,0](z, u) = 1

2 ⟨Nz, z⟩H + 1
2

∫ 0

−t

∥u(s)∥2
U ds. (48)

The presence of the operator N ∈ S+(H) forces us to fix the starting point z at time −t in H, rather than
in X. Define

V N (t, x) = inf
(z,u)∈U [−t,0](x)

JN
[−t,0](z, u) = inf

z∈H

[
inf

u∈U[−t,0](z,x)
JN

[−t,0](z, u)
]

, t > 0, x ∈ X, (49)

ith the agreement that the infimum over the emptyset is +∞, so that V N (t, x) is finite only when x ∈ H.
ow we provide a relation between V N and the value function V defined in (25).

roposition 4.2. We have

V N (t, x) = inf
z∈H

[
V (t, x − etAz) + 1

2 ⟨Nz, z⟩H

]
, t > 0, x ∈ X, (50)

nd, in particular,
V N (t, x) ≤ V (t, x) ∀x ∈ X, ∀t > 0. (51)

roof. We use (16), (24) and (25) getting

inf
u∈U[−t,0](z,x)

JN
[−t,0](z, u) = V1(−t, 0; z, x) + 1

2 ⟨Nz, z⟩H = V (t, x − etAz) + 1
2 ⟨Nz, z⟩H .

This equality immediately implies (50). Taking z = 0 we get (51). □

It is possible to associate to our auxiliary problem a Differential Riccati Equation (DRE). Our aim is to
establish a comparison between the quadratic form associated to “stationary solutions” Q (see Definition 4.6)
of such DRE and the value function V N above when N = Q. This result will be a key tool to prove our
main result (Theorem 5.8 in Section 5).

Observe that the above mentioned DRE will not be studied in this paper. Here we only explain, in
Remark 4.3 just below, how such DRE arises, while we concentrate, in next Section 4.1, to give the precise
definition of stationary solutions of it and to prove the announced comparison result.

Remark 4.3. If A generates not just a C0-semigroup but a C0-group, the auxiliary problem can be shown,
nder appropriate assumptions, to be equivalent, reversing the time, to a standard optimization problem
ith final cost. Indeed, given x ∈ H, consider the problem of minimizing, over all v(·) ∈ L2(0, t; U), the

functional
ĴN

[0,t](x, v) = 1
2 ⟨Nw(t), w(t)⟩H + 1

2

∫ t

0
∥v(s)∥2

U ds, (52)

here w(·) := w(·; 0, x, v) is the mild solution of the Cauchy problem

w′(s) = −Aw(s) + Bv(s), s ∈ [0, t[ , w(0) = x. (53)

ssume now that, for every x ∈ H, the mild solution w(·; 0, x, v) belongs to H for every t > 0. Setting

V̂ N (t, x) = inf ĴN
[0,t](x, v),
v∈L2(0,t;U)

16
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it can be seen that
V̂ N (t, x) = V N (t, x).

o see this, fix (t, x) ∈ [0, +∞[ × H and recall that, for every (z, u) ∈ U [−t,0](x), we have

etAz +
∫ 0

−t

e−sABu(s)ds = x ⇐⇒ z +
∫ 0

−t

e(−t−s)ABu(s)ds = e−tAx;

hence, changing variable in the integral,

z = et(−A)x +
∫ t

0
e(t−s)(−A)B(−u(−s))ds.

This means that R̄[−t,0] = H (see (18)). Moreover, with any (z, u) ∈ U [−t,0](x) we can associate a function
∈ L2(0, t; U) such that w(t) = z, namely, v(s) = −u(−s); consequently

JN
[−t,0](z, u) = ĴN

[0,t](x, v). (54)

onversely, given any v ∈ L2(0, t; U), set z = w(t; 0, x, v) and u(s) = −v(−s): then, clearly, (z, u) ∈ U [−t,0](x)
and, again, (54) holds. In conclusion, there is a one-to-one correspondence between the control set of the
two problems and, in particular, V̂ N (t, x) = V N (t, x).

The equation for the “time-reversed” problem (52)–(53) turns out to be the following:⎧⎪⎨⎪⎩
d

ds
⟨P N (s)x, y⟩H = −⟨Ax, P N (s)y⟩H − ⟨P N (s)x, Ay⟩H

− ⟨B∗Q†
∞P N (s)x, B∗Q†

∞P N (s)y⟩U , s ∈ ]0, t],
P N (0) = N.

(55)

To give sense to (55) we must take x, y ∈ D(A) ∩ H with Ax, Ay ∈ H and P N (t)x, P N (t)y ∈ R(Q∞). When
B∗Q†

∞ can be extended to a bounded operator H → U and A generates a group, then it is known that the
value function V̂ N is quadratic and V̂ N (t, x) = ⟨P̂ N (t)x, x⟩H , where P̂ N : [0, +∞[ → S+(H) is the unique
solution of (55). In our case this is not obvious, but it suggests anyway the right form of the Riccati equation
for our auxiliary problem. ■

Remark 4.4. As in the case N = 0 treated in [13], in the above Riccati equations the sign of the linear part
is opposite to the usual one. In fact the control problem (44)–(48) involves an “initial cost”, instead of a final
cost like in the standard problems (see e.g. [10]). ■

Our aim now is to prove that for every stationary solution Q of the Riccati equation (55) (in a suitable
class to be defined later) there exists an operator N , namely Q itself, such that

1
2 ⟨Nx, x ⟩H ≤ V N (t, x), for sufficiently large t.

emark 4.5. It is possible to prove much more about the auxiliary problem, namely:

(i) that, for every N ∈ S+(H) the value function V N is continuous and is a quadratic form in H;
(ii) that, when N is coercive (i.e., for some ν > 0, ⟨Nx, x ⟩H ≥ ν∥x∥2

H for all x ∈ H), the linear operator
P N associated with the value function solves the Riccati equation (55);
iii) that the comparison result mentioned above translates in the inequality P N ≥ Q, in the preorder of
selfadjoint positive operators, for every constant solution Q of the Riccati equation (55) in a suitable class.

his is the subject of a paper in progress.
17
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4.1. A key comparison result

Given any initial datum N ∈ S+(H), we want to compare the “stationary” solutions of the Riccati
equation (55) with the value function V N of the auxiliary problem. This fact will be used, in the next
section, as a key tool to prove our first main result, Theorem 5.8. In order to do this we need first to give a
precise meaning to the concept of stationary solution of (55).

Roughly speaking, a stationary solution P ∈ S+(H) of the Riccati Eq. (55) should also be a solution of
the following equation, which comes from the right-hand side of (55):

0 = −⟨Ax, Py⟩H − ⟨Px, Ay⟩H − ⟨B∗Q†
∞Px, B∗Q†

∞Py⟩U . (56)

his equation is meaningful for every x, y ∈ D(A) ∩ H with Px, Py ∈ R(Q∞) and Ax, Ay ∈ H. Since the
ast requirement appears too restrictive, we rewrite (56) by taking the first two inner products in X, getting:

0 = −⟨Ax, Q†
∞Py⟩X − ⟨Q†

∞Px, Ay⟩X − ⟨B∗Q†
∞Px, B∗Q†

∞Py⟩U . (57)

his makes sense in a larger set of vectors x, y, namely for every x, y ∈ D(A) ∩ H with Px, Py ∈ R(Q∞). It
is important to note that (57) is precisely the ARE (31) if we formally set R = Q†

∞P (which is, in general,
an unbounded operator).

We can now provide the precise definition of solution of (57).

Definition 4.6. Let P ∈ S+(H) and define the operator ΛP as follows:{
D(ΛP ) = {x ∈ H : Px ∈ R(Q∞)}
ΛP x = Q†

∞Px ∀x ∈ D(ΛP ). (58)

e say that P is a solution of (57) (or, alternatively, a stationary solution of (55)) if D(A) ∩ D(ΛP ) is dense
n [ker Q∞]⊥ and

0 = −⟨Ax,ΛP y⟩X − ⟨ΛP x, Ay⟩X − ⟨B∗ΛP x, B∗ΛP y⟩U ∀x, y ∈ D(A) ∩ D(ΛP ). (59)

emark 4.7. In the above definition we added, beyond the fact that Eq. (57) is satisfied in the set where
t makes sense (i.e. D(A) ∩ D(ΛP )), a density condition on such set. We made this choice in order to rule
ut solutions which would be not significant. For instance, consider the case when Hypothesis 2.4 holds and
hoose P to be an orthogonal projection on the line generated by a vector v ̸∈ R(Q∞). Clearly, in this case
(ΛP ) = {0}, hence D(A) ∩ D(ΛP ) = {0}. Since the ARE (57) is obviously satisfied when x = y = 0, it

ollows that any such P would be a solution. ■

We now define a subclass Q of the class of all solutions of (57). First of all we recall that, by Lemma 2.13,
tA|H is a strongly continuous semigroup in H, whose generator is denoted by A0 (see (36)).

efinition 4.8. Let P ∈ S+(H). We say that P ∈ Q if there exists D ⊆ D(ΛP ) such that D is dense in
(A) ∩ H with respect to the norm ∥ · ∥H + ∥A · ∥X ;

emma 4.9. The set R(Q∞)∩D(A) is dense in D(A)∩H, equipped with the norm ∥ · ∥H +∥A · ∥X . Hence,
choosing D = R(Q∞) ∩ D(A), we have IH ∈ Q.

Proof. Let x ∈ H ∩ D(A) such that

⟨x, z ⟩ + ⟨Ax, Az ⟩ = 0, ∀z ∈ R(Q ) ∩ D(A).
H X ∞

18
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It is enough to prove that x = 0. Observe that, writing z = Q∞y,

⟨x, Q∞y ⟩H + ⟨Ax, AQ∞y ⟩X = 0, ∀y ∈ D(AQ∞).

hen
⟨Ax, AQ∞y ⟩X = −⟨x, Q∞y ⟩H = −⟨x, y ⟩X ∀y ∈ D(AQ∞).

his means that Ax ∈ D((AQ∞)∗) and (AQ∞)∗Ax = −x. Hence

⟨(AQ∞)∗Ax, Ax ⟩X = −⟨x, Ax ⟩X = ∥(−A)1/2x∥2
X ≥ 0;

he fractional powers of −A are well defined since, by Hypothesis 2.1(ii), −A is a positive operator: see
.g. [28, Chapter 4]. On the other hand we know, from [13, Lemma 3.1-(ii)], that, for every y ∈ D((AQ∞)∗) ⊆
(AQ∞)

2⟨(AQ∞)∗y, y ⟩X = −∥B∗y∥2
U ,

o that
2⟨(AQ∞)∗Ax, Ax ⟩X = −∥B∗Ax∥2

U ≤ 0.

his implies that ∥(−A)1/2x∥2
X = 0; hence Ax = 0 and, since A is invertible, x = 0. □

emma 4.10. Assume Hypotheses 2.2 and 2.3. Let P ∈ S+(H) be a solution of (57), according to
efinition 4.6, and suppose moreover that P ∈ Q. Then the following estimate holds:

1
2 ⟨Px, x⟩H ≤ V P (t − T0, x) ∀x ∈ H, ∀t > T0,

here V P is the value function defined in (49) with N = P .

roof. Step 1 We prove the estimate

⟨Px, x⟩H ≤ ⟨Py(T0 − t), y(T0 − t)⟩H +
∫ 0

T0−t

∥u(s)∥2
U ds, t > T0, (60)

or every (z, u) ∈ U [−t,0](x) with x ∈ H, where y is the state corresponding to (z, u), i.e.

y(s) = e(s+t)Az +
∫ s

−t

e(s−σ)A Bu(σ) dσ, s ∈ [−t, 0]. (61)

uch inequality would be easy to prove if we were able to compute d
ds ⟨Py(s), y(s)⟩H and prove that

d

ds
⟨Py(s), y(s)⟩H ≤ ∥u(s)∥2

U , s ∈ [−t, 0].

nfortunately we even do not know if such a derivative exists. Hence we need to build a delicate
pproximation procedure as follows.

Fix t > T0 and x ∈ H; consider any (z, u) ∈ U [−t,0](x). It is not restrictive to assume in (61) that
(σ) ∈ R(B∗) for every σ ∈ [−t, 0]: indeed, writing, for every such σ,

u(σ) = u1(σ) + u2(σ), u1(σ) ∈ R(B∗), u2(σ) ∈ R(B∗)
⊥

= ker B,

t is clear that e(s−σ)ABu2(σ) = 0. Hence

y(s) = e(s+t)Az +
∫ s

e(s−σ)A Bu1(σ) dσ, s ∈ [−t, 0].

−t
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Since, evidently, JP
[−t,0](z, u) ≥ JP

[−t,0](z, u1), we can always choose u1 in place of u. Next, select a
sequence {(zn, un)} ⊆

[
D(A0)

]
× C1

0 ([−t, 0]; U),3 such that un is R(B∗)-valued and (zn, un) → (z, u)
n H × L2(−t, 0; U). Thus we can set un = B∗vn, where vn ∈ C1

0 ([−t, 0], X) and, denoting by yn the
corresponding state, we have yn ∈ C1([−t, 0]; H) ∩ C([−t, 0]; D(A)) (see e.g. [25, Chapter 4, Corollary 2.5])
nd

yn(s) = e(s+t)Azn +
∫ s

−t

e(s−σ)A BB∗vn(σ) dσ, s ∈ [−t, 0].

Thanks to the properties of the set D of Definition 4.8, we can now choose, for every n ∈ N, another
approximating sequence {ynk}h∈N ⊂ C1([−t, 0], H) ∩ C([−t, 0], D(A)), such that ynk(s) ∈ D for every
s ∈ [−t, 0] and satisfying, as k → +∞,

ynk → yn in C1([−t, 0]; H), Aynk → Ayn in C([−t, 0]; X) (62)

(see e.g. [25, Chapter 4, Theorem 2.7]). Set now wnk = y′
nk − Aynk. By (62) we get, for every n ∈ N,

wnk → y′
n − Ayn = BB∗vn in C([−t, 0]; X) as k → +∞. (63)

We now can differentiate the quantity ⟨Pynk(s), ynk(s)⟩H for s ∈ [−t, 0]. Indeed, taking into account the
above definition of wnk, we obtain, for s ∈ [−t, 0] and n, k ∈ N:

d

ds
⟨Pynk(s), ynk(s)⟩H = ⟨y′

nk(s), Pynk(s)⟩H + ⟨Pynk(s), y′
nk(s)⟩H

= ⟨y′
nk(s),ΛP ynk(s)⟩X + ⟨ΛP ynk(s), y′

nk(s)⟩X

= ⟨Aynk(s) + wnk(s),ΛP ynk(s)⟩X + ⟨ΛP ynk(s), Aynk(s) + wnk(s)⟩X .

Since P solves the ARE (59) we get, for every s ∈ [−t, 0],

d

ds
⟨Pynk(s), ynk(s)⟩H

= −∥B∗ΛP ynk(s)∥2
U + ⟨wnk(s),ΛP ynk(s)⟩X + ⟨ΛP ynk(s), wnk(s)⟩X

= −∥B∗ΛP ynk(s)∥2
U + ⟨B∗vn(s), B∗ΛP ynk(s)⟩U + ⟨B∗ΛP ynk(s), B∗vn(s)⟩U

+ ⟨wnk(s) − BB∗vn(s),ΛP ynk(s)⟩X + ⟨ΛP ynk(s), wnk(s) − BB∗vn(s)⟩X

= −∥B∗ΛP ynk(s) − B∗vn(s)∥2
U + ∥B∗vn(s)∥2

U

+ ⟨wnk(s) − BB∗vn(s),ΛP ynk(s)⟩X + ⟨ΛP ynk(s), wnk(s) − BB∗vn(s)⟩X .

efore going on, we make some remarks on the terms

⟨wnk(s) − BB∗vn(s),ΛP ynk(s)⟩X + ⟨ΛP ynk(s), wnk(s) − BB∗vn(s)⟩X

= 2Re ⟨wnk(s) − BB∗vn(s),ΛP ynk(s)⟩X .

enote by Π the orthogonal projection onto R(Q∞) = R(BB∗). As both ΛP ynk(s) and BB∗vn(s) belong
to R(Q∞) = R(BB∗), we may write

⟨wnk(s) − BB∗vn(s),ΛP ynk(s)⟩X = ⟨Πwnk(s) − BB∗vn(s),ΛP ynk(s)⟩X .

ext, the pseudoinverse (BB∗)† is well defined and, since R(BB∗) is closed, it satisfies (BB∗)†Π ∈ L(X),
ue to the closed graph theorem. In addition, we have BB∗(BB∗)†Π = Π , so that

⟨wnk(s) − BB∗vn(s),ΛP ynk(s)⟩X = ⟨Πwnk(s) − BB∗vn(s),ΛP ynk(s)⟩X

=
⟨
BB∗ [

(BB∗)†Πwnk(s) − vn(s)
]

,ΛP ynk(s)
⟩

X
.

3 C1([−t, 0]; U) is the set of C1 U-valued functions which take the value 0 at the extrema.
0

20



P. Acquistapace and F. Gozzi Nonlinear Analysis: Real World Applications 63 (2022) 103413

N

I

N

a

a

T

F

W

We go back now to the expression of the derivative of ⟨Pynk(s), ynk(s)⟩H :

d

ds
⟨Pynk(s), ynk(s)⟩H = −∥B∗ΛP ynk(s) − B∗vn(s)∥2

U + ∥B∗vn(s)∥2
U

+ 2Re
⟨
BB∗ [

(BB∗)†Πwnk(s) − vn(s)
]

,ΛP ynk(s)
⟩

X

= −∥B∗ΛP ynk(s) − B∗vn(s)∥2
U + ∥B∗vn(s)∥2

U

+ 2Re
⟨
B∗ [

(BB∗)†Πwnk(s) − vn(s)
]

, B∗ΛP ynk(s)
⟩

X
.

Hence we may write for every ε > 0,

d

ds
⟨Pynk(s), ynk(s)⟩H ≤ −∥B∗ΛP ynk(s) − B∗vn(s)∥2

U + ∥B∗vn(s)∥2
U

+ 2
B∗ [

(BB∗)†Πwnk(s) − vn(s)
]

X
∥B∗ΛP ynk(s)∥X

≤ −∥B∗ΛP ynk(s) − B∗vn(s)∥2
U + ∥B∗vn(s)∥2

U

+1
ε

B∗ [
(BB∗)†Πwnk(s) − vn(s)

]2
X

+ ε∥B∗ΛP ynk(s)∥2
X .

(64)

ow observe that

ε∥B∗ΛP ynk(s)∥2
X ≤ 2ε∥B∗ΛP ynk(s) − B∗vn(s)∥2

U + 2ε∥B∗vn(s)∥2
U .

nserting this inequality into (64) we get

d

ds
⟨Pynk(s), ynk(s)⟩H ≤ − (1 − 2ε) ∥B∗ΛP ynk(s) − B∗vn(s)∥2

U

+ (1 + 2ε) ∥B+vn(s)∥2
U + 1

ε

B∗ [
(BB∗)†Πwnk(s) − vn(s)

]2
X

.
(65)

Hence, for all positive ε ≤ 1
2 we get

d

ds
⟨Pynk(s), ynk(s)⟩H ≤ (1 + 2ε) ∥B∗vn(s)∥2

U + 1
ε

B∗ [
(BB∗)†Πwnk(s) − vn(s)

]2
X

. (66)

ow we have as k → ∞, for every s ∈ [−t, 0],

∥ynk(s) − yn(s)∥H → 0, ∥y′
nk(s) − y′

n(s)∥H → 0, ∥wnk(s) − BB∗vn(s)∥X → 0;

s a consequence, using the fact that (BB∗)†ΠBB∗ = (BB∗)†BB∗ = Π , we obtain as k → ∞

(BB∗)†Πwnk(s) → (BB∗)†ΠBB∗vn(s) = Π vn(s) in X,

nd also, since ker BB∗ = ker B∗,

B∗(BB∗)†Πwnk(s) → B∗Π vn(s) = B∗vn(s) in X.

hus by (66) we get, for every n ∈ N \ {0}, s ∈ [−t, 0] and 0 < ε ≤ 1
2 ,

d

ds
⟨Pyn(s), yn(s)⟩H ≤ (1 + 2ε) ∥B∗vn(s)∥2

U .

inally, letting ε → 0 and recalling that un = B∗vn,

d

ds
⟨Pyn(s), yn(s)⟩H ≤ ∥un(s)∥2

U ∀n ∈ N \ {0}, ∀s ∈ [−t, 0].

e now integrate in the smaller interval [T0 − t, 0]:

⟨Pyn(0), yn(0)⟩H ≤ ⟨Pyn(T0 − t), yn(T0 − t)⟩H +
∫ 0

∥un(s)∥2
U ds.
T0−t
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Letting n → ∞, since yn(s) → y(s) for every s ∈ [−t, 0], y(0) = x, and un → u in L2(−t, 0; U), we deduce
or every (z, u) ∈ U [−t,0](x)

⟨Px, x⟩H ≤ ⟨Py(T0 − t), y(T0 − t)⟩H +
∫ 0

T0−t

∥u(s)∥2
U ds, t > T0;

his is Eq. (60).
Step 2 We complete the proof of the lemma. Consider a sequence (ẑn, ûn) ∈ U [T0−t,0](x), such that, as

→ ∞,
JP

[T0−t,0](ẑn, ûn) → inf
(z,u)∈U [T0−t,0](x)

JP
[T0−t,0](z, u) = V P (t − T0, x). (67)

hus ẑn ∈ H, ûn ∈ L2(T0 − t, 0; U) and the corresponding state is

ŷn(s) = e(s+t−T0)Aẑn +
∫ s

T0−t

e(s−σ)ABûn(σ) dσ, s ∈ [T0 − t, 0];

n particular ŷn(0) = x. Now choose v̂n ∈ L2(−t, T0 − t; U) such that∫ T0−t

−t

e(T0−t−σ)ABv̂n(σ) dσ = ẑn; (68)

his is possible since, due to Hypothesis 2.2, the range of the operator (defined in (19))

v ↦→ L−t,T0−t(v) = L−T0,0(v(· + t − T0))

s all of H (see [14, Theorem 2.3]). Then, setting

un =
{

v̂n in [−t, T0 − t]
ûn in [T0 − t, 0],

the state corresponding to (0, un) in [−t, 0] is

yn(s) =
∫ s

−t

e(s−σ)ABun(σ) dσ.

y (68) we have

yn(T0 − t) =
∫ T0−t

−t

e(T0−t−σ)ABun(σ) dσ = ẑn;

ence, by uniqueness,

yn(s) = e(s+t−T0)Aẑn +
∫ s

T0−t

e(s−σ)ABûn(σ) dσ = ŷn(s) ∀s ∈ [T0 − t, 0],

o that yn(0) = ŷn(0) = x. This shows that (0, un) ∈ U [−t,0](x), and consequently, by (60),

⟨Px, x⟩H ≤ ⟨P ẑn, ẑn⟩H +
∫ 0

T0−t

∥ûn(s)∥2
U ds = 2JP

[T0−t,0](ẑn, ûn).

inally, by (67), as n → ∞ we get

1
2 ⟨Px, x⟩H ≤ V P (t − T0, x) ∀t > T0, ∀x ∈ H. □
22
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T

5. Results on the minimum energy problem

5.1. Optimal strategies

We start proving the existence of optimal strategies.

Proposition 5.1. The set U[−∞,0](0, x) is nonempty if and only if x ∈ H. Moreover, for every x ∈ H there
exists a unique ûx ∈ U[−∞,0](0, x) such that

V∞(x) = J[−∞,0](ûx).

Proof. The first statement follows from (17) as in Proposition 4.1. Now take x ∈ H and observe that
any minimizing sequence {un}n∈N must be bounded in L2(−∞, 0; U); so, passing to a subsequence, we have
un ⇀ ûx in L2(−∞, 0; U). As the functional J[−∞,0] is weakly lower semicontinuous, we get

V∞(x) ≤ J[−∞,0](ûx) ≤ lim inf
n→∞

J[−∞,0](un) = V∞(x),

i.e. ûx is optimal. Uniqueness is an easy consequence of the strict convexity of the functional J[−∞,0]. □

Moreover we have the following result about the optimal pairs when x ∈ R(Q∞) (see [13, Proposition
C.3 and Remark C.4]).

Proposition 5.2. Let x ∈ R(Q∞). Let (ŷx, ûx) be the optimal pair for our problem with target x. Then we
have

ûx(r) = B∗e−rA∗
Q†

∞x, r ∈ ] − ∞, 0]. (69)

Moreover the corresponding optimal state ŷx satisfies

ŷx(r) = Q∞e−rA∗
Q†

∞x, r ∈ ] − ∞, 0]; (70)

and the optimal pair satisfies the feedback formula

ûx(r) = B∗Q†
∞ŷx(r), r ∈ ] − ∞, 0]. (71)

Remark 5.3. We observe that in Proposition 5.2 ŷx is, formally, a solution of the backward closed loop
equation

y′(r) = (A + BB∗Q†
∞)y(r), r ∈ ] − ∞, 0[ , y(0) = x. (72)

Since Q∞ solves the Lyapunov equation

AQ + QA∗ + BB∗ = 0

(see [13, Proposition 3.3]), Eq. (72) rewrites as

y′(r) = −Q∞A∗Q†
∞y(r), r ∈ ] − ∞, 0[ . (73)

Finally, if A∗ commutes with Q∞ (e.g. when A is selfadjoint and invertible, and A and BB∗ commute), then
(73) becomes

y′(r) = −A∗y(r), r ∈ ] − ∞, 0[ . (74)

his means that, in such case, the optimal trajectory arriving at x is given by

y(r) = e−rA∗
x, r ∈ ] − ∞, 0].
23
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5.2. Connection with the finite horizon case

We now prove the connection between V∞ and the value function V of the corresponding finite horizon
roblem studied in [13].

roposition 5.4. Let Hypothesis 2.2 or Hypothesis 2.4 hold. For every x ∈ H we have

V∞(x) = lim
t→+∞

V (t, x) = inf
t>0

V (t, x).

oreover
V∞(x) = 1

2∥x∥2
H = 1

2∥(Q1/2
∞ )†x∥2

X

nd, for x ∈ R(Q∞), V∞(x) = 1
2 ⟨Q†

∞x, x ⟩X .

roof. Step 1. First of all, by [13, Proposition 4.8-(i)], the function V (·, x) is decreasing for every x ∈ H;
ence, for every such x

∃ lim
t→+∞

V (t, x) = inf
t>0

V (t, x).

We now prove that V∞(x) ≤ inft>0 V (t, x). With an abuse of notation we can write

U[−t,0](0, x) ⊆ U[−∞,0](0, x) ∀t > 0 :

indeed, given a control bringing 0 to x in the interval [−t, 0], we can extend it to a control bringing 0 to
x in the interval [−∞, 0] just taking the null control on ] − ∞, −t]. So, if the set U[−t,0](0, x) is not empty,
a fortiori the set U[−∞,0](0, x) will be not empty. This fact, together with the monotonicity of V (·, x), implies
that

V∞(x) ≤ inf
t>0

V (t, x). (75)

ote that this inequality is true without assuming Hypotheses 2.2 or 2.4.
Step 2. We prove now the reverse inequality and the last statement under Hypothesis 2.2. Fix any ε > 0

nd consider the optimal state ûx ∈ U[−∞,0](0, x) corresponding to x, such that J[−∞,0](ûx) = V∞(x). By
(9) we get

x =
∫ 0

−∞
e−τABûx(τ) dτ = etAŷx(−t) +

∫ 0

−t

e−τABûx(τ) dτ ∀t > 0;

ence we have ûx|[−t,0] ∈ U[−t,0](ŷx(−t), x), which in turn implies that

V (t, x − etAŷx(−t)) ≤ 1
2

∫ 0

−t

∥ûx(s)∥2
U ds≤ J[−∞,0](ûx) = V∞(x). (76)

ow we claim that for every δ ∈ ]0, 1[ we may choose tδ > T0 such that

∥etAŷx(−t)∥H ≤ δ ∀t > tδ : (77)

ndeed, by Hypothesis 2.2 and Lemma 2.10(v) we have for t > T0

∥etAŷx(−t)∥H = ∥(Q1/2
∞ )†etAŷx(−t)∥X ≤ ∥(Q1/2

∞ )†eT0A∥L(X)∥e(t−T0)Aŷx(−t)∥X

≤ ∥(Q1/2
∞ )†eT0A∥L(X)Me−ω(t−T0)∥ŷx(−t)∥X .

Since, as a straightforward consequence of Lemma 2.7, ŷx(−t) is uniformly bounded in X for t > 0, the
claim is proved.

Going ahead with the proof, we recall that, by [13, Proposition 4.8-(iii)-(b)], we have uniform continuity
of V on [T , +∞] × B (0, R) for every R > 0, where B (0, R) is the ball of center 0 and radius R in H. So,
0 H H
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setting R = ∥x∥H + 1, and denoting by ρR the continuity modulus of V on [T0, +∞] × BH(0, R), by (77) we
have for t > tδ

V
(
t, x − etAŷx(−t)

)
> V (t, x) − ρR(δ).

The above, together with (76), implies that

V (t, x) − ρR(δ) ≤ V∞(x) ∀t > tδ.

Choose now δ such that ρR(δ) < ε: then for t > tδ we get V (t, x) < V∞(x) + ε, so that

inf
t>0

V (t, x) < V∞(x) + ε;

y the arbitrariness of ε, (75) becomes an equality, as desired.
Finally the last statement follows from [13, Proposition 4.8-(iii)-(d)].
Step 3. Assume now Hypothesis 2.4. In order to prove the reverse of inequality (75), we repeat the

rgument of Step 2, with the only difference in estimating ∥etAŷx(−t)∥H : since ŷx(−t) ∈ H, we have now
y Hypothesis 2.4 and Lemma 2.14(iii)

∥etAŷx(−t)∥H = ∥etA0L−∞,−tûx∥H ≤ M e−ωt∥L−∞,−tûx∥H .

n the other hand, setting ûx,t(s) = ûx(s − t), we have ûx,t ∈ L2(−∞, −t; U) and

∥L−∞,−tûx∥H = ∥L−∞,0ûx,t∥H ,

o that, by Lemma 2.10(v),

∥etAŷx(−t)∥H ≤ M e−ωt∥L−∞,0ûx,t∥H = M e−ωt∥(Q1/2
∞ )†L−∞,0ûx,t∥X

≤ M e−ωt∥(Q1/2
∞ )†L−∞,0∥L(L2(−∞,0;U),X)∥ûx,t∥L2(−∞,0;U) .

ince
∥ûx,t∥L2(−∞,0;U) = ∥ûx∥L2(−∞,−t;U) ≤ ∥ûx∥L2(−∞,0;U) =

√
2V∞(x),

we obtain
∥etAŷx(−t)∥H ≤

√
2V∞(x)M e−ωt∥(Q1/2

∞ )†L−∞,0∥L(L2(−∞,0;U),X).

ence, again, for every δ ∈ ]0, 1[ we may choose tδ > 0 such that (77) holds. Proceeding as in Step 2, we
onclude that, as before, (75) becomes an equality.

Step 4. We now prove the final statement under Hypothesis 2.4. Arguing as in [13, proof of Proposition
.8-(iii)], for t > 0 and x ∈ R(Q∞) = R(Qt) we have

|2V (t, x) − ∥x∥2
H | = |⟨Q∞Q†

tx − x, x⟩H

= |⟨(Q∞ − Qt)Q†
tx, x⟩H | = |⟨(Q∞ − Qt)Q†

tx, Q†
∞x⟩X | .

ince, for suitable c > 0,

∥(Q∞ − Qt)z∥X =
∫ ∞

t

esABB∗esA∗
z ds


X

≤ c e−2ωt∥z∥X ∀z ∈ X,

we obtain
|2V (t, x) − ∥x∥2

H | ≤ c e−2ωt∥Q†
tx∥X∥Q†

∞x∥X .

Now we observe that, using [13, Proposition C.1-(iv)], it holds, for every t > 0,

Q x = Q x + e2tAQ x ∀x ∈ X.
∞ t ∞
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This is equivalent to
(1 − e2tA)Q∞x = Qtx ∀x ∈ X

hich implies, since R(Q∞) = R(Qt), that (1 − e2tA) maps R(Q∞) into itself. Hence, for large t > 0,

Q∞x = (1 − e2tA)−1Qtx ∀x ∈ X. (78)

e claim now that passing to pseudoinverses we have

Q†
∞z = Q†

t(1 − e2tA)z, ∀z ∈ R(Q∞). (79)

ndeed, fix z ∈ R(Q∞) and set
v = Q†

∞z, w = Q†
t(1 − e2tA)z.

pplying Q∞ we get, since (1 − e2tA)z ∈ R(Q∞) = R(Qt), and using (78),

Q∞v = Q∞Q†
∞z = z,

Q∞w = (1 − e2tA)−1Qtw = (1 − e2tA)−1QtQ
†
t(1 − e2tA)z = (1 − e2tA)−1(1 − e2tA)z = z.

ence Q∞w = Q∞v: since Q∞ is injective on R(Q∞) (where both v, w live), we obtain w = v, thus proving
ur claim.

Since ∥(1 − e2tA)−1∥L(X) → 1 as t → +∞, then, by (79) we deduce, for large t > 0 and for some constant
,

|2V (t, x) − ∥x∥2
H | ≤ c e−2ωt∥Q†

tx∥X∥Q†
∞x∥X = ∥(1 − e2tA)−1Q†

∞x∥X∥Q†
∞x∥X ≤ K e−2ωt∥Q†

∞x∥2
X ,

hich proves that
lim

t→∞
V (t, x) = 1

2∥x∥2
H .

he proof is complete. □

.3. Algebraic Riccati Equation

We now deal with the Algebraic Riccati Equation associated with our infinite horizon problem, i.e. (31).
s usual we expect that the operator representing the value function is a solution of it. Moreover, as the

olution cannot be unique (the zero operator is always a solution), we only expect the above solution to be
aximal in some suitable sense. This is our main goal. Before starting we note that, by Proposition 5.4,

∞ is a quadratic form represented, in H, by the identity operator IH ∈ L(H) and, in X, by the possibly
unbounded operator Q†

∞.
To prove our maximality result, it seems better, to avoid unboundedness issues, to work with the

representation of V∞ in H. Hence in analogy with what is done in Section 4.1 (see (57)) we consider Eq. (31)
where the unknown R is formally set equal to Q†

∞P and P is the new unknown.

0 = −⟨Ax, Q†
∞Py⟩X − ⟨Q†

∞Px, Ay⟩X − ⟨B∗Q†
∞Px, B∗Q†

∞Py⟩U . (80)

Note that such expression makes sense only when Px, Py ∈ R(Q∞) and x, y ∈ D(A) ∩ H.

Remark 5.5. In the finite-dimensional case, when the operator Q∞ is invertible, it is proved that the
operator R = Q−1

∞ solves (31), using the fact that its inverse W = Q∞ is the unique solution of the Lyapunov
equation

∗ ∗
AW + WA = −BB (81)
26
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among all definite positive bounded operators X → X. This is reported by Scherpen [12, Theorem 2.2], who
uotes Moore [11] for the proof (see also, among others, [29, Chapters 5 and 7], [30] and [31] for related
esults). In fact, as we will see, this procedure works in our infinite dimensional case, too, but with more
ifficulties.

Clearly the issue of maximality/minimality of solutions of ARE have been studied also in the infinite
imensional case, but in cases different from ours, see e.g. the books [21, Section 9.2] [22,23]. ■

We now provide the definition of solution of both forms of our ARE, i.e. (80) and (31), which include,
long the same line of Definition 4.6, a density condition motivated by Remark 4.7.

efinition 5.6.

(i) An operator P ∈ S+(H) is a solution of the ARE (80) if the set D(A) ∩ D(ΛP ) (see (58)) is dense in H

and Eq. (80) is satisfied for all x, y ∈ D(A) ∩ D(ΛP ).
ii) A positive, selfadjoint, possibly unbounded operator R : D(R) ⊂ X → X is a solution of the ARE (31)

if the set D(A) ∩ D(R) is dense in [ker Q∞]⊥ (in the topology inherited by X) and Eq. (31) is satisfied
for all x, y ∈ D(A) ∩ D(R).

Proposition 5.7. The following statements hold.

(i) If P ∈ S+(H) is a solution to (80), then R = Q†
∞P is a solution to (31) and it satisfies, in addition,

Q
1/2
∞ RQ

1/2
∞ ∈ L(X) and D(A) ∩ D(R) dense in H.

ii) If R is a solution to (31) and it satisfies, in addition, Q
1/2
∞ RQ

1/2
∞ ∈ L(X)4 and D(A) ∩ D(R) dense in H,

then P = Q∞R ∈ S+(H) is a solution to (80).

Proof. (i) Assume that P ∈ S+(H) solves (80). Setting R = Q†
∞P , we easily see that R is selfadjoint

and positive and that its domain is exactly D(ΛP ), which is dense in H by Definition 5.6(i). Hence it is also
dense in [ker Q∞]⊥. Then, again by Definition 5.6(i), the set D(A) ∩ D(R) = D(A) ∩ D(ΛP ) is dense in H.

he fact that such R satisfies (31) for every x, y ∈ D(A) ∩ D(ΛP ) follows by simple substitution. Finally, for
very x ∈ X we have

∥Q1/2
∞ RQ1/2

∞ x∥X = ∥Q−1/2
∞ PQ1/2

∞ x∥X = ∥PQ1/2
∞ x∥H ≤ ∥P∥L(H)∥Q1/2

∞ x∥H = ∥P∥L(H)∥x∥X .

(ii). Let R : D(R) → X be a solution of (31), having the properties that D(A) ∩ D(R) is dense in H

nd Q
1/2
∞ RQ

1/2
∞ ∈ L(X). We set P = Q∞R: then we easily see that P is selfadjoint and positive. Hence

∈ S+(H) since, for every x ∈ H,

∥Px∥H = ∥Q∞Rx∥H = ∥Q1/2
∞ [Q1/2

∞ RQ1/2
∞ ](Q1/2

∞ )†x∥H = ∥[Q1/2
∞ RQ1/2

∞ ](Q1/2
∞ )†x∥X

≤ ∥Q1/2
∞ RQ1/2

∞ ∥L(X)∥(Q1/2
∞ )†x∥X = ∥Q1/2

∞ RQ1/2
∞ ∥L(X)∥x∥H .

oreover, we see immediately that D(ΛP ) = H ∩ D(R). In addition, (31) transforms into (80), and it holds
or every x, y ∈ D(A) ∩ D(R), i.e. it holds for every x, y ∈ D(A) ∩ H ∩ D(R) = D(A) ∩ D(ΛP ), as required
y Definition 5.6. □

Concerning the two AREs (80) and (31) we have the following result:

heorem 5.8. Let Hypothesis 2.2 hold.

4 Here we mean that the set of x ∈ X such that Q1/2
∞ x ∈ D(R) is dense in X and that the operator Q1/2

∞ RQ1/2
∞ can be

extended to a bounded operator in X.
27



P. Acquistapace and F. Gozzi Nonlinear Analysis: Real World Applications 63 (2022) 103413

(

W
f
X

ξ

N

O
t

a
B

T
Q

m

I
a
i

(i) The operator R = Q†
∞ is a solution of the Riccati equation (31) in the sense of Definition 5.6(ii).

(ii) The operator P = IH is a solution of the Riccati equation (80) in the sense of Definition 5.6(i).
iii) Let also Hypothesis 2.3 hold. Then the operator IH is the maximal solution of (80) in the following
sense: if P̂ is another solution of (80) in the sense of Definition 5.6(i), belonging to the class Q introduced
in Definition 4.8, then

1
2 ⟨P̂ x, x⟩H ≤ 1

2∥x∥2
H = V∞(x) ∀x ∈ H.

(iv) Let also Hypothesis 2.3 hold. Then the operator Q†
∞ is the maximal solution of (31) in the following

sense: if R̂ is another solution of (31) in the sense of Definition 5.6(ii), such that Q
1/2
∞ R̂Q

1/2
∞ ∈ L(X),

D(A) ∩ D(R) is dense in H, and Q∞R̂ ∈ Q (see Definition 4.8), then

1
2 ⟨R̂x, x⟩X ≤ 1

2 ⟨Q̂†
∞x, x⟩X = V∞(x) ∀x ∈ R(Q∞).

Proof. (i) By [13, Proposition 3.3], Q∞ solves the Lyapunov equation, i.e. we have for every ξ ∈ D(A∗)

AQ∞ξ + Q∞A∗ξ + BB∗ξ = 0.

This implies that, for every ξ ∈ D(A∗) and η ∈ X,

⟨AQ∞ξ, η⟩X + ⟨Q∞A∗ξ, η⟩X + ⟨B∗ξ, B∗η⟩U = 0.

hen η ∈ D(AQ∞) the second term above rewrites as ⟨ξ, AQ∞η⟩X . Consequently, when η ∈ D(AQ∞), the
unctional ξ → ⟨AQ∞ξ, η ⟩X , well defined since ξ ∈ D(A∗), can be extended to a bounded linear operator on

since, by the above equation, it is equal to −⟨ξ, AQ∞η ⟩X − ⟨B∗ξ, B∗η ⟩U . Hence, choosing in particular
∈ D(AQ∞), we get

⟨AQ∞ξ, η⟩X + ⟨ξ, AQ∞η⟩X + ⟨B∗ξ, B∗η⟩U = 0, ξ, η ∈ D(AQ∞). (82)

ow set x = Q∞ξ and y = Q∞η. Then x, y ∈ D(A) and the above rewrites as

⟨Ax, η⟩X + ⟨ξ, Ay⟩X + ⟨B∗ξ, B∗η⟩U = 0. (83)

bserve that ξ = Q†
∞x + ξ0 and η = Q†

∞y + η0 for suitable ξ0, η0 ∈ ker Q∞ ⊆ ker B∗. Hence, using the fact
hat Q∞ solves the Lyapunov equation in the form (82), we have, for ξ ∈ D(AQ∞),

⟨Ax, η0⟩X = ⟨AQ∞ξ, η0⟩X = −⟨ξ, AQ∞η0⟩X − ⟨B∗ξ, B∗η0⟩U = 0

nd, similarly, for η ∈ D(AQ∞), ⟨ξ0, Ay⟩X = 0. We then get, substituting into (83) and observing that
∗ξ0 = B∗η0 = 0,

⟨Ax, Q†
∞y⟩X + ⟨Q†

∞x, Ay⟩X + ⟨B∗Q†
∞x, B∗Q†

∞y⟩U = 0, x, y ∈ Q∞(D(AQ∞)). (84)

he above is exactly equation (31) for R = Q†
∞. To end the proof of (i), it is enough to observe that

∞(D(AQ∞)) is dense in [ker Q∞]⊥ (using Remark 2.12 and the fact that it contains Q∞(D(A∗))), and
oreover that

Q∞(D(AQ∞)) = D(A) ∩ R(Q∞) = D(A) ∩ D(Q†
∞).

ndeed if x ∈ Q∞(D(AQ∞)) then it must be x = Q∞ξ with ξ ∈ (D(AQ∞)), so that AQ∞ξ is well defined
nd clearly coincides with Ax, proving that x ∈ D(A). Obviously it must also be x ∈ R(Q∞). The converse
s similar.
28
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(ii) It is enough to observe that (84) coincides with (80) with P = IH , and that D(ΛIH
) = R(Q∞).

(iii) Let P̂ be a solution of (80) belonging to the class Q introduced in Definition 4.8. It is immediate
o see that P̂ is a stationary solution of (55) in the sense of Definition 4.6. Now we apply Lemma 4.10 and
51), getting

1
2 ⟨P̂ x, x⟩H ≤ V P̂ (t, x) ≤ V (t, x) x ∈ H, t > T0.

aking the limit as t → +∞, the result follows by Proposition 5.4.
(iv) Let R̂ be a solution of (31) with the required properties. Then, from Proposition 5.7, we have

ˆ := Q∞R̂ ∈ S+(H), P̂ is a solution of (80) and P̂ ∈ Q. By part (iii) we then obtain, for x ∈ R(Q∞),

⟨R̂x, x ⟩X = ⟨Q†
∞P̂ x, x ⟩X = ⟨P̂ x, x ⟩H ≤ ⟨x, x ⟩H = ⟨Q†

∞x, x ⟩X .

he claim follows. □

Remark 5.9. The statements of Theorem 5.8 still hold if we consider the slightly more general problem
where the energy functional has the integrand ⟨Cu, u⟩U instead of ⟨u, u⟩U , where C ∈ S+(U) is coercive
nd hence invertible. Indeed it is enough to define the new control variable v = C1/2u and, consequently, to
eplace the control operator B in the state equation by BC−1/2. ■

emark 5.10. Theorem 5.8 can be applied to a variety of cases (e.g. delay equations treated in [13,
ubsection 5.1] or wave equations). Here, according to our motivating example arising in physics (see
ection 3), we develop a deeper analysis in the case where the operator A is selfadjoint and commutes with
B∗; in particular, when both are diagonal. This will be done in the next section. ■

. The selfadjoint commuting case

We consider the case where A is selfadjoint and invertible, and commutes with BB∗. We do not use here
heorem 5.8: so we need neither Hypothesis 2.2, nor Hypothesis 2.3. We just assume Hypothesis 2.4.
From [13, Proposition C.1-(v)] we know that, for every x ∈ X,

Q∞x = −1
2A−1BB∗x

nd
2Ax = −BB∗Q†

∞x ∀x ∈ R(Q∞) ⊆ D(A). (85)

ultiplying at the right the last equality by (BB∗)† and using that (see [13, Proposition C.1-(iii)])
ker BB∗]⊥ = [ker Q∞]⊥, we get

2(BB∗)†Ax = −(BB∗)†BB∗Q†
∞x = Q†

∞x ∀x ∈ R(Q∞) ⊆ D(A).

In this section we deal with the ARE (80) in H (with unknown P ∈ L(H)) under Hypothesis 2.4. Such
quation, using (85), becomes

0 = −⟨Ax, Q†
∞Py ⟩X − ⟨Q†

∞Px, Ay ⟩X + 2⟨APx, Q†
∞Py ⟩X . (86)

his makes sense, as for (80), when x, y ∈ D(A) ∩ D(ΛP ) (see Definition 4.6). We now want to rewrite this
quation using the inner products in H. Observe first that in R(Q∞) we have Q†

∞ = (Q1/2
∞ )†(Q1/2

∞ )†. Then,
f Ax, Ay and APx belong to H, we rewrite (86) as
0 = −⟨Ax, Py ⟩H − ⟨Px, Ay ⟩H + 2⟨APx, Py ⟩H . (87)
29
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Now, recalling the definition of A0 (see Lemma 2.13(iii)), Eq. (87) can be equivalently rewritten as

0 = −⟨A0x, Py⟩H − ⟨Px, A0y⟩H + 2⟨A0Px, Py⟩H , (88)

rovided that x, y, Px, Py belong to D(A0).
We now clarify the relationship between (86) and (88). First we set

DP := {x ∈ D(A0) : Px ∈ D(A0)} . (89)

ext, we provide the following definition of solution for (88) (compare with Definition 5.6):

efinition 6.1. An operator P ∈ S+(H) is a solution of the ARE (88) if the set DP is dense in
and Eq. (88) is satisfied for every x, y ∈ DP .

Finally, we observe that every solution of (86) is also a solution of (88): indeed, if P ∈ S+(H), then, by
efinition, we have DP ⊆ D(A) ∩ D(ΛP ). Hence, if P ∈ S+(H) solves Eq. (86), then, choosing in particular
, y ∈ DP we can turn (86) into (88).

The reverse procedure is also possible: we postpone the proof at the end of the section (Proposition 6.6),
ince some more informations on solutions P of (88) are needed.

We now give a preparatory result about the properties of such solutions.

roposition 6.2. Assume Hypothesis 2.4. Then any solution P of (88) satisfies

⟨A0x, A0Pz ⟩H = ⟨A0Px, A0z ⟩H ∀x, z ∈ DP . (90)

roof. Let P be a solution of (88). We observe that for all x, y ∈ DP we have, since A0 is selfadjoint in
(see Lemma 2.15(iii)),

⟨A0Px, y ⟩H + ⟨PA0x, y ⟩H = 2⟨PA0Px, y ⟩H . (91)

y density, this equation holds for every x ∈ DP and y ∈ H. Symmetrically we have also

⟨x, PA0y ⟩H + ⟨x, A0Py ⟩H = 2⟨x, PA0Py ⟩H (92)

or every x ∈ H and y ∈ DP . We choose in (91) y = PA0z − A0Pz, with z ∈ DP , and we obtain:

⟨A0Px, PA0z⟩H − ⟨A0Px, A0Pz⟩H + ⟨PA0x, PA0z⟩H − ⟨PA0x, A0Pz⟩H

= 2⟨PA0Px, PA0z⟩H − 2⟨PA0Px, A0Pz⟩H .

e isolate on the left the symmetric terms:

2⟨PA0Px, A0Pz⟩H − ⟨A0Px, A0Pz⟩H + ⟨PA0x, PA0z⟩H

= −⟨A0Px, PA0z⟩H + ⟨PA0x, A0Pz⟩H + 2⟨PA0Px, PA0z⟩H .

ext, we apply (91) to the last term on the right:

2⟨PA0Px, A0Pz⟩H − ⟨A0Px, A0Pz⟩H + ⟨PA0x, PA0z⟩H

= −⟨A0Px, PA0z⟩H + ⟨PA0x, A0Pz⟩H + ⟨A0Px, PA0z⟩H + ⟨PA0x, PA0z⟩H ,

hich simplifies to

2⟨PA0Px, A0Pz⟩H − ⟨A0Px, A0Pz⟩H = ⟨PA0x, A0Pz⟩H .
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Applying (92) to the term on the right, rewritten as ⟨A0x, PA0Px⟩H , we obtain for every x, z ∈ DP

2⟨PA0Px, A0Pz⟩H − ⟨A0Px, A0Pz⟩H − 1
2 ⟨PA0x, A0z⟩H = 1

2 ⟨A0x, A0Pz⟩H . (93)

e now restart from (92), and choose x = PA0z − A0Pz, with z ∈ DP : acting on the left variable of the
nner product, and proceeding exactly in the same way as before, we get for every z, y ∈ DP

2⟨A0Pz, PA0Py⟩H − ⟨A0Pz, A0Py⟩H − 1
2 ⟨PA0z, A0y⟩H = 1

2 ⟨A0Pz, A0y⟩H . (94)

omparing Eqs. (93) and (94), both written with variables x, y, we immediately obtain

1
2 ⟨A0x, A0Py⟩H = 1

2 ⟨A0Px, A0y⟩H , x, y ∈ DP ,

hich is (90). □

We can now prove:

heorem 6.3. Assume Hypothesis 2.4. Then any solution P of (88) commutes with A0, i.e. Px ∈ D(A0)
or every x ∈ D(A0) and

A0Px = PA0x ∀x ∈ D(A0).

n particular DP = D(A0).

roof. We start from (90) with w = A0x and y = A0z, i.e.

⟨w, A0PA−1
0 y ⟩H = ⟨A0PA−1

0 w, y ⟩H ∀w, y ∈ A0(DP ). (95)

otice that A0(DP ) is the natural domain of the operator A0PA−1
0 ; which might be (a priori) not dense in

. Let us denote by Z the closure of D(A0PA−1
0 ) in H; so we have

Z := A0(DP ) = D(A0PA−1
0 ).

Obviously Z is a Hilbert space with the inner product of H. Eq. (95) then tells us that A0(DP ) ⊆
D((A0PA−1

0 )∗) and

(A0PA−1
0 )∗w = A0PA−1

0 w ∀w ∈ A0(DP ) = D(A0PA−1
0 ). (96)

n the other hand, if x ∈ D(A0) and y ∈ D(A0PA−1
0 ) we may write

⟨x, A0PA−1
0 y ⟩H = ⟨A−1

0 PA0x, y ⟩H ;

onsequently
D(A0) ⊆ D((A0PA−1

0 )∗) (97)

and
(A0PA−1

0 )∗x = A−1
0 PA0x ∀x ∈ D(A0). (98)

We now claim that A0PA−1
0 is selfadjoint in the space H, i.e.

D((A0PA−1
0 )∗) = D(A0PA−1

0 ) = A0(DP ) (99)
s dense in H and (96) holds.
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Indeed, assume that z ∈ D((A0PA−1
0 )∗): then there is c > 0 such that

|⟨A0PA−1
0 x, z ⟩H | ≤ c∥x∥H ∀x ∈ D(A0PA−1

0 ).

n particular, by (96),

⟨x, (A0PA−1
0 )∗z ⟩H = ⟨A0PA−1

0 x, z ⟩H = ⟨(A0PA−1
0 )∗x, z ⟩H ∀x ∈ D(A0PA−1

0 ).

his shows that z ∈ D(A0PA−1
0 ) and A0PA−1

0 z = (A0PA−1
0 )∗z. Hence

D((A0PA−1
0 )∗) ⊆ D(A0PA−1

0 ) and A0PA−1
0 = (A0PA−1

0 )∗ on D((A0PA−1
0 )∗).

onversely, we know from (96) that

D(A0PA−1
0 ) = A0(DP ) ⊆ D((A0PA−1

0 )∗) and (A0PA−1
0 )∗ = A0PA−1

0 on D(A0PA−1
0 ).

In particular, by (97), Z coincides with H, i.e. both domains in (99) are dense in H. This proves our claim.
Take now x ∈ D(A0). As, by (97), D(A0) ⊆ D(A0PA−1

0 ), we have

PA−1
0 x ∈ D(A0) ∀x ∈ D(A0), i.e. DP = D(A0). (100)

(see (89)). Moreover, by (98) and by the above claim we deduce

A−1
0 PA0x = A0PA−1

0 x ∀x ∈ D(A0).

Applying A−1
0 we have A−2

0 PA0x = PA−1
0 x for every x ∈ D(A0), or, equivalently,

A−2
0 PA2

0z = z ∀z ∈ D(A2
0), i.e. A−2

0 Pw = PA−2
0 w ∀w ∈ H.

This means that the bounded operators A−2
0 and P commute. Now, since A−1

0 is a non-negative operator
such that (A−1

0 )2 = A−2
0 , by a well known result (see [26, Theorem VI.9]), A−1

0 must commute with every
bounded operator B which commutes with A−2

0 , for instance B = P . So

A−1
0 Pw = PA−1

0 w ∀w ∈ H, i.e. Pz = A−1
0 PA0z ∀z ∈ D(A0);

this implies that P (D(A0)) ⊆ D(A0) and A0Pz = PA0z for every z ∈ D(A0). Thus P commutes with A0,
as required. Moreover P (D(A0)) ⊆ D(A0) implies D(A0) ⊆ DP . The reverse inclusion immediately follows
from the definition of DP . □

Remark 6.4. By Theorem 6.3 we easily deduce that any solution P of (88) commutes with the resolvents
R(λ, A0) for every λ ∈ ρ(A0), i.e.

PR(λ, A0)x = R(λ, A0)Px ∀x ∈ H.

Indeed, for all x ∈ D(A0) we have PA0x = A0Px; so, for all λ ∈ ρ(A0) we have P (λ − A0)x = (λ − A0)Px.
Choosing x = R(λ, A0)z we get

P (λ − A0)R(λ, A0)z = (λ − A0)PR(λ, A0)z ⇐⇒ Pz = (λ − A0)PR(λ, A0)z.

We then conclude multiplying both sides by R(λ, A0).

We are now able to characterize all solutions of the ARE (88).
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Theorem 6.5. Assume Hypothesis 2.4 and let P ∈ S+(H). Then P is a solution of (88) if and only if P is
an orthogonal projection in H and it commutes with A0. In particular the identity IH is the maximal solution
mong all solutions of (88).

Proof. Let P be a solution of (88): by Theorem 6.3 we have Px ∈ D(A0) for every x ∈ D(A0) and
A0Px = PA0x. Hence the ARE (91), equivalent to (88), becomes

0 = −2⟨PA0x, y⟩H + 2⟨PA0Px, y⟩H , x ∈ DP , y ∈ H.

ince y is arbitrary, using (100) we get 2PA0x = 2PA0Px for every x ∈ D(A0), and successively, for all
x ∈ D(A0), PA0x − PA0Px = 0, PA0(IH − P )x = 0, A0P (IH − P )x = 0, P (IH − P )x = 0, Px = P 2x;
nally, by density, P = P 2.

Assume, conversely, that P is an orthogonal projection in H and it commutes with A0. Then

PA0Pz = P 2A0z = PA0z = A0Pz ∀z ∈ D(A0),

nd consequently P solves (91). Finally, since IH solves (88), the last statement is immediate. □

We conclude this section proving the equivalence of the two forms (86) and (88) of the ARE.

roposition 6.6. Every solution of (86) is also a solution of (88) and vice versa.

roof. We have already seen that every solution of (86) is also a solution of (88).
Consider now a solution P of (88). First of all, if x, y ∈ DP = D(A0), Eq. (88) transforms into (86), so

hat (86) holds true for x, y ∈ DP .
We claim that DP is dense in D(A)∩D(ΛP ) (see (89)) with respect to the norm ∥·∥H +∥A·∥X +∥AP ·∥X .

ndeed, for z ∈ D(A)∩D(ΛP ), recalling Lemma 2.13, we take the Yosida approximations of A (see [25, Section
.3]), and define, for n ∈ N,

zn = nR(n, A)z = nR(n, A)|H z = nR(n, A0)z.

hen zn ∈ D(A0) = DP and, as n → ∞,

zn → z in H,
A0zn = nA0R(n, A0)z = nAR(n, A)z → Az in X,

A0Pzn = nA0PR(n, A0)z = nAR(n, A)Pz → APz in X;

this proves our claim.
Let now x, y ∈ D(A)∩D(ΛP ); we select again xn = nR(n, A0)x, yn = nR(n, A0)y: we have xn, yn ∈ D(A0)

and, as n → ∞,
xn → x in H, Axn → Ax in X, APxn → APx in X,
yn → y in H, Ayn → Ay in X, APyn → APy in X.

In addition we have by Remark 6.4, Lemma 2.10(ii)

Q†
∞Pxn = Q†

∞PnR(n, A0)x = Q†
∞nR(n, A0)Px = Q†

∞nR(n, A)Px = nR(n, A)Q†
∞Px,

so that, as n → ∞,
Q†

∞Pxn → Q†
∞Px in X,

and similarly Q†
∞Pyn → Q†

∞Py in X as n → ∞. For xn and yn, (86) holds:

† † †
0 = −⟨Axn, Q∞yn ⟩X − ⟨Q∞Pxn, Ayn ⟩X + 2⟨APxn, Q∞Pyn ⟩X .
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By what established above, we can pass to the limit as n → ∞ in all terms, obtaining

0 = −⟨Ax, Q†
∞Py ⟩X − ⟨Q†

∞Px, Ay ⟩X + 2⟨APx, Q†
∞Py ⟩X ∀x, y ∈ D(A) ∩ D(ΛP ),

.e. P solves (86). □

emark 6.7. It is easy to verify that for every solution P of (88) the space DP = D(A0) is dense in
(A) ∩ H with respect to the norm ∥ · ∥H + ∥A · ∥X : it suffices to repeat the argument above, i.e. to

onsider, for fixed x ∈ D(A) ∩ H, the approximation xn = nR(n, A0)x, observing that xn → x in H and
0xn = Axn → Ax in X. Thus, P belongs to the class Q introduced in Definition 4.8.

orollary 6.8. Assume that A0 is a diagonal operator with respect to an orthonormal complete system {en}
n H with sequence of eigenvalues {λn} ⊂ ] − ∞, 0[ . Let P be a solution of the ARE (88). Then

(i) every eigenspace of A0 is invariant for P ;
(ii) if all eigenvalues are simple, then P is diagonal with respect to the system {en};
iii) if there exists an eigenspace M whose dimension is m ≥ 2, then the restriction of P to M may not be
diagonal: in particular, if m = 2 a non-diagonal P on M must have the following explicit form:(

a ±
√

a(1 − a)
±

√
a(1 − a) 1 − a

)
for some a ∈ ]0, 1[ . (101)

roof. To prove (i) it is enough to show that, for every eigenvalue λ of A0 and x eigenvector of A0 associated
ith λ, we have λPx = A0Px. This is immediate since A0 and P commute.
Concerning (ii) we observe that, for every n ∈ N we have A0en = λnen, so that λnPen = A0Pen. Since

λn is simple, it is Pen = ken for some k ∈ R. Since P is a projection, it must be k = 0 or k = 1.
Now, to prove (iii), let us assume that M is an eigenspace of dimension 2 associated to an eigenvalue

λ < 0 and generated by the orthonormal eigenvectors e and f . We know that M is invariant with respect
to P and that P is symmetric. This implies that P on M (with basis (e, f)) can be identified with a 2 × 2
symmetric matrix T of the form (

a b
b c

)
for some a, b, c ∈ R. (102)

Moreover T is a projection. If T has rank 2 then it must be the identity matrix. If not, it must be of the
form Tx = (x1v1 + x2v2)v for some vector v of M of norm 1. Hence

T =
(

v2
1 v1v2

v1v2 v2
2

)
Setting v2

1 = a we get the claim. □

Remark 6.9. Let A be a diagonal operator with respect to an orthonormal complete system {en} in H,
with sequence of eigenvalues {λn} ⊂ ] − ∞, 0[ , where all λn are simple. Then BB∗ must be diagonal, too.
Indeed we have, for every n ∈ N,

+∞∑
k=0

⟨BB∗en, ek ⟩H ek = BB∗en = 1
λn

BB∗Aen = 1
λn

ABB∗en = 1
λn

+∞∑
k=0

λk⟨BB∗en, ek ⟩H ek,

hich implies
⟨BB∗en, ek ⟩H

(
1 − λk

)
= 0 ∀k, n ∈ N.
λn
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Since all eigenvalues are distinct, it must be BB∗en = bnen for all n ∈ N for a suitable sequence {bn} ∈ ℓ∞.
his implies that Q∞ and Q

1/2
∞ are diagonal with respect to {en}, too. Following [13, Subsection 5.2] we

ay also consider the case when BB∗ is unbounded and characterize the space H, for specific choices of
B∗, in terms of the domain of a suitable power of (−A). The example developed in Section 3 fits into this

ramework. ■

emark 6.10. We can now apply our abstract theory to the example of Section 3. First of all, by
roposition 5.4, we know that the value function (42) is given by

V∞(y0) = 1
2∥y0∥2

L2(0,1).

Moreover, by Theorem 5.8, we obtain that:

• by point (i), the operator Q†
∞ = 2A solves the ARE (31) where we replace B∗ by IH−1(0,1);

• by point (ii), the identity in L2(0, 1), IL2(0,1), solves the ARE (80) where we replace B and B∗ by
IH−1(0,1);

• by point (iii) IL2(0,1) is the maximal solution of the ARE (80) among those belonging to the class
Q introduced in Definition 4.8.

Finally, since Hypothesis 2.4 holds, we can apply Theorem 6.5. Then, noting that A0 is the Laplace operator
ith Dirichlet boundary conditions in the space H = L2(0, 1), whose domain is H2(0, 1)∩H1

0 (0, 1), we obtain
hat:

• the identity IL2(0,1), is a solution of the two (equivalent) AREs (86) and (88);
• the set of all solutions of (86) and (88) consists of all orthogonal projections P which commute with A0,

i.e. all projections whose image is generated by a subset of the eigenvectors of A0;
• IL2(0,1) is the maximal solution among all solutions of (86) and (88). ■
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