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Abstract

An abstract nonautonomous parabolic linear-quadratic regulator problem with
very general final cost operator Pr is considered, subject to the same assumptions
under which a classical solution of the associated differential Riccati equation was
shown to exist, in two papers appeared in 1999 and 2000, by Terreni and the first
named author. We prove an optimal uniqueness result for the integral Riccati
equation in in the largest possible class, filling a gap existing in the autonomous
case, too. In addition, we give a regularity result for the optimal state.
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1 Introduction

Let H, U be Hilbert spaces. For fixed T > 0 we consider, for every s € [0,T[, the
following regulator problem: minimize the functional

T T
JS(U):/ IIM(T)l/Zy(T)qudT+/ IN ) 2ur) |17 de + 1Py 2y (1)
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among all controls u € L?(s,T;U), constrained by the following state equation, whose

strong form is
{ y'(t) = A)y(t) — A)G(u(t), tels,T),

y(s) =,
and whose mild form is

(2)

y(t) =U(t, s)x — / U(t,r)A(r)G(r)u(r)dr, te[sT). (3)

Here the operators {M(-)} and Pr are linear, non-negative, bounded, selfadjoint in H,
the operators {N(-)} are linear, positive, bounded, selfadjoint in U, z is an element of
H, the operators { A(r)},c[o,r] are generators of analytic semigroups {etA)} 50 in H,
for every r € [s,T] the family {U(r, s)}o<s<r, is the evolution operator associated to
A(r) and the operator G(r) is the “Green map” associated to A(r), having the prop-
erty that [—A(r)]*G(r) is a bounded operator from U into H for some « €]0,1/2[.
The pair (1)-(3) provides an abstract model for a large class of purely parabolic bound-
ary control problems: the realization of G(t) in concrete problems yields the lifting
of the nonzero datum at the boundary, i.e. transforms the nonhomogeneous initial-
boundary value problem into a homogeneous one by a modification of the right member
of the evolution equation. Typical examples are given in [1, Section 9].

Following and generalizing the methods employed in the autonomous case by [2], [3]
(see also the full description in the book [4]), the above problem was analyzed in [1]
and [5], proving existence and uniqueness of the optimal pair (7, ), and studying the
associated Riccati equation, whose differential form is

P'(t)+ A@t)*P(t) + P(t)A(t)
— _M(1) + POADGEHNG) GO AD) P(), telsT,  (4)
P(T) = Pr,

and whose integral form is
P(t)=U(T,t)"PrU(T,t)

+/t U(r,t)* [M(r) — P(r)A(r)G(r)N(r) ' G(r)* A(r)* P(r)]U (r,t) dr, t € [s,T].
(5)

In particular, existence and representation of a classical solution P(-) of equation (5)
was proved; its uniqueness was guaranteed only under further assumptions on the
operator Pp. More precisely, it was shown, among other things, that:

(i) the constructed solution P(-) of the Riccati equation (5) is classical, i.e. P(-) is
continuously differentiable as an £(H )-valued function and satisfies (4) in the sense of
L(H), provided the operator A(t)*P(t)+ P(t)A(t) is replaced by its bounded extension
A(t)P(t) (see [1, Section 7] for details);

(ii) the optimal pair enjoys some weighted Holder continuity properties;



(i4i) the final datum Pr belongs to the largest possible class, according to the coun-

terexample in [6]: namely, the composition P%/ 2LST is a closed operator in H, where
L7 is defined in Hypothesis 7 below (see also (10)). In addition the Riccati operator
P(-) is strongly continuous in [s, T, and a necessary and sufficient condition is given
in order that P(t) = Prin L(H) ast — T

(iv) uniqueness holds provided Pr € L(H, D([—A(T)*]*?)) for some 8 € |3 —a,1].

The main purpose of this paper is the proof, under the same assumptions made in
[1] and [5], of an optimal uniqueness result for the Riccati equation (5): we drop the
assumption written in (iv) above, and the solution turns out to be unique in a very
general and natural class: exactly the same where the existence of a solution was estab-
lished. In addition we prove a regularity result for the optimal state 3: although in
the parabolic case, as it is well known, such function may be unbounded as t — T,
nevertheless we show that ¢ — P(t)'/2(t) is continuous in the whole interval [s, T7,
a result that seems to be new even in the autonomous case of [2], [3]. The precise
assumptions of the paper are listed in Section 2 below.

The question of uniqueness for Riccati equations is a delicate issue. We con-
fine ourselves to the finite horizon theory: in the autonomous setting, uniqueness
was proved in the parabolic case under the assumption that [—A(T)*]?/Pr, or
[~ A(T)*]P Pr[—A(T)]? as in [7, Part IV, Chapter 2, Section 2.3, Theorem 2.2], is
bounded for some 3 > % —a, by means of a suitable a priori bound for G(-)*A(-)*Q(-)
(in our notation), where @ is the difference between two solutions; see [2], [3], [8], [4,
Theorem 1.5.3.3]. In the nonautonomous setting, after the pioneering paper [9], the
same method is used in [10]. A similar argument works in the autonomous hyperbolic
case, see [11, Theorems 8.3.7.1 and 9.3.5.4] or [12]. In the intermediate case of the so
called “singular estimate control systems” most papers use the same method: see [12],
[13], where Pr = 0, and [14], [15], [16] where the relevant parameter in the singular
estimate assumption is less than 1/2. A similar condition is required in [17], where the
method for proving uniqueness is based on a “fundamental identity” which resembles
our Lemma 10 below. Finally we mention the case of abstract systems arising from
composite PDEs systems with boundary control: the existence of a solution of the dif-
ferential Riccati equation was proved in [18], while the proof of its uniqueness in the
case Pr = 0, using the fundamental identity, is in [19].

We shortly describe our method: on one hand, the fundamental identity of Lemma
10 allows to prove that for any solution ) of the integral Riccati equation it must be
P > @Q; on the other hand, an accurate analysis of the terms appearing in the three
equivalent formulations in [s,T — €] of the integral Riccati equation (see (15) and
Lemma 12 below), as well as the careful evaluation of their limits as ¢ — 07, leads us
to show that the opposite inequality P < @ also holds. Our method could perhaps be
useful in improving the uniqueness results in some of the papers quoted above, too.
Remark 1. This paper should have been written more than 20 years ago, signed
by the first author and his dear friend and colleague Brunello Terreni. But after the
death of Brunello, for several years the first author felt unable to complete the work
and even to think about this topic. Now, finally, it is time to end the whole story: we
dedicate this article to the memory of Brunello.



2 Assumptions and main results

First of all we list our assumptions (the same as in [1], [5]). Let H and U be complex
Hilbert spaces. We denote by X+ (H) the class of linear, bounded, selfadjoint, non-
negative operators from H into itself.

Hypothesis 1. For eacht € [0,T], A(t) : D(A(t)) C H — H is a closed linear opera-
tor generating an analytic semigroup {e"™*®},~¢, such that 0 € p(A(t)); in particular,
there exist M > 0 and 9 € ]g,ﬂ[ such that

I =A®) Mg < MA+ANTT VA€ S(©), vtelo,T],

where S(¥) = {z € C: |arg z| < ¥}.
Hypothesis 2. There exist N > 0 and p, p €10,1] with § := p+ p—1 €10, %[, such
that
A = A1 A = AG) 2oy
+[lA@* A = AT AT = [AG) T 2oy
<Nt =s*(1+\)~* VA e S(9), vt sel0,T].

By the results of [20] and [21], the family {A(%)}:cjo,7) generates in H a strongly
continuous evolution operator U(t, s).
Hypothesis 3. The family {U(t, s) }o<s<t<T i the evolution operator of { A(t)}ieo,1)
and satisfies

I=AGIUE )[=AG)] ™ 2y + I[=AG) U )" [=AG T 2o
< My [14 (8 —s)777] for 0<s<t<T, n,vel01].

Hypothesis 4. The number § = p+ pu — 1 is such that 0 < § < % and

I=A@U () [=A($)] ™ = [ZAMU (7, 8)[=A(S)] M 2y
< Ny (t—7)0[1 + (7 — 8)Y 7177 for 0<s<7<t<T, n,vy€l0,1],

[[=A(e)]"U(t, )" [-A@)* ] = [=A(s)""U (L, 5)* [ A®) ]| s
< Ny (o — 821+ (t — o)1 for 0<s<o<t<T, n,v€el0,1],

all operators being strongly continuous with respect to t, T, 0, s.

The properties of Hypothesis 3 were proved in [21] and follow by the results of [20]
and [22]. The statement of Hypothesis 4 was never proved explicitly, but it follows
essentially by estimates contained in [21] and [22].

Hypothesis 5. G(t) € L(U, H) for every t € [0,T], and there exists « € }5, %[ such
that
te [ZA)]G(E) € C°([0,T), L(U, H)).

The verification of the abstract Hypotheses 3 and 5 in several concrete initial

boundary value problems for parabolic systems was made in [10].



By Hypotheses 4 and 5 we can give a precise meaning to the expression
U(t,s)A(s)G(s), 0 < s <t < T, often appearing in the sequel: namely

Ut 5)A(s)G(s) = —[[=A(s)"]' TU(t, 8)"] [~ A()]*G (s), (6)
and this operator is estimated by
=A@ T T (t, 8" [~ A C(S) s < elt — ). (7)

Hypothesis 6. M(-) € C°([0,T],%1(H)), N(-) € C°([0,T], S (U)), and there exists
v > 0 such that

(N(t)u,u)yy > v||ul|? vVt e [0,T], VYuel.
This assumption is essential in the proof of the existence of a unique optimal control
for the functional (1) under the constraint (3).
Before stating Hypothesis 7, it is useful to introduce some notations. We rewrite
equation (3) as
y(t) = U(t, s)x + [Lsul(t) tels,T]. (8)
where, of course (recalling (6)),

Lgu(t) = —/ U(t,r)A(r)G(r)u(r) dr, tels, T, u € L2(s, T;U). (9)

The properties of the operator Ly and of its adjoint L are listed in [1, Lemma 4.4].
We also introduce the operator Ly, 0 < s < T, as

T
D(Lyr) = {u € L?(s,T;U) : / A(T)rU(T, r)A(r)G(r)u(r)dr € D(A(T))}

T
Lyru = —A(T)/ A(T)rU(T, ) A(r)G(r)u(r)dr Yu € D(Lgr).

(10)
Clearly it holds D(Ls7) = D(Lor) for every s €]0,T[, since
T T
/ A(T)rU(T, ) A(r)G (r)u(r)dr — /0 A(T)rU(T, r)A(r)G (r)u(r)dr
= —A(T)™! /OS U(T,r)A(r)G(r)u(r)dr € D(A(T)),
and for every w € D(Lgr)
Loru = Lyru — /OS U(T,r)A(r)G(r)u(r) dr = Lspu + U(T, s) Lou(s). (11)

Let us finally state the crucial Hypothesis 7.



Hypothesis 7. Pr € X7 (H), and the linear operator
P} *Lor : D(Lor) € L*(0,T;U) — H

is closed.
We cannot drop this assumption, due to the counterexample in [6] (see also [4,
Section 1.7]).
Remark 2. As said before, the above assumptions are exactly the same as in the
papers [1] and [5]. O
As a consequence of Hypothesis 7, since the admissible controls are precisely the
elements of D(Lgr), we can rewrite more exactly the cost functional as

/ 1M () 2y ()| dr + / [N 2u() |3 dr + | P2y
Js(w) = ’ if ue D(Lyr) (12)
+00 ifue L?(s,T;U)\ D(Lyr),

where P%/Zy(T) means P%/2U(T, s)r+ P%/zLSTu for every u € D(Lgr).
For further use (see Lemma 21 below), we also recall the definition of L% (see [1,
formula (2.8)],

{ D(Lip) ={y € H: G()"A()'U(T,")"y € L*(s,T;U)} (13)

Liry = =GO AC)U(T,)"y;
note that, by definition, D(L};) C D(L};) for every s € [0,t], and that Ljyy =
L:Ty|[t,T[ for every y € D(Lgr).

We now state our main results.
Theorem 8. The Riccati equation (5) has a unique solution P within the class

0= {Q € L=(0,T; S (H)) N C([0,T[, S+ (H)) -
tgrqr}i |Qt)x — Prz||p =0 Vz e H, (14)

[=aw Q)| <dr-n* vie,Tl}.

L(H)

The proof is postponed in Section 4.
Theorem 9. The optimal state § of problem (12)-(8) satisfies

t— P()Y25(t) € C([0,T), H).

This theorem will follow as a simple consequence of Theorem 8, at the end of
Section 4.



3 Auxiliary results

Our proof needs some auxiliary facts. In the next statements we consider a fixed
operator @, belonging to the class Q introduced in (14), which satisfies the differential
Riccati equation (4). As we do not know yet whether the singularity of the quadratic
term in (4) is integrable at T or not, we rewrite (4) as an integral equation in the
smaller interval [s,T — ], where 0 < s < T — e < T. We write it in its weak form,
valid for all x,y € H:

(Q(s)z,y)r = (Q(T —)U(T —¢,8)x,U(T — &, 8)y)

T—e
[ U U ) ar

T—¢
— / (N(r)rG(r)* A(r)*Q(r)U(r, s)z, G(r)* A(r)*Q(r)U (r, s)y)y dr,

) (15)
We recall explicitly that in (15) the operators Q(+), U(-,-), M(-), N(-)~! are uniformly
bounded in [0, 7] by some constant K, while the operator G(-)*A(-)*Q(-), taking into
account (6) and (7), is well defined and uniformly bounded in [s,T — £] by some
constant C, , since its singularity is concentrated at 7.
We observe now that we may let ¢ — 07 in equation (15): indeed all terms converge,
but (possibly) the last. Hence, by difference, the last one converges, too, and when
x =y we deduce

NG A0 QMU s)a € L2(s, T; U).

Thus, we obtain from (15), for all z,y € H, as e — 0*:
T
(Q(s)z,y)u = (PrU(T, s)z, U(T, s)y)u +/ (M(r)U(r, s)z,U(r,s)y)m dr

- / (N(r) G (r)* A(r)*Q(r)U (r, s)x, G(r)* A(r)*Q(r)U (r, s)y)y dr.

(16)
Our first lemma concerns a basic identity which is well known in classical control
theory.

Lemma 10 (Fundamental identity). Let Q be given by (14), and let Q € Q be a
solution of (15). In addition, fix s € [0,T[, x € H, a control u € L*(s,T;U) and the
corresponding state y € L?(s, T; H), given by (8). Then the following identity holds



for every e €10,T — s]:
QT — (T — ). y(T ~ <)) s~ (Qs)e.)
— [ e [ NG e

T—e¢
[ NG utr) - N6Y G A Q) dr

The proof is in Appendix A.

Our second lemma concerns the so called “closed loop equation”.
Lemma 11. Let Q € Q, with Q given by (14). For fized s € [0,T], the closed loop
equation

O(t,s) =U(t,s) —/ U(t,r)A(r)G(r)N(r)LG(r)* A(r)* Q(r)®(r,s) dr, t< s T,

(18)
has a unique solution ®(-,s), belonging to C([s,T — ¢, L(H)) for every e €]0,T — s].

Proof. Fix e €]0,T — s[. The integral operator, acting on functions g € L?(s,T;U),

[Ksg](t) ¢=/ U(t,r)A(r)G(r)N (r) 7 G (r)" A(r)*Q(r)g(r) dr, t € [s,T —¢],

with kernel K(¢,7) given by
K(t,r) :=U(t,r)A(r)G(r)N () 'G(r)*A(r)*Q(r), 0<r<t<T,

is continuous in the region {(¢,7) : 0 < r <t < T} with values in £(H) and satisfies
the estimate (see [1, formula (6.6)])

Kt )| emy < et —r)* T —r)* 0<r<t<T,
so that, in particular,
K, )|l o <ec(t—r)*t 0<r<t<T-—e (19)
It is shown in [5], among other things, that (1 4+ K,)~! is well defined and belongs to
the space L(C([s,T — €|, L(H))). Thus if we set ®(t,s) = [(1 + K,)~tU(, s)](t), we

immediately obtain that (18) holds in [s,T — €], with arbitrary ¢ €]0,T — s[, i.e. in
[s,T7]. O

We remark that, by uniqueness of the solution of (18),

O(t,s) = D(t,q)P(q, s), 0<s<g<t<T. (20)



The next lemma is basic: it expresses the integral Riccati equation (5) in two equivalent
forms, from which we will deduce all the relevant informations for our proof.
Lemma 12. Let ®(t,s) be the unique solution of (18), as stated in Lemma 11. The
Riccati integral equation (15) is equivalent to both equations below, which hold for all
z,y€E H and0<s<T —e<T:

Q). y)m N
:4Q@*@¢@*&@%U@*&$wH+/ (M () (r, 5)2, U (1, 8)y) 1 dr;

’ (21)
Q). y)m =

=(Q(T —e)®(T —¢,8)x, (T —e,8)y)m + / 75<M(r)<1>(r, s)x, ®(r, 8)y) g dr+

—I—/ 76<N(r)_1G(7“)*A(r)*Q(r)<I>(r, )z, G(r) " A(r)*Q(r)®(r, s)y)y dr.

(22)
The proof of Lemma 12 is in Appendix B. Equation (22) is specially useful for our
purposes: indeed, when y = x it can be written as

T—¢
1Q(s) 2|3 = QT — ) /2(T — &, 5)x||3 + / M ()22 (r, s)a|| 3 dr 3
+ /T_E ||N(T)71/2G(T)*A(7“)*Q(7“)(I)(?", s)x||%] dr, xr € H.

Since the integrals are bounded and monotonically increasing as € — 0%, the first
term in the right member is bounded and decreasing. Thus, if Q@ € Q is a solution of
(15), then by (23) we can define

(B(s)z,xz)g == lim (Q(T —&)®(T —¢,s)z,®(T —¢,s)x)y, x€ H. (24)

e—0t

We have B(s) € X1 (H) and equation (23) becomes, as € — 0T,

T
@@awH=w@me+/nMvW%mﬂwzw -

T
+/ [N ~Y2G(r)* A(r)* Q(r)®(r, s)x||? dr, x € H.
Then we can pass to the limit as € — 07 in (22), too; using polarization in (24), we get

(B(s)z,yyg = lim (Q(T —e)®(T —¢,8)z, (T —¢,8)y)y, =,y € H, (26)

e—0t



and

T
(Q(s)z,y)u = (B( JUyH+/ D(r, s)x, ®(r,s)y) g dr

T
+/ (N(r)T'G(r)" A(r)* Q(r)®(r, s)a, G(r)" A(r)*Q(r)®(r, s)y)u dr, w,y € H.

(27)
We now recall some properties of the optimal pair (, ) with initial point € H and
initial time s, whose existence was proved in [1] and [5]. By [1, Proposition 5.4], it
holds

(P(s)z,x) g = Js(u)

= [ WM G B+ [N R0 dr o+ PR

S S

(28)

here P(-) is the classical solution, constructed in [1], of the differential Riccati equation
(4). The optimal control @ is given in feedback form by

At 5,2) = N0 LGy A@) POF(L), ¢ € [s,T]. (29)
By optimality, @ = u(-; s, x) belongs to D(Lsr). The optimal state g = y(-; s, x) is

§t) = B(t,5)2 = Ult,s)a + [L,al(), te[sT]. (30)
Now, let Q(-) be any solution of the Riccati equation (15), belonging to the class Q
defined by (14). In order to prove that P = @, we introduce the pair (g, %) where,
similarly to (29), @ is defined in feedback form in terms of § and @: namely, for fixed
s €10, T, with ®(t, s) defined by (18), we set

a(t) = a(t;s,z) = N(t) *Gt)*At)* Q(t)®(t, 8)x, s<t<T, (31)

and

§(t) = gltis,0) = D(t, $)e = UL, s)a + [Lalss,2)](t), s<t<T. (32)

By (25) we have 4 € L?(s, T;U) and hence, by [1, Lemma 4.4(i)], § € Lﬁ(s,T; H);
we note explicitly that, by (20),

u(r; s, x) = u(r;t, ®(t, s)x) vrelt,T[, Vtel[sT]|. (33)

Since we do not know whether or not @ € D(Lgr), we define suitable approximations
of 4 and ¥:

( ) (-5 8,x) in [s,T — €] Uls) . (3)
Ue = Ue(+38,T) = =U(+,8)T + Lsue;
o 0 i T—e1), )

10



then in particular

D(t,s)x iftels,T—e¢l

ve(t) = elti s, ) = { Ut, T —e)®(T —e,s)x if t € [T —&,T). (35)

Note that u. € D(Lsr), with Lepu. = U(T, T — ¢)[Lsu)(T — €); moreover, us — @ in
L?(s,T;U) and, using [1, Lemma 4.4(i)],

Ye = ¢ in Lﬁ(s,T;H) as € — 0%, (36)

4 Proof of the main results

Let Q(-) be any solution of the Riccati equation, belonging to the class Q defined by
(14). We will prove the two inequalities

vV

(Q(s)x,z)y Vz € H,

(a) (P(s)z,z)m 37
z,x)g < (Q(s)x,z)g V€ H.

(b) (P(s)z,z)

Theorem 8 will then follow by the arbitrariness of s € [0, 7| and a simple polarization
argument.

IN

4.1 Proof of Theorem 8(a)

We start with the following proposition:
Proposition 13. Let (u,y) € D(Lyr) x L*(s,T; H) be the optimal pair, given by
(32)-(31), and set for every e €]0,T — |

R {ﬂ in [s,T — €]

= Ue = U(+, 8)x + Lsuy;
0 in|T—eT], : ¢.9) :

Ue =

then we have y. € C([s,T], H) and

lim (P (T).o(T)) i = (Prj(T). G(T)) = lim (P(T = (T = 2). 5T =)
(33)

Proof. Tt is well known that y € C([s,T[, H), so that . € C([s,T — €], H). On the
other hand

Jo(t) = U(t, )z + [Lsac)(t) = U(t, )z + U(t, T — &)[La)(T —e)  Vte [T —e,T);

this implies 5. € C([s,T], H). Next, we note that, by the definition of u, ,
T

Lyr(u. — 1) = A(T)/ A(T)U(T, r)A(r)G(r)u(r) dr = —Ly_. 7;

T—e

11



Now we have obviously
U, —u in L*(s,T;U) ase—0T;
moreover, by [1, Proposition 4.2(ii)],
P} PLo(i. — 1) = =Py’ Ly_cri—0 in H ase— 0",
Hence, as e — 07,
P}*.(T) = P}PU(T, s)o+Py/* Lyptic — Py/*U(T, s)a+Py/*Lyrti = Py/*H(T) in H,

which implies the first equality in (38).
Next, choosing in Lemma 10 Q = P, u = u, y = g, we obtain by (17) and (29):

(P(T —e)y(T — ), y(T — &) — (P(s)x, x)

T—e T—e
= —/ 1M () 25(r) [ d?"—/ IV (r)"/23(r) |17 dr + 0,

and letting e — 0% we get, using (28),

lim (P(T —e)y(T —€),y(T —e))u

e—0t

T T
— (P(s)z 2)1 — / 1M ()25 3 dr — / IN Y200 | dr

S S

T T
:Js(ﬂ)—/ IIM(T)”Qz?(T’)II?{dT—/ IN () 2a(r)Fr dr = (Pry(T), §(T))m

which gives the second equality in (38). O

We now complete the proof of (a). For fixed € €]0,T — s, replace in (17) € by 4,
with 0 < 0 < ¢, and choose u = U, y = Y. Then we find

(Qs)a,2) e = (QUT — 85 (T — ), 3:(T — )
T-46 T—6
n / (M ()Ge(r), 5o dr + / (N () (r). 8. () dr
T—6
- / [N (r) — N(r)~V2G(r)* A(r)* Q)G (r) 3 dr
S <Q(T - 5)@\5(T - 6)7§E(T - 5)>H

T—6 T-6
" / (M ()52 (r), 5o (r)) 7 dr + / (N (). (), B () dr.

12



As 6 — 0%, since we know that y. € C([s,T], H) we deduce
<Q(S)Z‘, x>H < <PT@\E(T)’ @\E(T)>H
T T
+ [ MR T e+ [ N, dr

Finally, we let ¢ — 07 noting that 7. — 7 in L?(s,T; H) and 4. — @ in L?(s, T;U),
and using the first equality in (38), we get

(Qs)z,x)m
T

T
<A(Pry(T),y(T)) u +/ (M(r)y(r),y(r) d?‘+/ (N (r)u(r),u(r))u dr
= Js(u) = (P(s)x,x)p . ‘

This proves (a) in (37).

4.2 Proof of Theorem 8(b)

This proof is longer.

First, we list some statements where certain terms of equations (16), (21) and (22) are
analyzed. The first one is easy and concerns two integral terms in (16) (with y = x)
and (25).

Lemma 14. We have

T T
lim | M () 2U(r, T — €))% dr = lim / |M ()20 (r, T — &)x||% dr = 0.
E—> T—¢

e—0t T—¢

Proof. The first limit is trivial, since M (-)'/2U (-, T —¢) is uniformly bounded in £(H),
independently on €. Concerning the second one, we have, using Holder inequality and
(36):

T
M(r)2®(r, T—e)z|} dr < K1 e2|y(T—¢, )| < Ky e®|z||3
| e Ra e ar < K T ) < K el
for some absolute constants K1, Ko > 0. The result follows. O

The second lemma analyzes the last integral term of (16) with y = x.
Lemma 15. We have

T
lim ||N(r)_1/2G(r)*A(r)*Q(r)U(r,T —e)x||f dr = 0.

e—0+ T—e

Proof. By (16) with y = 2 and s =T — ¢ we have

T
/ IN(r) = 2G ()" Ar) Q(r)U (r, T — e)al|?; dr

T—e¢

13



T
2
WP T = alfy+ [ 1M U T = eJalfh dr = QT - )l
—&

As ¢ — 07 the result follows, since in the right-hand side the integral term goes to 0
by Lemma 14, while both P71«/2U(T7 T —¢)z and Q(T —€)*/2x converge in H to P%/Qac
ase — 0t. ]

The next result concerns the last integral term of (25).
Lemma 16. We have

T
lim N ()~ Y2G(r)* A(r)* Q(r)®(r, T — )|, dr = 0.

e—=0t T—¢

Proof. With y = z, we sum equation (16), minus twice equation (21), plus equation
(22). The result is

0= HQ(T—E)l/2U(T—E,S>$—Q(T—€)1/2<I)(T—6,S)l‘||%{

T—¢e
+/ M (1) 20 (1, 8)a — M(r)/2D(r, s) |2 dr

T—¢ (39)
*/ IN(r)=2G(r)* A(r)* Q(r)U (r, s)a||f; dr

T—e
+/ ||N(r)_l/QG(r)*A(r)*Q(r)(D(r, s)x||Z dr.

Replace € by 6. It follows that

T—6
IN ()~ 2G ()" Alr)* Q(r) ®(r, s)l|t; dr

T—06
< / IN ()~ 2G ()" Ar)* Q(r)U (r, s)x | dr

Letting 6 — 07 and replacing s by 1" —e¢, the result is a consequence of Lemma 15. [

In the next lemma we introduce a linear operator, whose importance is basic in
the sequel. To this purpose it is useful to define:

II: H— H, I1I = orthogonal projection onto R(P%/Q). (40)

Lemma 17. Let s € [0,T[. There exists C(s) € L(H), with range contained in
R(P%/Q), such that TIQ(T — ¢)Y/2®(T — ¢, 8)x — C(s)x in H for every x € H, i.e.

lim (Q(T — &) ?®(T — &)z, y)y = (C(s)z, ) Vo € H, Vye R(PY?). (41)

e—=0t
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Proof. We start from (21). Taking into account Lemma 14, we get

3 lim (Q(T — )Y2®(T — ¢, 8)x, Q(T — &)Y/2U(T — €, 8)y)u

e—0+

T
— Qe — [ (M2, s)yh dr.
Replacing s by T—19, with 0 < ¢ < 9 < T'—s, and = by ®(T'—¥, s)x, we obtain by (20)

3 lim (Q(T - eVV2B(T — e, 8)z, Q(T — e)2U(T — &, T — 9)y)m
T (42)
— QU= (T = 0, 5)ag)r — [ (MO)B(r ) U T~ Oy dr

T—9
Now note that, by (24) and (25),
QT — &) 2®(T —&,8)|lcmy <K Yz eH, VYse[0,T[, Veel0,T—s; (43)

hence, for each © € H and s € [0,T] we can find a sequence o = {0} }ren, decreasing
monotonically to 0, and an element v(s,z,0) € H such that

(v(s,2,0), ) = lim (Q(T — 0)®(t — op, Yoy Vye H.  (44)

k—o0

Going back to (42), as Q(T — &)Y/2U(T — ¢, T —9)z — P%/zU(T7 T — )z in H when
e — 0T, we get for every y € H
1/2
(v(s,z,0), PY/"U(T, T — Ny)u
= lim (Q(T — o) 20t — 03)x, Q(T — 04)PU(T — 0%, T = 9y
—00

= lim (Q(T — &)Y?®(T — &, 5)x, Q(T — &)?U(T — &, T —9y)ur

e—0+
T

(QIT —NO(T -9, 8)x,y)y — /T_ﬂ<M(7‘)(I>(T, $)x, U(r, T — 9)y) g dr.

As a consequence, since the integral term, by Lemma 14, goes to 0 as ¥ — 0T,

3 lim (Q(T — 0)2®(T — 9, 8)2, Q(T — 0)Y?y)y = (v(s,2,0), P/ *y)w Wy € H,

Y9—0+

and also, using (43) and strong convergence of Q(-)'/? to P%/27

3 lim (Q(T — 9)Y?®(T — 9, s)x, P%/2y>H = (v(s,m,a),P%my)H Yy € H.

Y9—0+
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By density, recalling again (43), we obtain

3 lim (Q(T — 9)V20(T — 9, 8)z, 2)y = (v(s,x,0),2)p ¥z € R(PY?).

9—=0+

As the limit in the left-hand side is independent of the sequence o and is linear with
respect to x, we deduce that there is a bounded (by (43)), linear operator I'(s) : H — H
such that

(T(8)x, 2y = (v(s,x,0),2)g = 791_1)1{)1+(Q(T NV2S(T -9, s)x,2)y Vz € R(P 1/2)

Finally, setting C(s)z = III'(s)x for every x € H, it is clear that (C(s)z,2)n =
(T'(s)x, z) g for every z € R(P. 1/2) so that

(C(s)z, 2y = (v(s,2,0),2)g = lim (Q(T —9)/>®(T — 0, s)z,2)g  Vz € R(PY?).

9—0+

This proves the result. O

We now prove two basic lemmas relative to the behaviour of C(-) near T.
Lemma 18. Let C(s) be defined by (41). Then:

(i) lim IC(t)x P1/2x||H 0 for every x € H;
(i) R(P, 1/2 U R(C

0<t<T

Proof. In order to prove (i), as in the proof of Lemma 16, we arrive to (39). With
x =1y, ¢ in place of ¢ and T — ¢ in place of s (with € > §), we obtain

0=]Q(T —&Y2(T —6,T — e)a — Q(T — &)2U(T — 6, T — )|

T—6
+/ | M ()Y@ (r, T — &)a — U(r,T — )x]||% dr
T—¢

T-6
[ Ive) e Amy Qe T - all

T—e¢

—IN()T2G(r) A TQNU (r, T — E)wll?f} dr,
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Letting 6 — 0", we see that
3 lim[|Q(T — NV2®(T — 6, T — e)x — Q(T — 6)Y2U(T — 6,T — e)z||%
—

T
_ _/ M) 2[D(r, T — &)z — U(r, T — )al||% dr

T[;s
- [ Vo) e Ay Q)BT — el
N ()G A QU T — )z ] dr.

By strong convergence of Q(T — 6)Y/2U(T — 6,T — ¢)x to P%/QU(T, T — &)z, we also
have (the operator II is defined in (40))

limsup |IQ(T — 8)/2®(T — 6,T — £)x — Py *U(T, T — &)z||%
§—0t
< lim QT - §V2O(T — 6,T — £)x — PYPU(T, T — e)z||%
—

T
_ —/T_ M2, T — )z — U, T — e)2]|% dr

T
- [ NGy a0y AC) Qe T - el
NG PG A QU T — e)z ] dr.

By (41) we get
IO(T — &) — PPU(T, T — e)a|%

T
< _/ | M ()2 D, T —e)a — U(r,T — €)a]||% dr
T—e¢

- [ [verteee) Av) Qe - <l
~ING) G0 A QU (T — e)allf] dr

Finally, we let ¢ — 07: by Lemmas 14, 16 and 15 we educe that

lim ||C(T — &)z — PY2U(T, T — e)x||% = 0;

e—0t

as P%/QU(T7T —eg)r — P%/zx in H, we conclude that C(T — )z — P%/zac, thus
proving (i).
Concerning (ii), the inclusion D is easy, since Lemma 17 implies that

U R@w) < R,
0<t<T
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To prove the reverse inclusion, fix z € R(P, 1/2) and € > 0: then there exists ¢ € H
such that HP%/% —z|lg < e. By (i), C(t)x — Py /23 as t — T, so that there is

to € [0, T such that
|IC(e — Py %x||g <e  Vte [to, T].

This shows that

e U () R

0<lo<T to<t<T
However, if tg <t <t < T it holds, by (20),

C(t)r = w-lim._,o+ Q(T — &)'\/2®(T — ¢, t)x
= w-lim._ o+ Q(T — &)'2®(T — &,t)®(t', )z = C(t')D(t', t)x,

so that R(C(t)) C R(C(t')). As a consequence,

1/2 U R(C

0<t<T

O
Lemma 19. Let B(s) and C(s) be defined by (26) and (41). Then for every x,y € H,
s€[0,T] and t € [s,T] we have

lim
e—0t

(C(t)x, PI/QU(T,T —e)®(T —¢,8)y)g — (B(t)x, P(t, s)y)H‘ =0. (45)

Proof. We fix s € [0,T[, t € [s,T] and z,y € H. Let us analyze the quantity to be
estimated. To begin with, we have for € €]0,T — ¢]

‘(C’(t)z, PYPU(T,T - &)®(T — ¢, 8)y)u — (B(t)z, ®(t, s)y>H‘

< ‘(C( )z, PI/ZU(T,T —e)®(T —¢e,8)y)g —(Q(T —e)®(T — &, t)x, ®(T — &,8)y)

(@ = )@ (T — £, t)2, (T — =, 9)y) 1 — (B(t)z, (2, 5)y)u |
(46)
In order to estimate the first term on the right-hand side of (46), we start from equation
(21): we first replace there € by ¢ and then choose T'— ¢ (with 0 < § < €) in place of
s, ®(T —e,t)x in place of x and ®(T — ¢, s)y in place of y. Then we find, using (20),

(QUT —e)(T — e, )z, (T —¢,9)y)n

= (Q(T — &)V2®(T — 6,t)x, Q(T — 6)2U(T — 6, T — &)®(T — &, 5)y)n
6
+ . (r,t)z,U(r,T —e)®(T — ¢, 8)y) g dr.
T—e¢

(47)
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As § — 07, by strong convergence of Q(T —6)2U(T —6,T —¢)y to P%/QU(T, T—¢e)y
and by (43), (41), we deduce

(QT = )T — &), 9T — &, 8)y)1 = (C(t), P *U(T,T = )T =2, 8)y)u

T
= /T_ (M(r)®(r,t)x,U(r,T —&)®(T —€,8)y) g dr

T
= /T_ (M(r)®(r,t)x, ye(r; s,y)) g dr

< K0||Z?('; tax)HL?(Tfs,T;H)HyE('; Say)HLz(s,T;H)
(48)
where Kj is a constant; since y(;s,y) is bounded in L?(s,T; H) by a constant K, ,
we proceed as in the proof of Lemma 14, and we deduce

T
/ (M(r)®(r,t)z, U(r,T — )®(T —&,8)y)g dr| <

T—e

(49)
< Kok, e 3Gt ) ) oy < CRyelaln

The second term in the right-hand side of (46) can be estimated by subtracting (27)
from (22), having replaced in both equations s by ¢t and y by ®(¢, s)y: indeed, we have,
using (20), (31) and (33),

0= <Q(T - 5)(1)(T -5 t)mv (I)(T -5 8)y>H - <B(t)$7 @(t, S)y>H -
T

T
- / (M(r)®(r,t)x, ®(r,s)y) g dr — / (N(r)u(r;t,z),a(r;s,y))u dr.

T—e¢ T—¢

Hence, proceeding as before, we get

HQIT = &) (T — e, t)a, (T — &, 8)y) i — (B(t)x, ®(t,8)y) | <

< 20|55/ T
L L L

+K|a(5t, )| L2 (r—e mn 1805 8,9 L2 (17— 70
< Kllzllz (** Iyl + wy(e))
where K is an absolute constant and w,(g) decreases monotonically to 0 as ¢ — 0%.

By (46), (48) and (50) we obtain the desired conclusion. O

The following statement is an important variant of the preceding lemma.
Lemma 20. Let C(s) be defined by (41). Then for every s € [0,T] we have

lim (C(T — &)z, P%/2U(T, T—e)®(T —¢,8)y)g = (Pl/Qx, C(s)y)m Va,y € H.

e—0t
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Proof. We go back once again to (21). We replace € by ¢ (with 0 <6 <¢€), sby T —¢
and y by ®(T — €, s)y: we get

(QIT — &)z, ®(T.e,8)y)
= {(Q(T = 6)2®(T — 6, T — &)z, Q(T — 6)2U(T — 6, T — £)®(T — &, 8)y)

T—6
+/ (M) (r,T — &)z, U(r,T — e)®(T — ¢, s)y) g dr,
T—¢

and by (43), strong convergence of Q(T — 8)2U(T — 6,T — &) and (41), as § — 07,

(Q(T —)22,Q(T —&)2®(T — £, 8)y)u
= (C(T = &)a, P)PU(T, T — &)®(T — &, )\ u

T
—|—/ (M(r)®(r,T — &)z, U(r,T —e)®(T — ¢, 8)y) g dr.
T—e

The last integral tends to 0 as € — 07 by Lemma 14, arguing as in (49). Thus, using

again strong convergence of Q(-)z and (43), we conclude that

lim (C(T — &)z, Py/*U(T, T — &)®(T — &, 8)y)u

e—0t

= lim (Q(T — £)¥2,Q(T — &) (T — &, 5)y)rr = (P12, C(s)y)u

e—0t

which is our claim. O

The following lemma is crucial, in order to obtain the key relation u(-;s,z) €
D(Lgr).
Lemma 21. Let @(-;s,x) and C(s) be defined by (31) and (41). For every x € H and
s €10, T we have P%/QC(S)J} € D(L¥;) and
a(, 552) = =N () "' Ligp P/ Cls)a — N() 7 LI [M()®(, s)a]. (51)

Proof. We start from the integral equation (21), which can be rewritten in strong
form, with s replaced by ¢ and x replaced by ®(¢, s)x, as

T—¢
Q)P(t,8)x =U(T —&,t)*"Q(T —)®(T —¢,8)x + /t U(r,t)*M(r)®(r, s)x dr.

We operate with G(t)*A(t)* in both members: by (31) we obtain

N(t)u(t,s,z) = G(t)*A(t)*Q(t)D(t, s)x
G(t)*A (t)e U(T -« t) QT —e)o(T —¢,s)x (52)
+/ Gt)"A@)*U(r,t)* M (r)®(r, s)x dr.
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It is easily seen that the second term in the last member of (52) is exactly the
function —L}[x(s,7—M(-)®(-, s)x] evaluated in ¢, which converges as ¢ — 0* to
—L:[M()®(-,s)x] in L?(s,T;U): indeed, by [1, Lemma 4.4(iv)],

T
[ I - aMOBC o)) = LM OB s)a @) de

2
T q

r 2
-/ HL:[X[TE,T]M<~><I><~,s>xn<t>|\Udts[/T M@ altdr|

with ¢ = ﬁ , and the last quantity goes to 0 as e — 0.

By difference, the first term in the last member of (52) belongs to L?(s,T;U) and it
converges to G(-)*A(-)*U(T, -)*P%/QC(s)x in L2(s, T;U). By definition (see (13)), this
means P%/QO(S)JJ € D(L%;) and formula (51) follows. O

We now state the key result of this proof.
Proposition 22. Let a(-;s,z) and C(s) be defined by (31) and (41). For 0 < s < T
and © € H we have u(-;s,z) € D(P%/QLST) and

C(s)x = P%/2U(T, s)r+ P%/2LST71(-; 8, T).

Proof. First of all, we note that, by Lemma 21 and (13), it holds P}/2C(t)x €
D(Lj;) € D(L}y) for every s € [0,t]. Thus, recalling (34), we start from the limit in
(45) and rewrite it as

(B(t)x, ®(t,s)y)m = 8l_i}r(1;1+<0(t)gc, P%/QU(T, s)y + P%/QLSTUE(j S, )V g
:(CﬁﬂJﬁﬂUUZQQH+?E&&@TByQX0Lu41&y»H@Iw)
= (C(t)x, Py *U(T, s)y)ur + (Lig Py *C(0)2, (3 5.9)) p2e )
= (2,0() Py *U(T, )y + [Lip P/ *C0)]"al-:5,9))
By Lemma 21, the operator L:TP%/ZC’(t) is closed with domain H; hence it is bounded,
and of course its adjoint [L:TP%/QC(t)]* is bounded in H, too. Since x € H is arbitrary

and B(t) = B(t)*, we deduce
«pl/2 « pl/2 e
B(t)®(t,s)y = C(t)"Pr "U(T, s)y + [Lgp Pr/ "C (0] al; s, y)-

We note that the operator L:TP%/ % is obviously closed and its domain

DLyPy?) 2 | | R(CE)| Uker P/
s<t<T
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is dense in H by Lemma 18(ii); moreover C(t) is bounded. So we may apply [23,
Theorem 13.2], obtaining [L:TP%/QC(t)]* = C(t)*[L:TP%/Q]*. Thus we may write

B®(t,s)y = Ct)" [PY2UT, 9)y + [Lip Py al55,9)] 5 (53)
In particular, we observe that
L(s;T3U) = D((Lip Py C]") = D(C(1)* [Lir Pr*]7) € D((LirPy)").
It is easy to verify that the operator [L:TP%/ 2]* is closed; since it has the whole space
L?(s,T;U) as its domain, it must be bounded, i.e. [L:TP1/2] € L(L*(s,T;U),H).
Moreover, since Pj{/ > e L(H) and Ly is densely defined, again by [23, Theorem 13.2]

we have [L:TP%/Q]* = [(P%/QLST)*]*; s, [L’S‘TP%/Q]* is a bounded extension of the
closed operator P%/ 2L5T. Using this information, we may write, as ¢ — 07,

P;/QLSTUE = P;/QU(T7 T—e)®(T —¢,8)x = P711/2U(t7 s)x + Pl/ngTus(g $,)
= PPU(ts)z + [Lip Py " uc (55, 7)
— PYPU(t, s)x + [Lip Py ) (- s, ).

Thus,
_ . 2 1/2 * 1/27% .
us(+;s, @) = a(-s,x) in L*(s, T;U), Py Leruc(-;s,x) = [Lyp Py “"u(;s,x) in H;

by Hypothesis 7, @(+; s;x) € D(Lgr) and P%/2LST1_L(~; $,x) = [L:TP%/2]*’LL( 58, T).
Set momentarily

E(s)z = lim Py/*U(T, T —&)®(T — ¢, 5)x.

e—0+

By (45) with ¢ = s, using Lemma 20, we deduce for every z € H
(P}?z,C(s)y) g = lim (C(T—¢)z, Py/*U(T, T—e)®(T—e, s)y)u = (Py/*x, E(s)y)u

e—0+

Since E(s) and C(s) are bounded operators, by density we have
(. Clsl)n = (= B ¥z € R(P).
As both E(s) and C(s) have range contained in R(P, 1/2) we deduce E(s) = C(s), i.e.

P%/QU(T,T —e)®(T —¢,8)x = C(s)r inH ase— 0",

and the result follows. O
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Corollary 23. Let C(s) and B(s) be defined by (41) and (26). For every s € [0, T
we have the equality
B(s) = C(s)"C(s);

consequently
QT — &)'2®(T —¢,8)x — C(s)x in H ase—0F.
Proof. Indeed, by Lemma 19 with ¢ = s, we have for every x,y € H,

(B(s)a,y) g = lim (C(s)a, P/ *U(T, T — €)®(T — &, 8)y) ur;

e—0t

hence, by Proposition 22,
(B(s)z,y)n = (C(s)x,C(s)y)ug  Va,y € H,

and this means B(s) = C(s)*C(s). In particular, we deduce (by Lemma 17) that
HQ(T — )Y/2®(T — ¢, s)x — C(s)z as e — 0, and

lim {|Q(T ~ &) P(T — e, s)all3y = (B(s)z,2)u = || Cls)xly
< liminf [[TIQ(T — €)Y?®(T — ¢, 5)x|% .

e—0t
Hence, TIQ(T — &)'/2®(T — ¢,s)x — C(s)z and |[IQ(T — &)'/2®(T — ¢,s8)x|% —
|C(s)z||% as e — 0*: it foollows that

|IQ(T—¢e)'2®(T—¢, 8)x—C(s)z|g — 0, |(I—I)Q(T—¢e)'/?®(T—e, s)x||% — 0,

and finally Q(T — €)'/2®(T — ¢, )z — C(s)z in H. O

We can now conclude the proof of Theorem 8 (b). In fact, since @(-; s, z) € D(Lsr),
we have, recalling (25) (and writing @(; s,2) = @ and §(-;s,2) = 7)

(P(s)r,x)m = Js(u(5s,2)) < Js(u(ss, 7))

This proves (b) in (37).

Proof of Theorem 9. The argument is very easy: P(-) is the unique solution of
the Riccati equation; hence Js(u) = (P(s)x,z)g = (Q(s)x,x)g = Js(u), with @
given by (29) and @ given by (31). As the optimal control is unique, we have & =
@, so that the optimal state §j = ®(-,s)x coincides with § = ®(-,s)z, too. On the
other hand, by Corollary 23, t — Q(t)/2®(t, s)z = P(t)/2®(t, s)z is continuous in
[s, T] with P}2®(T, s)x = C(s)z = Py/*[U(T, s)z + Lerti(+; s,2)] = P2 [U(T, s)x +
Lsru(ss,z)] = P%/%I;(T, s)z. The proof is complete.
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Appendix A Proof of Lemma 10

Let us split the terms on the right-hand side of equation (17). Recalling (8), we have
y(t) =U(t, s)x + [Lsul(t), with L, given by (9), and hence

T—e T—¢
[ M =~ [ MO Ul dr
T—e T—¢
“9Re / (MU (r, 8), [Lou](r)) 1 dr — / M ()L ] ()| dr
= M1 + M2 + Mg.
Similarly
T—e
/ [N () ?u(r) — N(r)"Y2G(r) " A(r)* Q(r)y(r) | dr
:/ h ||N(T)1/2U(T)||?Jd7’*2Re/ _8<U(T)>G(T)*A(T)*Q(T)y(T»U dr
+/ B [N (r)"2G(r)* A(r)* Q(r)y(r) || dr,
and using again (8) we write
T—¢
[ NG 2ulr) - N G) A QI dr
° T—¢e T—e
:/ ||N(7“)1/2u(r)\|2Udr—2Re/ (w(r), Gr)* A QYU (r, 8)z) v dr
S TiE S
—ZRe/ (u(r), G(r)* A(r)*Q(r)[Lsu](r))u dr
e
+/ IN(r)"Y2G(r)* A(r)* Q(r)U (r, s)x||? dr
T—e
+2Re/ (N(r)71G(T)*A(r)*Q(r)U(r,s)x,G(T)*A(r)*Q(r)[Lsu](r»U dr

" / - IN ()~ 2G ()" Alr)* Q(r) [Lsul (r) |y dr
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=: N1+ Ny + N3+ Ny + N5 + Ng .

Hence in the right member of (17) the term N; cancels and we get

T—¢ T—e
- / 1M ()2 () 2 dr — / IN () 2u(r)|2 dr+

T—¢
[ TINGY ) - NG ey ol ar = Y

= My + My + M3+ No + N3 + Ny + N5 + N .

Now we note that, by (15) with z =y,
T—¢
Myt No== [ M) UGl dr
T—¢ °
[ ING) G A QI sl dr
= —<Q(S).’E, x>H + <Q(T - E)U(T -, S)l’, U(T - & s)x>H .
Next, we set

Lv|(t) = —G(t)*A(t)* /tT_6 Ulo,t)*v(o)do, ve L*(s,T —¢; H); (A2)

this is the adjoint of Lg : L?(s,T —&;U) — L?(s,T —¢; H). For this operator we need
the following property:

Lemma 24. Let Ls, LS be given by (9), (A2). If ¥ € L*®(s,T — &;X(H)), and
v € L?(s,T —¢;U), then we have

T—e¢
[ el o)

- —2Re/ B <G(q)*A(q)*

Proof. Indeed we have

/ UG ) W)U g)dr

[Lsv](q), v(q)> dq.

U

T=e T—¢
[ oL e dr = [ @OL0). Lal6)a
- / —e / /T<\II(T)U(7’,J)A(U)G(U)v(a),U(r,q)A(q)G(q)v(q))Hdadqdr.
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The integrand in the last term is a symmetric function a(o, ¢): we rewrite this term as

/T// ¢) dodgdr
/TE/ U a(o,q) da+/r (aq)da}dqdr
/TU/ aqdadq—i—// aqdqda]
— 2Re / o / / a(0, q) dodgdr,

so that
T—¢e
/ (L0 () Lov] (), v(r))or dr
T—e r q
_ 9Re / / / (W)U (r,0) A(0)G(0)0(0), U(r, ) A(q)Glg)v(q)) r dodqdr

— 9Re / N / - <G(q)*A(q)*U(r,Q)*\I/(T)U(r,CI)

X /q U(q,0)A(0)G(o)v(0o) do, v(q)> drdg

U
T—e¢
=1 <G<q>*A<q>*

[Lsv](q), v(f])> dq.

U

T—e
/ Ur,q)" W)U (r, g) dr

Let us go back to (Al): we have
T—¢
My 4+ N5 + Ny = —2Re/ (M(r)U(r,s)x, [Lsu](r)) g dr

T—¢
+2Re/ <N(7’)71G(T)*A(T)*Q(T)U(T, )z, G(r)*A(r)*Q(r)[Lsul(r))y dr

—2Re N A(r)*Q(r)U(r, s)x)y dr

— _9Re U(-,8)x](r),u(r))y dr

+2Re AQOGON) TGO AN QOU(, s)al(r), u(r)),, dr

T—e

—2Re Q(r)U(r, s)x,u(r))y dr.

/

/‘“T M)
Jae
/
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Using (A2) and (15) we find

Mj + Ny + Ny = 2Re/ B <G(r)*A(r)* / U0 M(0)U (o, 7)

~U(0,7)*Q(0)A(0)G(0)N(0)1G(0)* A(0)*Q(o)U (o, 7“)] do

U(r,s)z, u(r)> dr

U

—Q(r)

T—e
= —2Re/ (G(r)"A(r)*'U(T —e,7)* QT —e)U(T — ¢, 8)z,u(r))y dr
=2Re(Q(T — e)U(T — &,8)x, [Lsu)(T — &)) g -

In addition,
T—e
Myt Nok No== [ [MO) (Lo )]y dr
T—e ’
—2Re/ (u(r), G(r)* A(r)*Q(r)[Lsu](r))y dr
P
+/ IN(r) " 2G(r)* A(r)*Q(r) [Lsu (r) |7 dr
T—¢
—— [ MO L) u)o dr
’ T—¢
—2Re/ (G(r)*A(r)*Q(r)[Lsul(r),u(r))y dr
* / _E<[LIEQ(')A(')G(‘)N(')*IG(')*A(')*Q(')LsU}(7’)7 u(r))u dr.
Putting together the first and third term, and using lemma 24, we get

Ms3 + N3 + Ng
T—e
— _9Re / (G(r)* A Q(r)[Lou] (r), u(r))u dr

[ MO - QUAOGON () GO AC QU L), ulru dr
= —2Re/ 7€<G(r)*A(7“)*Q(r)[Lsu](r),u(r)>U dr +

+2Re / o <G(r)*A(r)* / T o) [M(0)
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7Q(U)A(U)G(U)N(O’)71G(O’)*A(O')*Q(O')} U(o,r)do

[Lsu)(r), u(r)> dr.

U
Recalling again (15), we get
M3 + N3 + Ng

— 9Re / GO A UT — 2,1 QT — YU(T — &, 7)[ Lo (r), u(r)er dr

’1:976 r
— 2Re / / (GrY A U(T — £,7)* QT — )U(T — &, 0) A(0)G(o)ulo) do,
u(r))y dr

T—e pr
— 2Re / / (Q(T — )U(T — £,0) A(0)G(0)u(o),
U(T —e,m)A(r)G(r)u(r))y dodr;

Since the last integrand is a symmetric function b(c,r), as in the proof of Lemma 24
we get

T—e r
Ms + N3+ Ng = 2Re/ / b(o,r) dodr
S S

T—e pr T—e pr
:/ / b(a,r)dodr—l—/ / b(r,c) dodr
ST7€ Sr STfs ST7€ T—¢ T—e
z/ / b(o,r) dodr—|—/ / b(r,o) drda:/ / b(o,r) dodr,

so that finally

My + Na+ Ng = / o / QT - YU - 6,0) A()Gl(o)u(o),
U(T — &,r) A(r)G(r)u(r)) dodr
=(Q(T — &)[Lsu|(T —¢€), [Lsu[(T — €))m -
Summing up, and recalling (8) and (9), we have
M + Ms + Ms + No + N3 + Ny + N5 + Ng
= —(Q(s)z, )y +(QT —e)U(T —&,8)x,U(T — e, s)x)n
F2Re(Q(T — &)U(T — &, sz, [Lou)(T — )t
HQT — &)[Lsul(T — ), [Lsu)(T — €))u

= —(Q(s)z,2)m + (Q(T = e)y(T —€),y(T - €))m
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which proves (17) and concludes the proof of Lemma 10.

Appendix B Proof of Lemma 12

In order to prove (21), we start from the integral Riccati equation (15) and insert
in place of U(T — ¢, s)z and U(r, s)z their expressions in terms of ®(T — ¢, s)z and
®(r, s)x, given by (18). All calculations are legitimate, since there are singularities

only at T'. Setting for simplicity

K(q,0) = U(g,0)A(0)G(0)N(0) "' G(0)"A(0)"Q(0),

T—e
K(T —¢,0)®(0,s)xdo,U(T — ¢, 8)y>
H

T—¢
+ / (M(r)®(r,s)x,U(r, s)y) g dr

_|_

/ST—E <M(T) /: K(r,0)®(o, s)xdo,U(r,s)y> dr

H

T—e
— / <N(7")71G(7‘)*A(?“)*Q(T)‘I)(r7 )z, G(r)*A(r)*Q(r)U(r, s)y>H dr

_/ST_8 <N(r)_1G(T)*A(r)*Q(T) /: K(r,0)®(0, s)z do,

) A(r)* QU (r)y) dr

(B3)

T—e¢
={(Q(T —e)®(T —&,8)z, U(T —¢,8)y)m + / (M(r)®(r, s)z, U(r, s)y) g dr+

+L+ L+ 13+ 1y,

where I, I, I3, I, are the second term and the last three ones of the right member of

the first equality. We observe now that if we set

g(r) = A(r)G(r)N(r)'G(r)* A(r)* Q(r)®(r,s)z, h(r) =U(r,s)y,
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then, using (B3) and Fubini-Tonelli’s Theorem, we can rewrite the sum of these terms
as

T—¢
h+L+I;+1,= / (QIT —e)U(T —¢e,0)g(0),U(T —e,0)h(c))

- (MU (r,0)g(0), Ulr.0)h(o)) i dr — (Q(o)a(o). h(o))a

T—e¢
*/ (N(r)T'G(r) A(r)*Q(r)U (r,0)g(a), G(r)* A(r)* Q(r)U (r, o) h(0))v dr | do

T—e¢
= / 0do =0,
S

where the penultimate equality follows by (15). This proves equation (21).

We now prove (22): in a quite similar way, we insert in (21), in place of U(T — ¢, s)x
and U(r, )z, their expressions in terms of ®(T — ¢, s)x and ®(r, s)z, given by (18):
we have

(), y)u = (Q(T —e)@(T —&,5)2, (T — &, 8)y)u

T—e¢
+ <Q T —¢,9)x, K(T —€,0)®(o, 5)yda>
s H

m

+

/T O(r, s)z, ®(r, s)y) g dr
+/T8< (rys)z /Kra Js)>Hda
= (QT = e)@(T —&,5)2, (T —&,8)y)m

T—¢
+ (M(r)®(r, s)z, ®(r, s)y)g dr + J1 + Jo,

where J; and Jy are the second and fourth term of the right member of the first
equality. Recalling (B3), we set

9(0) = ®(0,8)z,  h(0) = A(0)G(0)N (o)™ G(0)"A(0)* Qo) ®(0, 5)y,

and using Fubini-Tonelli’s Theorem we can write

T—¢
Ji+ 2 = /

T—e¢
+/ (M(r)®(r,0)g(c),U(r,o)h(o)) g dr|do

QT —e)®(T —¢,0)9(0), U(T —&,0)h(0)n
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= [ @) o) do

T—¢
= / (N(0)'G(0)*A(0)*Q(0)®(0, 8)x, G(0)* A(0)*Q()® (0, 8)y) i do,

where in the penultimate equality we have used (21). This proves equation (22) and

concludes the proof. O
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