
HYPERBOLIC FOUR-MANIFOLDS

BRUNO MARTELLI

Abstract. This is a short survey on finite-volume hyperbolic four-manifolds.

We first describe some general theorems, and then focus on the geometry of

the concrete examples that we found in the literature.

The starting point of most constructions is an explicit reflection group Γ

acting on H4, together with its Coxeter polytope P . Hyperbolic manifolds then

arise either algebraically from the determination of torsion-free subgroups of

Γ, or more geometrically by assembling copies of P .

We end the survey by raising a few open questions.

Introduction

Hyperbolic n-manifolds exist for every n ≥ 2, but the small dimensions n = 2

and n = 3 have been the object of a much wider and more intense study than others.

The reason for that is of course well-known: thanks to Riemann’s uniformization

theorem and Thurston’s geometrization, “most” closed manifolds in dimension 2

and 3 are hyperbolic, so hyperbolic geometry is the most powerful tool available to

understand the topology of manifolds of dimension 2 and 3.

The role of hyperbolic geometry in dimension n = 4 is less clear; as far as we know

(which is not much), hyperbolic four-manifolds seem quite sporadic in the enormous

and wild world of smooth four-manifolds. The reason is at least threefold: there

are really many smooth four-manifolds around, there is no canonical decomposition

available whatsoever (in contrast to dimension three), and there are only “few”

hyperbolic four-manifolds because hyperbolic geometry is more rigid in dimension

n ≥ 4 than it is in dimensions n = 2 and 3.

The fact that there are “fewer” hyperbolic four-manifolds than three-manifolds

is of course debatable. The main gift of the three-dimensional hyperbolic world,

which lacks in higher dimension, is of course the hyperbolic Dehn filling theorem:

a notable consequence is that there are infinitely many closed hyperbolic three-

manifolds with volume smaller than 3, while there are only finitely many complete

hyperbolic four-manifolds with volume smaller than any number.

However, this finite number of hyperbolic manifolds with bounded volume can

be very big and is still completely unknown (we only know that it grows roughly

factorially with the bound [10]). In dimension four, the Gauss-Bonnet Theorem

says that

(1) Vol(M) =
4

3
π2χ(M)
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2 BRUNO MARTELLI

on every finite-volume complete hyperbolic four-manifold M , hence volume and

Euler characteristic are roughly the same thing.

One of the most important papers on hyperbolic four-manifolds is the Ratcliffe-

Tschantz census [52] that tabulates 1171 cusped manifolds having χ = 1, that

is with smallest possible volume. All these manifolds are constructed by some

particularly simple side-pairings from a single polytope, the ideal 24-cell. We know

absolutely nothing about the actual number of hyperbolic four-manifolds with χ =

1, which could be a priori much bigger than 1171.

In this paper we survey all the concrete examples of finite-volume hyperbolic

four-manifolds that we were able to find in the literature. The starting point of

most constructions is an explicit reflection group Γ acting on H4 together with its

corresponding Coxeter polytope P . Hyperbolic manifolds then arise either alge-

braically from the determination of torsion-free subgroups of Γ, or more geometri-

cally by assembling copies of P . Although simple in theory, both strategies suffer

from the combinatorial complexities of both Γ and P , indeed the determination

of torsion-free subgroups has been obtained only in some cases (using computers),

and only few very symmetric polytopes P could be assembled successfully.

The paper is organized as follows. We start by introducing reflection groups and

Coxeter polytopes in Section 1. We then turn to hyperbolic manifolds in Sections 2

and 3. (The former deals with the crude constructions, the latter with some more

refined aspects like Dehn fillings, isometries, etc.) Finally, we raise a few open

questions in Section 4.

Acknowledgements. The author warmly thank Mikhail Belolipetsky, Vincent

Emery, Ruth Kellerhals, Alexander Kolpakov, John Ratcliffe, Stefano Riolo, and

Steven Tschantz for many fruitful discussions. He also thanks the AIM and its

SQuaRE program for creating a very nice and stimulating environment for discus-

sion and research.

1. Four-dimensional hyperbolic polytopes

We list here some four-dimensional hyperbolic polytopes that have been con-

sidered by various authors, mostly with the aim of constructing hyperbolic four-

manifolds.

In dimension three, using Thurson’s equations one can construct plenty of cusped

hyperbolic manifolds by assembling simplices of very different kinds. In contrast,

in dimension four the only polytopes that people have been able to use to construct

manifolds are essentially the Coxeter polytopes, namely those with dihedral angles
π
k , and some few more with angles 2π

k . Coxeter polytopes are particularly nice

because they are the fundamental domains of discrete reflection groups, that is

discrete groups Γ of isometries in H4 generated by reflections.

1.1. Coxeter polytopes. We briefly introduce the theory of hyperbolic Coxeter

polytopes. For a more general reference to the subject, see for instance [26, 49].

A finite polytope P in Hn is the convex hull of finitely many points, and we

suppose for simplicity that P has non-empty interior. The boundary of P stratifies
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into faces of various dimensions, named vertices, edges, . . ., and facets. Each vertex

is finite or ideal according to whether it lies in Hn or ∂Hn.

A Coxeter polytope is a finite polytope P whose dihedral angles divide π. The

adjacency of facets in P is usually encoded via a graph, in which every node rep-

resents a facet of P and decorated edges describe the way two distinct facets meet

(or do not meet).

When P is combinatorially a simplex, every pair of facets meet at some angle
π
k , and one labels the corresponding edge with the number k. Since one commonly

gets many right angles it is customary to draw only the edges with k ≥ 3, labeled

with k. Moreover, an unlabeled edge is tacitly assumed to have k = 3.

For more complicated polytopes, we use the same rules, plus a label ∞ on edges

to indicate two facets that do not meet. One can also use some more refined label

that encodes whether the two hyperplanes containing the facets are asymptoti-

cally parallel or ultraparallel, and their mutual distance. Of course the graph can

become quite complicated if the polytope has many facets (like for instance in a

dodecahedron).

Reflections along the hyperplanes containing the facets of P generate a discrete

group Γ < Isom(Hn) of isometries with fundamental domain precisely P . This

means that the polytopes {γP | γ ∈ Γ} form a tessellation of Hn, i.e. they cover

Hn and intersect only in common faces. A presentation for Γ is

〈Ri | (RiRj)
kij 〉

where Ri is the reflection along the hyperplane containing the facet fi, we set

kii = 1, and two distinct facets fi, fj intersect at an angle π
kij

. (When they do not

intersect we assume kij =∞ and the relation is omitted.)

Every Coxeter polytope P may be interpreted as an orbifold and has a rational

Euler characteristic χ(P ) which may be computed as

χ(P ) =
∑
f

(−1)dim f

|Stabf |

where the sum is over all faces f of P and Stabf < Γ is the stabilizer of f , see for

instance [9]. The formula Vol(P ) = 4
3π

2χ(P ) holds also here in dimension 4.

By Selberg’s Lemma, there are plenty of torsion-free finite-index subgroups Γ′ <

Γ defining hyperbolic manifolds M = Hn/Γ′ that orbifold-cover P and is tessellated

into finitely many copies of P . A natural two-steps method to construct hyperbolic

manifolds is to provide a Coxeter polytope P , and then a finite-index torsion-free

subgroup Γ′ < Γ.

1.2. Hyperbolic simplices. The first Coxeter polytopes one investigates are of

course the simplices, and these were classified by Vinberg in [65]. There are five

compact Coxeter simplices ∆1, . . . ,∆5 in H4 and they are shown in Figure 1. Each

∆i is the fundamental domain of a cocompact discrete group Γi generated by re-

flections along its facets. Their Euler characteristics are quite small:

χ(∆1) =
1

14400
, χ(∆2) =

17

28800
, χ(∆3) =

13

7200
, χ(∆4) =

17

14400
, χ(∆5) =

11

5760
.
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Figure 1. The five compact Coxeter simplices in H4.

4

D7
4

D6
4

Figure 2. Two (among the nine) non-compact Coxeter simplices

in H4.

The five groups Γ1, . . . ,Γ5 are all arithmetic, and the first four Γ1, . . . ,Γ4 are

commensurable. In particular Γ4 < Γ2 with index two, and this is the unique direct

inclusion between these groups [32, Theorem 4]. The simplex ∆1 is the smallest

arithmetic four-dimensional hyperbolic orbifold [4].

There are also nine non-compact Coxeter simplices (which have some ideal ver-

tices) and they are all commensurable and arithmetic. Two of them ∆6 and ∆7 are

shown in Figure 2 and have

χ(∆6) =
1

1152
, χ(∆7) =

1

1920
.

Let Γ6 and Γ7 be the corresponding Coxeter groups. Every other Coxeter group

arising from the remaining seven simplices is a finite-index subgroup of one of these

two (sometimes both), see [32, Theorem 4].

The simplex ∆7 is the smallest non-compact arithmetic four-dimensional hyper-

bolic orbifold [25].

1.3. Regular polytopes. Luckily, there is no shortage of regular polytopes in

dimension four: there are as much as six of them and they are listed in Table 1.

By shrinking or inflating a regular polytope P in H4 we get a family of hyperbolic

regular polytopes with dihedral angles that vary on a segment [θ0, θ1) ⊂ [0, 2π],

where θ1 is the dihedral angle of P in its euclidean version and θ0 is the dihedral

angle of P in its ideal hyperbolic version. The angle θ0 is in turn the dihedral angle

of the (regular) euclidean vertex figure, which lies in a (euclidean) horosphere. Both

angles θ0 and θ1 can be spotted from the beautiful book of Coxeter [14], see also

[15].

For instance, for the 24-cell we have [θ0, θ1) = [π2 ,
2π
3 ). This wonderfully sym-

metric polytope has dihedral angle 2π
3 in the euclidean version, and π

2 in the ideal

hyperbolic version: the two versions tessellate R4 and H4 respectively. The 24-cell
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name vertices edges faces facets vertex figure Schläfli

simplex 5 10 10 5 tetrahedra tetrahedron {3, 3, 3}

hypercube 16 32 24 8 cubes tetrahedron {4, 3, 3}

16-cell 8 24 32 16 tetrahedra octahedron {3, 3, 4}

24-cell 24 96 96 24 octahedra cube {3, 4, 3}

120-cell 600 1200 720 120 dodecahedra tetrahedron {5, 3, 3}

600-cell 120 720 1200 600 tetrahedra icosahedron {3, 3, 5}

Table 1. The six regular polytopes in dimension four. The dual

pairs are grouped (the simplex and the 24-cell are self-dual) and

the Schläfli symbol is shown.

is the unique regular polytope (in all dimensions n ≥ 3) whose euclidean and ideal

hyperbolic versions are both tessellating.

The generous 120-cell furnishes a big segment of angles, expressed in degrees as

[θ0, θ1) = [70◦32′, 144◦), which contains 72◦, 90◦, 120◦, that is 2π
5 ,

π
2 ,

2π
3 . The other

regular hyperbolic polytopes with dihedral angles dividing 2π are the simplex and

the hypercube, both with angles 2π
5 . All these polytopes tessellate H4. (Note that

those with angles 2π
3 and 2π

5 are not Coxeter polytopes.)

Summing up, there are six regular hyperbolic polytopes tessellating H4, one ideal

and five compact. The tessellations are listed in Table 2.

Let P be a regular n-dimensional polytope. A flag is a selection of an i-

dimensional face fi for each i = 0, . . . , n such that fi ⊂ fi+1. The barycenters

vi of fi span a simplex ∆ ⊂ P called the characteristic simplex of P . Since the

isometry group Γ of P acts freely and transitively on flags, the characteristic simplex

∆ is a fundamental domain for Γ. The characteristic simplices of the tessellating

regular polytopes in Table 2 are the Coxeter simplices ∆1,∆2,∆3,∆6 encountered

in Figure 1 and 2.

Every finite-volume hyperbolic four-manifold M that is tessellated into some

hyperbolic regular polytopes is an orbifold cover of the corresponding characteristic

simplex ∆1,∆2,∆3, or ∆6. All compact manifolds of this kind are commensurable,

since ∆1,∆2, and ∆3 are. Hence we get overall two commensurability classes, one

compact and one non-compact. A closed hyperbolic four-manifold belonging to one

of these commensurability classes may not tesselate into regular polytopes.

1.4. More right-angled polytopes. There is today no complete classification

of hyperbolic Coxeter polytopes in dimension four. Note that every right-angled

polytope P can be mirrored along any of its facets to give a new right-angled

polytope with twice its volume: thus starting from the right-angled 24- or 120-cell

we can construct infinitely many complicated right-angled Coxeter polytopes, with

arbitrary big volume and number of facets.
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polytope dihedral angle vertex figure char simplex χ Schläfli

simplex 2π
5 600-cell ∆1

1
120 {3, 3, 3, 5}

120-cell 2π
3 simplex ∆1 1 {5, 3, 3, 3}

hypercube 2π
5 600-cell ∆2

17
75 {4, 3, 3, 5}

120-cell π
2 16-cell ∆2

17
2 {5, 3, 3, 4}

120-cell 2π
5 600-cell ∆3 26 {5, 3, 3, 5}

24-cell π
2 ∆6 1 {4, 3, 4, 3}

Table 2. The six hyperbolic tessellations of H4 via regular poly-

topes. The dual pairs are grouped, and the characteristic simplex

(from Figure 1), Euler characteristic χ, and Schläfli symbol are

shown. The 24-cell is ideal and hence there is no vertex figure

there. (In a sense, the vertex figure is the tessellation {3, 4, 3} of

R3 into cubes. Following this line, it also makes sense to define a

dual tessellation with Schläfli symbol {3, 4, 3, 4} with infinite poly-

hedra.)

There are also right-angled polytopes containing both ideal and finite vertices.

One such polyhedron P4 was constructed in [52] by cutting the ideal 24-cell along the

4 coordinate hyperplanes into 16 isometric pieces. More precisely, the construction

goes as follows: consider the regular ideal 24-cell in the Poincaré disc model D4, as

the convex hull of the points

(±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0), (0, 0, 0,±1),
(
± 1

2 ,±
1
2 ,±

1
2 ,±

1
2

)
.

The polytope P4 is the intersection of the ideal 24-cell with the positive hexadecant

of R4. It has five finite vertices

(0, 0, 0, 0),
(
0, 1

3 ,
1
3 ,

1
3

)
,
(

1
3 , 0,

1
3 ,

1
3

) (
1
3 ,

1
3 , 0,

1
3

)
,
(

1
3 ,

1
3 ,

1
3 , 0
)

and five ideal vertices

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),
(

1
2 ,

1
2 ,

1
2 ,

1
2

)
.

The latter are the ideal vertices of a regular ideal simplex S. Indeed P4 is obtained

by attaching to S five simplices, each with one finite vertex and four ideal ones.

Each of the four exterior facets of the attached simplices matches with an adjacent

one, hence P4 has 10 facets overall. Each facet of P4 is a hyperbolic right-angled

polyhedron P3 with three ideal vertices and two finite ones.

The polyhedra P3 and P4 are the first members of a family P3, . . . , P8 of right-

angled hyperbolic polytopes of dimension 3, . . . , 8 that have both finite and ideal

vertices, see [47]. There are no finite-volume right-angled polytopes in dimension

n ≥ 13, see [47, 18].
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Of course the orbifold P4 is commensurable with the ideal 24-cell. It turns

out that, among ideal right-angled polytopes, the 24-cell is the unique one having

smallest volume, and also the smallest number of facets [34].

1.5. Uniform polytopes. A polytope is uniform if its isometry group acts tran-

sitively on the vertices. For instance, the convex hull of the centers of the k-faces

of a regular polytope (for some fixed k) is a uniform polytope.

A natural example is the rectified simplex, which is the convex hull of the mid-

points of the edges of a simplex S. In dimension three, a rectified simplex is a

regular octahedron. In higher dimensions, the rectified simplex is not regular.

In dimension four, the rectified simplex has 10 vertices and we may describe it in

R5 as the convex hull of (1, 1, 1, 0, 0) and all the other points obtained by permuting

these coordinates. It has 10 facets: five regular tetrahedra (obtained by truncating

the vertices of S) and five regular octahedra (obtained by rectifying the facets of

S).

The hyperbolic version which is relevant for us is the ideal hyperbolic rectified

simplex P , with all 10 vertices in ∂H4. The symmetries of P force the vertex

figure to be a euclidean prism made of two horizontal equilateral triangles and

three vertical squares. The dihedral angles of this prism are π
2 and π

3 , and hence

these are also the dihedral angles of P which is therefore a Coxeter polytope. The

facets of P are ideal regular tetrahedra and octahedra: every tetrahedron meets

four octahedra with angles π
2 , and two adjacent octahedra meet at angles π

3 . We

have χ(P ) = 1
6 , see [37].

This beautiful hyperbolic polytope has been used to construct many manifolds

in [37] and then also in [59].

1.6. Deforming Coxeter polytopes. Finite-volume orbifold groups are rigid in

dimension four, but infinite-volume ones may not be. After removing two opposite

facets from the 24-cell, we get an infinite-volume Coxeter polytope that can be

deformed to form a continuous family of polytopes containing countably many

Coxeter ones, few of them having finite-volume: this beautiful construction may

be interpreted as a four-dimensional instance of the three-dimensional hyperbolic

Dehn filling and is described in [33].

2. Hyperbolic four-manifolds

We now list all the finite-volume hyperbolic four-manifolds that we were able

to find in the literature. We introduce the subject with a paragraph that contains

some general facts about finite-volume hyperbolic n-manifolds with n ≥ 4. Many

of them were proved in the last 15 years.

2.1. General facts. How can one construct hyperbolic manifolds in any dimension

n? How many such manifolds are there, and how do they look like? Some of these

questions have been answered for all n simultaneously, mainly using arithmetic

techniques. We now briefly state some theorems that hold in every fixed dimension

n ≥ 4, before turning back to dimension four in the following section.
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We know from a theorem of Wang [66] that there are only finitely many finite-

volume complete hyperbolic n-manifolds of bounded volume. If we indicate by

ρn(V ) the number of complete hyperbolic n-manifolds with volume ≤ V , it was

then shown by Burger, Gelander, Lubotzky, and Mozes in 2002 that ρn(V ) grows

like V cV , that is, there are two constants 0 < c1 < c2 such that

V c1V < ρn(V ) < V c2V

for all sufficiently big V . The same kind of growth holds if one restricts to either

closed or cusped manifolds, or to either arithmetic or non-arithmetic manifolds

[6, 10].

Gromov and Piatetski-Shapiro have first shown that there are non-arithmetic hy-

perbolic manifolds in all dimensions [24]: these manifolds are constructed by gluing

altogether two hyperbolic manifolds along their (isometric) geodesic boundaries.

There are dramatically more non-arithmetic manifolds than arithmetic ones if

one looks only at commensurability classes: Belolipetsky has shown [5] that the

number of commensurabillity classes of arithmetic hyperbolic n-manifolds with

volume ≤ V grows roughly polynomially in V , while first Raimbault [48], and

then Gelander and Levit [21], have discovered that the number of commensurabil-

ity classes of non-arithmetic ones grows first at least like CV , and then like V cV ,

respectively.

We also note that there are hyperbolic manifolds with arbitrarily small systole,

as proved by Agol [1] in dimension n = 4 and then by Belolipetsky and Thomson

[8] for every n.

Being reassured that there are plenty of hyperbolic four-manifolds, we now de-

scribe the (quite few, we must say) concrete examples that we have been able to

find in the literature. We start by describing some closed hyperbolic four-manifolds,

then we turn to finite-volume cusped ones, and finally to hyperbolic four-manifolds

with (three-dimensional) geodesic boundary.

2.2. The Davis manifold. A couple of famous geometric three-manifolds are con-

structed by identifying the opposite faces of a regular dodecahedron D. Since op-

posite faces in D are pentagons misaligned by a π
5 turn, to identify them we must

make a choice: we can identifiy them through a (say, counterclockwise) rotation

of angle π
5 , 3π

5 , or π. If we choose the same angle on all opposite faces, we get a

closed manifold M , which is correspondingly the Seifert-Weber manifold, Poincaré

homology sphere, or RP3. The orbit of every edge has order correspondingly 5, 3,

2: therefore if D has dihedral angles 2π
5 , 2π

3 , π the manifold M is geometric. Such

a dodecahedron D exists in the appropriate geometry, and we get a hyperbolic

manifold and two spherical manifolds respectively.

Davis made a similar (actually, simpler!) construction in 1985 using the 120-

cell P , see [16]. Contrary to the dodecahedron, opposite facets in the 120-cell are

parallel and not misaligned, hence one can just identify them via a translation. The

orbit of a two-dimensional face has order 5 and this suggests that by realizing P as

the hyperbolic 2π
5 -angled polytope we get a hyperbolic manifold M . This is indeed

the case, and M is called the Davis manifold.
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Later on, Ratcliffe and Tschantz [53] have studied M more closely. They proved

that M is the unique smallest manifold among all coverings of the simplex orbifold

∆3. The degree of the covering is 14400, equal to the order of the symmetry group

of the 120-cell. Its Euler characteristic is χ(M) = 26. The integral homology groups

are as follows:

H0(M) = Z, H1(M) = Z24, H2(M) = Z72, H3(M) = Z24, H4(M) = Z.

The manifold M contains as much as 720 closed geodesics with the same minimal

length 2.76514 . . . and therefore its injectivity radius is 1.38257 . . . This is the same

injectivity radius of a closed hyperbolic surface S obtained by identifying the op-

posite edges of a 2π
5 -angled hyperbolic regular decagon, and M contains such a S.

The isometry group of M has order 28800.

Finally, the manifold M is spin: since H1(M) has no torsion, this is in fact

equivalent to the assertion that the intersection form of H2(M) is even. Evenness

is proved by detecting 72 totally geodesic genus-2 surfaces that generate H2(M)

and have trivial normal bundle: their self-intersection is zero, hence the form is

even.

Every closed oriented hyperbolic four-manifold has zero signature by the Hirze-

bruch signature formula (see [41] for instance). Therefore the intersection form of a

closed oriented hyperbolic four-manifold is either ⊕k
(
0 1

1 0

)
or ⊕k(1)⊕k (−1) depend-

ing on whether the signature is even or odd. The intersection form of the Davis

manifold is ⊕36

(
0 1

1 0

)
and it seems to be the only closed four-manifold for which the

signature and the intersection form have been determined: in particular, no closed

oriented hyperbolic four-manifold with odd intersection form seems to be known.

Note that the second Betti number of an oriented closed hyperbolic four-manifold

is even, because the Euler characteristic is so [49].

2.3. The Conder–Maclachlan manifold. For a certain time the Davis manifold

M was, with χ(M) = 26, the smallest closed orientable hyperbolic four-manifold

known. The situation changed in 2005 when Conder and Maclachlan made an

extensive (and successful) search for a smaller closed orientable manifold.

Their investigation went as follow: they picked the small compact Coxeter sim-

plices ∆1, . . . ,∆5 illustrated in Figure 1, and noted by some elementary consider-

ations that the Euler characteristic of any orientable closed manifold M covering

these would be a multiple of (respectively) 2, 34, 26, 34, and 22. The Davis manifold

has χ = 26 and is indeed a minimal orientable manifold covering of ∆3.

The only Coxeter simplex that can be covered by a closed orientable manifold

smaller than the Davis manifold is hence ∆1. A computer search then allowed them

to find a torsion-free subgroup Γ < Γ1 of index 115200. The quotient N = H4/Γ is

then a closed hyperbolic manifold with χ(N) = 115200 · χ(∆1) = 115200
14400 = 8. The

manifold N is non-orientable, its orientable double cover M has χ(M) = 16 and is

today the smallest closed orientable hyperbolic four-manifold known. Its homology

groups are

H1(M) = Z2⊕Z/4Z⊕ (Z/2Z)
2
, H2(M) = Z18⊕Z/4Z⊕ (Z/2Z)

2
, H3(M) = Z2.
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The Betti numbers are smaller than those of the Davis manifold, but here homology

has some torsion. The computer search was clever but not exhaustive, in the sense

that Γ1 could in principle contain some torsion-free subgroup of smaller index.

In 2008 Long discovered more examples [40] of torsion-free subgroups of Γ1

of index 11520 and hence of non-orientable closed hyperbolic four-manifolds with

χ = 8.

2.4. The Ratcliffe–Tschantz census. The first systematic study of hyperbolic

four-manifolds has been done by Ratcliffe and Tschantz in a 2000 paper [52] that

includes a census of 1171 finite-volume hyperbolic cusped four-manifolds having

minimal Euler characteristic χ = 1.

In the hyperboloid model, the isometry group of Hn is the group O+(n, 1,R)

of all positive lorentzian matrices, and we now look at the discrete subgroup Γ =

O+(n, 1,Z) consisting of all matrices with integer coefficients. In dimension n = 4,

Vinberg [64] proved in 1967 that Γ is the reflection group of the Coxeter simplex ∆7

shown in Figure 2. As usual Γ contains various finite-index torsion-free subgroups,

and it is natural to consider the principal congruence-k subgroup Γk/Γ that consists

of all matrices that are congruent to the identity modulo k, for some k ≥ 2.

The authors consider the case k = 2. The group Γ2 is not yet torsion-free: the

authors show that Γ2 is again a group generated by reflections, more precisely those

of the right-angled Coxeter polytope P4 defined in Section 1.4. Every torsion-free

subgroup in Γ2 has index at least 16, and the authors show that there are precisely

1171 of them having minimal index 16. Each such subgroup has the ideal 24-cell C

as a fundamental domain (which is tessellated in 16 copies of P4) and hence gives

rise to a hyperbolic four-manifold, obtained by pairing the faces of C.

Since χ(C) = 1 and C is non-compact, the result of this investigation is a list of

1171 cusped manifolds M with minimum Euler characteristic χ(M) = 1 and hence

minimum volume Vol(M) = 4π2

3 . Only 22 of these manifolds are orientable.

All the manifolds in the list have either 5 or 6 cusps: this is not surprising since

they cover the orbifold P4 that has 5 ideal vertices. What are the cusp shapes of

these manifolds? Recall that there are 6 orientable and 4 non-orientable closed flat

3-manifolds up to diffeomorphisms: the 6 orientable ones are shown in Figure 3,

and they are Seifert manifolds over the orbifolds

T, (S2, 2, 2, 2, 2), (S2, 2, 4, 4), (S2, 2, 3, 6), (S2, 3, 3, 3), (RP2, 2, 2).

The first five manifolds in the list fiber over S1 with torus fibers and monodromies(
1 0

0 1

)
,

(
−1 0

0 −1

)
,

(
0 −1

1 0

)
,

(
1 −1

1 0

)
,

(
−1 1

−1 0

)
of order 1, 2, 4, 6, and 3 respectively. The sixth manifold is called the Hantzsche-

Wendt manifold, and it does not fiber over S1 because its first homology group is

finite.

Each of the 22 orientable manifolds in the Ratcliffe–Tschantz census has 5 cusps:

only the first two and the last among the six orientable diffeomorphism types appear
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PP
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P P
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F

F

Figure 3. The six closed orientable flat 3-manifolds, up to diffeo-

morphism. Each is constructed by pairing isometrically the faces

of a polyhedron in R3 according to the labels. When a face has

no label, it is simply paired to its opposite by a translation. The

polyhedra shown here are three cubes, two prisms with regular

hexagonal basis, and one parallelepiped made of two cubes.

as cusp sections of some of them. On the other hand, all the four non-orientable

types occur among the 1171 manifolds [52].

It is worth saying that the 1171 manifolds found are obtained from C via a

particular class of facet-pairings that uses only reflections along the coordinate

hyperplanes. If one allows all kinds of isometries between facets, more manifolds

are likely to be found: the number of hyperbolic manifolds obtained by pairing the

facets of C is completely unknown and can be much bigger than 1171.

2.5. Cusp shapes. The Ratcliffe–Tschantz census shows that at least three among

the six diffeomorphism types of orientable flat three-manifolds arise as cusp shapes

of some finite-volume hyperbolic four-manifold. What about the other three?

Nimershiem proved in 1998 that each of the six orientable diffeomorphism types

arises as a cusp shape of some multi-cusped finite-volume hyperbolic four-manifold

[45]. Much more than this, she proved that the geometric cusp shapes that arise

in this way form a (countable) dense set in the (uncountable) flat moduli space of

each of the six types.

Every diffeomorphism type appears as a cusp shape of a multi-cusped manifold,

but there are some remarkable restrictions on the topology of all cusps considered

altogether, discovered by Long and Reid [41]. If M is a cusped oriented hyperbolic

four-manifold, its cusp shapes N1, . . . , Nk are oriented flat three-manifolds, and the

following equality holds:

(2) σ(M) =

k∑
i=1

η(Ni)
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Figure 4. The minimally twisted chain link with 6 components.

Its complement M is a hyperbolic three-manifold that is tessellated

into four ideal regular octahedra. The blockB used in [35] has eight

geodesic boundary components, each isometric to M .

relating the signature σ(M) of M with the η-invariants of the cusp shapes, see

[41]. The invariant η(N) is a real number that depends only on the oriented diffeo-

morphism type of the flat manifold N , and changes sign on orientation reversals,

hence in particular η(N) = 0 when N is mirrorable. The η-invariant of the six flat

three-manifolds listed above were computed in [60, 46] and is (up to sign) equal to

respectively

0, 0, 1,
4

3
,

2

3
, 0.

This shows in particular that the two flat manifolds with non-integral η-invariant

cannot arise as the cusp shapes of a single-cusped hyperbolic four-manifold.

Concerning (2), it is worth noting that no cusped oriented hyperbolic manifold

with non-zero signature seems to be known. (The signature of a closed oriented

hyperbolic manifold vanishes.)

2.6. Manifolds with one cusp. No single-cusped hyperbolic four-manifold at all

was known until 2013, when many examples were built by Kolpakov and Martelli

[35]. In their paper, they constructed infinitely many hyperbolic four-manifolds

with any given number k > 0 of cusps: the construction actually shows that the

number ρk(V ) of k-cusped hyperbolic four-manifolds with volume bounded by V

grows like V cV , for every k > 0.

All these manifolds are built by assembling multiple copies of a single block B, a

finite-volume hyperbolic manifold with non-compact geodesic boundary and some

rank-2 cusps. The block is constructed by noting that the 24 facets of the ideal

24-cell C can be colored naturally in green, red, and blue, so that two adjacent

facets have distinct colors. By doubling C first along the green and then along

the red strata we get B. The remaining blue strata now form the 8 geodesic

boundary components of B, each isometric to the complement of the chain link

in S3 with 6 components shown in Figure 4. The block B has 24 rank-2 cusps of

shape S1 × S1 × [0, 1], each connecting two distinct boundary components. One

can assemble copies of B in a way that all these rank-2 cusps glue up to form an

arbitrary number k of rank-3 cusps.
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In all the single-cusped examples from [35], the cusp shape is a 3-torus. More

recently, in 2015 Kolpakov and Slavich [38] constructed a single-cusped hyperbolic

four-manifold with cusp shape the torus fibering with monodromy
(−1 0

0 −1

)
.

We still do not know if the torus fibering with monodromy
(
0 −1

1 0

)
and the

Hantzsche-Wendt manifold arise as cusp shapes of single-cusped hyperbolic four-

manifolds.

2.7. Geodesic boundary. After constructing examples of closed and cusped hy-

perbolic four-manifolds, it is natural to consider hyperbolic manifolds with geodesic

boundary. The first question that can arise is the following: are there finite-volume

hyperbolic four-manifolds with connected geodesic boundary? The answer is affir-

mative, and the first compact and cusped examples were constructed by Ratcliffe

and Tschantz in [50] by suitably modifying the Davis and 24-cell constructions

mentioned above. This question was also motivated by physical considerations

[23].

Following Long and Reid [41], we say that a finite-volume orientable hyperbolic

(n − 1)-manifold M bounds geometrically if there is a finite-volume orientable hy-

perbolic n-manifold W with geodesic boundary isometric to M .

Which orientable hyperbolic three-manifolds bound geometrically? In 2000 Long

and Reid proved [41] that “most” hyperbolic closed three-manifolds do not bound

geometrically: indeed, the η-invariant η(M) of a geometrically bounding closed

hyperbolic three-manifold M must be an integer, and this is a quite strong re-

quirement because the surgeries on a hyperbolic knot provide a set of hyperbolic

manifolds whose η-invariants form a dense subset of R, see [44].

In a 2001 paper [42], Long and Reid then proved that, despite this strong restric-

tion, there are infinitely many commensurability classes of geometrically bounding

hyperbolic manifolds in all dimensions. A natural quest is now to try to determine

the smallest ones.

The smallest closed hyperbolic three-manifold M with η(M) ∈ Z is the arith-

metic manifold named Vol3, with volume equal to the volume 1.0149 . . . of the

ideal regular tetrahedron [41]. We still do not know whether this manifold bounds

geometrically or not. It has η(M) = 0.

For the time being, the smallest closed geometrically bounding hyperbolic three-

manifold known has volume 68.8992 . . . and was constructed by Kolpakov, Martelli,

and Tschantz [36] by assembling some 120-cells using a coloring technique already

employed by various authors in similar contexts, see for instance Vesnin [62, 63],

Davis and Januszkiewicz [17], Izmestiev [30].

On the cusped side, more progress have been done recently. The first cusped

geometrically bounding 3-manifolds were constructed by Ratcliffe and Tschantz

[50], then came an explicit link complement in the three-sphere [58], and very

recently it was discovered that the Borromean link [43] and the figure-eight knot

complement [59] drawn in Figure 5 both bound geometrically.

The figure-eight knot complement has volume 2.029 . . . and is the smallest ori-

entable cusped hyperbolic three-manifold, together with its sibling [12]. Therefore
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Figure 5. The Borromean rings and figure-eigth knot comple-

ments are hyperbolic and are tessellated into two ideal regular

octahedra and tetrahedra, respectively. They both bound geomet-

rically some hyperbolic four-manifold that are tessellated into ideal

24-cells and rectified simplices, respectively.

the figure-eight knot complement is the smallest cusped geodesically bounding hy-

perbolic three-manifold. As shown by Slavich [59], it bounds an orientable hyper-

bolic four-manifold W with χ(W ) = 2. The manifold W is tessellated into 12 ideal

rectified simplices.

3. Manipulating hyperbolic four-manifolds

In this section we describe some more elaborate constructions that involve hy-

perbolic four-manifolds.

3.1. Dehn filling. Let M be a finite-volume hyperbolic n-manifold with some

k ≥ 1 cusps, equipped with disjoint embedded cusp sections X1, . . . , Xk. Each

section Xi is a closed flat (n− 1)-manifold, and we suppose that it is diffeomorphic

to a (n−1)-torus: this not a too restrictive requirement, because it is always fulfilled

virtually (ie on some finite cover), as a consequence of residual finiteness of π1(M)

and the Bieberbach Theorem.

Every primitive element γi ∈ H1(Xi,Z) is represented by a simple closed geo-

desic, unique up to translations. The Dehn filling of M that kills γi is the topo-

logical operation that consists of truncating M along Xi and then shrinking all

closed geodesic in Xi parallel to γi to points. Topologically, this is like gluing the

“solid torus” N = D2 × (S1 × . . . × S1) to the truncated M via a diffeomorphism

ψ : ∂N → Xi that sends ∂D2 × {pt} to γi.

A full Dehn filling of M is parametrized by some primitive elements (γ1, . . . , γk),

one for each cusp. The result of this operation is a closed smooth four-manifold

Mfill. In dimension n = 3, the celebrated Thurston Dehn Filling Theorem states

that, if one avoids finitely many “exceptional” classes γi at each Xi, the filled

manifold Mfill is again hyperbolic, with a hyperbolic metric that is obtained by

deforming globally the initial one on M . This phenomenon is intrinsically three-

dimensional and cannot be extended as it is to higher dimension n ≥ 4. However,

the theorem can be extended in a couple of interesting ways.
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The first is the Gromov-Thurston 2π Theorem, which says that if every closed

geodesic γi has length `(γi) ≥ 2π then Mfill admits a metric of non-positive sectional

curvature: the metric is obtained by extending the original hyperbolic one on the

truncated M to the attaching solid tori N , see [2] for a proof.

The second is a more difficult theorem, proved by Anderson [2] and Bamler [3] via

analytic methods: if each γi avoids finitely many exceptional elements in H1(Xi,Z),

the manifold Mfill admits an Einstein metric with negative scalar curvature. Note

that such a metric is necessarily hyperbolic in dimension n = 3 up to rescaling,

but when n ≥ 4 its sectional curvature is not necessarily non-positive everywhere

(although it is negative in the average).

The Gromov-Thurston 2π Theorem, together with the Cartan-Hadamard Theo-

rem, imply that if `(γi) ≥ 2π for all i then Mfill is covered by Rn and is in particular

aspherical.

In dimension four, we note that

(3) χ(Mfill) = χ(M) > 0, σ(Mfill) = σ(M) = 0, ‖Mfill‖ ≤ ‖M‖.

Here σ and ‖·‖ denote signature and simplicial volume (the first is defined only when

M is oriented). The two signatures are equal by the Novikov additivity Theorem,

and σ(M) = 0 because of (2): the η-invariant of the boundary is zero because it

consists of 3-tori. The inequality on simplicial volumes is a theorem of Fujiwara

and Manning [20] and it is still unknown whether it can be promoted to a strict

inequality, as in dimension three.

3.2. Aspherical homology spheres. The Gromov-Thurston 2π Theorem was

used by Ratcliffe and Tschantz to construct the first examples of closed aspherical

integral homology spheres in dimension four [54].

Their construction goes as follows: they pick a particularly symmetric non-

orientable manifold M in their census, that has χ(M) = 1 and five cusps, and con-

sider its orientable double covering M̃ , which has χ(M̃) = 2 and five 3-torus cusps.

They compute that H1(M̃) = Z5 and show that for many choices of (γ1, . . . , γ5)

the Dehn filling kills all the first homology and hence produces a M̃fill with χ = 2

and H1 = H3 = {e}. Therefore also H2 = {e} and M̃fill is a homology sphere. One

can choose (γ1, . . . , γ5) with arbitrarily big `(γi), hence if `(γi) > 2π the manifold

M̃fill is aspherical.

It seems still unknown whether there is a closed homology sphere M that admits

a negative sectional curvature metric, or even a hyperbolic one: such a hyperbolic

M would have χ(M) = 2 and hence have minimum volume, since closed orientable

hyperbolic manifolds have even Euler characteristic [49].

3.3. Link complements. Let M be a cusped hyperbolic four-manifold as above,

with cusp sections X1, . . . , Xk all diffeomorphic to 3-tori. If Mfill is a Dehn filling of

M , the cores of the attached k solid tori form k disjoint smooth two-dimensional tori

in Mfill. One can hence represent M as the complement of a link of k tori in Mfill,

similarly as one represents a cusped hyperbolic 3-manifold as a link complement in

any of its Dehn fillings.
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As in three dimensions, let us say that a set of k linked tori in some closed four-

manifold W is hyperbolic if its complement admits a complete hyperbolic metric.

In dimension three, every closed three-manifold contains plenty of hyperbolic links.

What happens in dimension four?

It is natural to expect that most closed four-manifolds W contain no hyperbolic

link at all. This is certainly the case if χ(W ) ≤ 0 or σ(W ) 6= 0, see (3). Moreover,

by Wang’s Theorem [66] there are only finitely many cusped M with any given

Euler characteristic. There are infinitely many Dehn fillings of such manifolds M ,

but they are likely to cover only a tiny portion of the set of all closed four-manifolds

with that Euler characteristic. They certainly have bounded first homology groups,

for instance.

Despite these pessimistic premises, some hyperbolic link complements in familiar

closed four-manifolds have been found in the last years. Ivanšić [27] and then

Ivanšić, Ratcliffe, and Tschantz [29] have constructed twelve distinct manifolds

that are link complement in some homotopy 4-sphere (the links contain tori and/or

Klein bottles). Their construction goes as follows: they look at the orientable

double covers of the 1171 Ratcliffe-Tschantz manifolds, that have χ = 2, and check

whether some of them could have a simply connected Dehn filling. If this is the

case, the filled manifold is a homotopy sphere because χ = 2. The authors could

find such a Dehn filling in 12 cases. These homotopy 4-spheres are homeomorphic

to S4 thanks to Freedman’s Theorem, but might a priori be not diffeomorphic to

it.

Later on, Ivanšić proved [28] that one of these homotopy spheres is indeed dif-

feomorphic to S4. We therefore know that S4 contains a hyperbolic link of 5 tori.

More recently, Saratchandran proved [55, 56] that there are hyperbolic link com-

plements in S2 × S2 and in some four-manifolds homeomorphic to #2k(S2 × S2)

for every k ≥ 0. All these results are proved by Dehn-filling some finite covers of

manifolds from the Ratcliffe–Tschantz census.

3.4. Symmetries. A finite-volume hyperbolic manifold has finite isometry group.

Conversely, Belolipetsky and Lubotzky have shown [7] that every finite group G

arises as the isometry group of a n-dimensional finite-volume hyperbolic manifold

M , for all n ≥ 2.

In 2015 Kolpakov and Slavich [37] reproved this theorem in dimension four,

producing for every G a hyperbolic four-manifold M with Vol(M) ≤ C|G| log2 |G|
for some fixed constant C > 0. They also showed that the number of manifolds

with fixed isometry group G and volume smaller than V grows like V cV .

The manifold M is constructed by assembling multiple copies of the same block

with geodesic boundary. The block is built using the ideal rectified simplex de-

scribed in Section 1.5.

3.5. Symplectic structures. How do gauge invariants behave on hyperbolic four-

manifolds? Do some closed hyperbolic four-manifolds admit some nice structure,

like a symplectic structure or a Lefschetz fibration?
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These questions are still wide open, however there is a pessimistic conjecture

around in the literature: it is conjectured by LeBrun [39] that the Seiberg-Witten

invariants of every closed hyperbolic four-manifold should vanish. Note that, by a

celebrated theorem of Taubes [61], a closed symplectic four-manifold with b+2 ≥ 2

has non-zero Seiberg-Witten invariants, and in addition every closed four-manifold

admitting a Lefschetz fibration with a homologically non-trivial fiber has a symplec-

tic structure [22, Theorem 10.2.18]. So both structures (symplectic and Lefschetz

fibration) seem unlikely to exist on closed hyperbolic four-manifolds, at least fol-

lowing the LeBrun conjecture.

On the other hand, closed hyperbolic four-manifolds like the Davis manifold can

be used to construct symplectic 6-manifolds [19].

4. Some open questions

It is relatively easy to formulate open questions on hyperbolic four-manifolds,

since only few concrete examples are known. We have already alluded to some

open problems in the previous pages: we collect some of them here, and we add a

few more. As in the rest of the paper, all hyperbolic manifolds are assumed to be

complete and finite-volume.

1. Can we find a closed oriented hyperbolic four-manifold with odd intersec-

tion form?

2. Can we find a cusped oriented hyperbolic four-manifold with non-vanishing

signature? What are the intersection forms of cusped oriented hyperbolic

four-manifolds?

3. Are there infinitely many cusped or closed hyperbolic four-manifolds with

bounded first Betti number? Or, more strongly, with a bounded number of

generators for their fundamental groups?

4. Which groups arise as homology groups of hyperbolic four-manifolds?

5. What is the smallest volume of a closed oriented hyperbolic four-manifold?

6. How many cusped four-manifolds are obtained by coupling the facets of an

ideal 24-cell? Is there a cusped four-manifold with χ = 1 that does not

arise from this construction? Are all hyperbolic four-manifolds with χ = 1

commensurable?

7. Is there a hyperbolic four-manifold that fibers nicely in any way?

8. Is there a way to write Thurston’s equations for ideal triangulations in

dimension four?

9. Does every hyperbolic four-manifold contain immersed geodesic hyperbolic

surfaces and 3-manifolds?

10. Can we model numerically the Einstein metrics on the Dehn fillings of some

cusped hyperbolic four-manifold?

Concerning question 6, note that a hyperbolic four-manifold cannot fiber over

S1 because it has positive Euler characteristic. One could however look at some

nicely behaved S1-valued Morse functions, or fibrations over surfaces with some

controlled singularities.
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