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On the Stationary Motion of Granulated Media.

H. BEIRiA0 DA VEIGA (¥}

1. Introduction and main results.

Let £ be an open, bounded domain in R?, locally situated on one
side of its boundary I, a differentiable manifold of class €2 In thig

. paper we consider the following system of equations

oy Au 4 {w VU —noxu=—Vp + 7T, in £,

i Vou=10, in Q,
@ (w-Vyw + F(p)w =g, in 2,
#w=20, on f,

which deseribes the stationary motion of a granulated medium with
. constant density. For more information, we refer the reader to

Antocee and Leluch [3], Leluch and Nenashev [5], Antocev, Kazhykov
and Monachov [2], Tmkaszewiez [8], and to the bibliography quoted
in these references. Here, the vector fields @ == (4, %, uy) and o ==
== {0y, Wy, w,) denote the velocity and the angular veloeity of rotation
of the particles, respectively. The scalar p denotes the pressure. The
quantities w(®z), o{x) and p(r} are the unknowns, in problem (1), The
positive constants %, » are the Magnus and viscosity coefficients. The

given vector fields f = (fi,fs, fs) and g= (g1, Gz Ga) denote the ex-
terior mass forces and the density of momentum of the forces, respect-

(*) Indirizzo dell’A.: Dipartimento di Matematica, Universith di Trento -
33050 Povo. )
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ively. The function F = F(p)} describes the friction between the
particles.

The time-dependent motion of granulated media was studied by
several authors (see [8], for references). On the contrary (as far as
we know), the only existenee theorem available in the literature for
the stationary motion was proved by Lukaszewicz [8]. In [8], the
author proved the existence of weak solutions for problem (1), under
the assnumption F(E)=m > 0, for £ € R, where m is a positive constant.

In the sequel we will agsume that F(£), £eR, is a real continuous
funetion, for which there exist two constants m >0 and p,cR
such that

(2) ) =m, ité=p,.

This condition is more general then those described in[2], § 5,
ed. {5.2), and includes in particular the physicaly important case

(3) (&) =n + k&,

where %> 0 is a schift cohesion constant and k> 0 is the frietion
constant (see [2], § 1, section 6, eq. (1.45)).

Under assumption (2), we succed in proving the existenee of a
solution w,w,p such that p(z)>p,, Voec Q. The lower bound
F(p(®))=m, Vo e Q, follows then as a consequence, More precisely,
we will prove the following result:

THEOREM A. Let feLYD), ¢> 3, geL=(2), and let F be a real
continuous function verifying (2). Fix a constant a, such that azp,.
Then, there ewists a solution u, w, p of problem (1) such that

(4) min p(z) = a .
.'L'E.(_j

Moreover, we Wi(Q2), pe Wi£2), w c L>(2), and the estimates (8),
(9), (23) hold. - .

In theorem A, equations (1), and (1), are verified almost everywhere
in &, and (1), is verified for all # ¢ I, BEquation (1), i verified in the
following weak sense: '

®) [l Vgplwdo +[Pip)o-gpdo =[g-9dz, VopeWiQ).
&2 2 2
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This definition is meaningful, since
-mf[(let»V)qo}wdm :f[(u-V)fu]-qadm, Vg e WHQ),
Q . o kN

if (say) we WHD).

REMARKS. If F is defined by (3), assumption (2) holds by setting
m = n, po= 0. By choosing a = 0, condition (4) coincides with con-
dition (5.5), in relerence[2], § 5.

We also note that condition (4) can easily be replaced by other
conditions on the pressure term, as for instance a condition on the
mean-value of p in £.

T am indebted to Grzegorz Lukaszewicz for kindly providing me
with a copy of reference [2], during his stay in my University {in fact,
my interest on problem (1) originated from & preprint of his paper [8]).

2. Notations.

L. 1) usual L#(2) space {1<p<-+o0), and nsnal norm in L7
For convenience we set | |o= | {.

ol 2) usual C°(2) space, of real continuous functions in o,
with the uniform convergence norm | |[. More generaly,
| | will denote the norm in L®.

C"* | llo.a 3) Space of a-Holder continuous real functions in £, 0 <
< a<< 1, with the natural norm | |

[ A

WEL U, 4) Bobolev space Wi(8), 1<p << + oo, k positive integer,
and usual norm in that space.

W 5) Closure of (°(Q) in W)

The norm in W is

[ 1f»
o= (3, 3 1000) "

= |,_1-

Similarly, for vector fields w = (y, 4, %) in £, we define the
spaces L7, WE, W, C° C™, and so on. Norms will be denoted by the
same symbol in both the sealar and veetor cases.
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For vector functions we also define

o= 3 (0, ety = ve=(f Vufda),

G=

and
59
(’U'V)u :izlvi 'é“:':: B
Moreover,

Ve {pe Wi Vo=0in £},

and V' is the dual space of ¥V, with the canonical norm | |-
We denote positive constants depending at most on 2,4, 1
and m, by ¢, €y, 61, ... For convenience, we denote different constants

by the same symbol c. Otherwise, we will write g, €, €25 -

PROOFT OF THEOREM A. In the sequel, ¢ > 3 is fixed. Set

R(, == g %,, oy
(6) { Ifia + 1f15 -+ 19 b1

R, = Ulu -+ “9” Hﬂ!v' -+ Rzﬂ '
and define

1
K= oevn el < il blot Iof <o),

Q = freen ol < lo1]-

The constants ¢, and ¢, will be defined in the proof of theorem 1.
One has the following result:

faEorREM 1. Let § and g be as in theorem A, and let a € Q, ve K.
Then, the problem

—pAu 4+ (0-Viu—naxu + Vp=7f in &,
in £,

{7) Veu =10
on I,

% =0

Zi
|
]
i
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has a unique solution we X N Wi, p € Wy, such that (4) holds. Moreover,

(8) ee,o + 19ple eIl + gl R0 + R3] -
In particular,
) a<p(@ <at ol + lg]R + 2],

for every e .

PRrROOF. — The existence and the unigqueness of a solution weV
of problem (7) follows as for the Stokes linearized stationary problem,
by using Galerkin’s method [7]. Sinee wXu-u = 0, one has

(10) fuly <l

By taking in account that ||;<clly, one has
(11) (v V)l <elolalu s el f -
On the other hand,
(12) o < wfe < forf [ulo << el g [ 1 v -

Trom (7), (11), (12), and from well known regularity results for
the linear Stokes problem [4], one gets

(13) flz,s -+ [Voly<ely.

Since W} < W; < I, there exists a positive constant ¢, such that

(14) |, << 0o By -
Tet us define
i 1 1
15 - =4,
(15) =23

By again using regularity theorem for the linear Stokes problem,
one obtains

fule,r + [Vl <<elfle -+ olglIflv + eBo ey,
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since |(v-V)u|, <eR:. By utilizing now the embeddings W; <> W; <> Co,
one deduces that there exists a positive constant e, for which

(16) o) <o B, .

From (10}, (14),.(18) it follows that v € K. Furthermore, {{(v-V)u|,<
<el|v}|[Vule<<eR], and |o<ul < Joflul.<elg By. Hence, a last re-
gularization of u,p in equation (7), yields (8).

Let us denote by Pz} the particular seolution p(x) 4 congtant,
for which

(17) fﬁ(m) dw =0 .
0

TLet o =1—(3/g). Since W.<> (% one deduce from (8) that
p e C"*, moreover

(18) 1B <ellfl.+ lghRo -+ 85T .
Finally, by defining

(19) p{2) = B(z) —min () + a,

wefd

one shows that p e %% and that (4), (9) hold. O

THEOREM 2. The ‘map (v, o) — (u, p), defined in theorem 1, is con-
tinuous on B Q, with respect to the uniform topologies.

Proor, — Let (v,, «,) and (v, )} be elements of K xQ and let w,, p,
and %, p be the corresponding solutions, constructed in theorem 1.
Assume that [v,— 2|0, and o, —oa]-—>0, as # — -} oo

By taking the difference (side by side) of the eguations

—gpdu + (v V)u-—Vp = f+ paxu,
(20) {

- ll’Aun + (’IJ,,'V)’M,, '_ VPn = f + 1oty Ky y

by multiplying both sides of the equation just obtained by % — ua,
and by integrating over £2, one easily shows that

vl —waly<o(o—va] + fo —eaf)July -
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Hence, u,—# in V. In particuidar,
f - 9, Xty — (Vo Y}ty -+ gexu— (v V)u

in I?, as n — -+ oo, From (20} and from the estimates in L? norm for
the linear Stokes problem it follows that w, — « in W? and Vp, > Vp
in L2 TIn particular, w,— » uniformly in . On the other hand, by
recalling definition {17), one has P, > P in W}. Moreover, the se-
quence P, is uniformly bounded in €%, @ = 1— (3/g), by estimate (8).
Tn particular, by using Ascoli-Arzela’s theorem, [B=— P — 0, and
min p,(@) —> min p(@), as # — 4 oo From definition (19), it follows
that |p,—p|—0. O

We consider now the auxiliary problem (sce also [8])
(1) {—EAG)+ (0 Vo + Fox)o=g¢ in £,

w=7>0 on I,

where £ > 0 in fixed, and Fy(z) is a real function defined on £2. We
assume that

(22} weCt, F,e(”, min Fylz)=m,
zel?

where by definition €= C'(2). Here and in the sequel attention
will not be given to the minimal assnmptions under which the auxiliary
results hold.

The uniform bound stated below is cruecial in order to prove

theorem A.

THEOREM 3. Let g L®, and u and ¥y be as in (22). Then, there exists
@ unique solution we Wi of problem {21). Moreover,

1
23 b -yl
(23) oo} < - - o]

The map (4, Fy) - @ is bounded and continuous from €1 > C into Wi,
with respect ot the canonical topologies in these functional spaces.
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Proor, Existence, uniqueness, and continuous dependence of the
solution o in the space W3 (for arbitrary finite q}, follow from well
known results; see for instance [6].

Let us prove estimate (23). For convenience we define g(x) = 0,
Fo(@) = m, for ve RN 0,

Denote by Js, 6> 0, the Friedrichs mollification operator (see
for instance [1]), and set g,— Jogy Fo=JsT,. Then goe 0=($),
19lo< o), and lgs—g] >0 as 6 0. Similarly, Foc 0=, |7y <
<P, |Po—T,) -0 as 6 — 0, and

{24) min #y(x)=m .
xefd

Let now ws be the solution of problem (21} with ¥, and ¢ replaced
by Fs and gs, respectively. Since ws-—>w in W3, it follows in parti-
oular that |ws—w]—0 as § — 0. Hence, if (23) holds for every pair
ws, g8, ¢ > 0, it holds also for the pair w, g. Let us then prove (23)
for ws, gs. Note that ws ave regular funetions (for instance,
s € CEHOY A OV((D), for f> 0). For counvenience we denote in the
sequel the functions s, g5, Fs, by w, g, F,, respectively,

Tt is easy to verify the identity

3 2
{26) A= 2Aw w + 2 > (awj) R

L\ Oxy

Where by definition 0= .o — lw]*. Hence, by taking the sealar
product of both sides of equation (21),, with w(z), one obtains

1 3
—eder ¥

id=1

doNe 1
(a(;)) FyuVor - For=yg-o.

Consequently,

(26 —LeAwr 1 tu-Vor 4+ Pt gl el .
z P

i It ©* vanishes identically in £, then (23) is obvious. Otherwise,
let o, € £ be a point of maximum for w* in Q. From (26) together
with (24) it follows that

M () *‘-:F(mo)wz(wo) = |g(mn)ﬂm(wo), y

lience ]w(mo)!gm‘llg(wu)[. This yields {28). O
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TrEorEM 4. Let f, g, F' and the constant ¢ be defined as in the state-
ment of theorem A, and let &> 0. Then, there ewists a solutionfu; c
EKNW: p.cWi, w.€QNW, of problem

— v Atte + (e V) the — nweX the = f— Vps, in 2,

g A A (e V)oe - Flpelo= ¢, in £,
{27) .

Voueg=10, in £2,

e = e =0, on I,

where B, verifies {4). Moreover, (8) and (9) hold.

Proor. Let vel, aeQ, and consider the (unigue) solution «, p
of problem (7) constructed in theorem 1. As shown in that theorem,
#weK and the estimates (8) and (9) hold.

Now we define Fy{x) = F(p(2)), and we consider the solution o
of problem (21) constructed in theorem 3. Clearly, we QNW:. In
order fo prove theorem 4, it suffices to show that the map @, &) ==
= {#%, o), from K xQ into K xQ, has a fixed point. This will be done
by using Shauder’s fixed point theorem. The continuity of @ with
respect to the uniform topologies follows from the resmlfs stated
before. Infact, the continuity of the map {v, &) — (%, p) was proved
theorem 2. Let us prove that the map (%, p) — w in continuouns. If
P —p uwniformly in £ then P(p,(z)) — F(p{z)) aniformly in £, since
P, and p verify {9) and F(£) is a continuous function in R. On the other
hand, #,—u in the C{£) norm, since the sequence 4, is bounded
in W2 (by (8)) and the embedding W:<>C!' iy compact. The last
statement in theorem 3 shows that w, —w in W2 s Co,

Finally ®(K x Q) is a bounded set in W2 x W2, hence it is relatively
compact in C*xC, O 1]

Proor orF THEOREM A. From theorem 4, it easily follows that
there exists a subsequence (ue, P., we), solution of (27), and functions
we KXW, pe W, wel® such that (8), (9), (23) hold, and fg

U —> U weakly in W3,
Us — U in C*,
{28) Ps—> P weakly in W1,

pe—p  in C°,

We—> weal-* in L>™.
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This is proved by using well known compactness theorems. Note
that from the uniform estimate [w:]<<m|gll, it foows that there
eXists a subsequence e. verifying (28),, ie. verifying

lim |y dr :fco-vpdm, VypelLt,
n

=0 o

From {27) and {28) it folows that «, p, ® iz a solution of eqgua-
tions (1); and (1),. Moreover w{x) = 0, for every z e I. In order to
acomplish the proof of theorem A, we will prove that equation (B)
holds, We multiply both sides of equation (27), by w: and we inte-
grate over 2. Thiy gives

1
6[|weﬂ?" -+ 'm‘gwdgé !gfz |w€ 2% e lglg .

Hence +/zfwe]y <V1m|gl,. In particular

{29) lim efjeefy = 0.

e

Multiply (27), by ¢ € W;, and integrate over (2. By doing some
integrations by parts, one has

(30) £ 2 wE 'Z(p’ dx -—f(ué Vig wede 4+

,J].

—!—f (pre) we g d :fg-(pd;v.
o

By taking into account (28), (29), and by passing to the limit in
{30) as ¢ - 0, equation {5) follows. Note that

Lim F(p.(x}) = F(p(=)),

e

uniformly in 2. O

Uniqueness. By assuming, for convenience, that F(f) is locally
lipschitz continuous, it is not diffienlt to verify that Vw e L? iz the
main additional assumpbion in order to prove the uniqueness of the
solution, for small data f and g¢.

|
|
i
|
;
§




fil
(2]

[3]

[4]
(5]

[6]
{7]

[8]

On the stationary motion of granulated media 253

REFERENCES

5. AawmoN, Lectures on elliptic boundary value problems, Van Nostrand.
New York, 1965.

8. N. Axrocmv - A. V. Kazuyrov - V. N. Mowacuoy, Boundary value
problems in Mechanics of nonhomogeneous fluids, Novosibirsk, 1983 (in
russian).

5. N. Anxvocav - V.D. Lervcn, On the solvability of an initial boundary-
value problem in ¢ model of dynamics of media with internal degrees of
freedom, Dynamics of Continuous Medium, Institute of Hydrodynamics,
Novosibirsk, n. 12, 1972, pp. 26-51 (in russian),

L. Carraerica, Su un problema al contorno relative al sistema di equa-
sioni di Slokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), pp. 308-340.
V. D. Lerven - E. N. NeNasaev, Toward the theory of motion of o gra-
wilated medium in steady gus phase, Application of Analytical and Num-
erical Methods in Mechanics of Finids of Granulated Media, Gorkij, 1972,
pp. 4-20 ({in russian).

0. A. LapyzENSKAJA - N. N. Urar'crva, Hquations auw dérivées particlles
de type elliptique, Dunod, Paris (1968).

J. L. Liowsg, Quelques méthodes de résolution des problémes aun limites non
linéaires, Dunod, Pariz (1969).

G. LuKaszEwIicz, On the sialionary motion of « granulaied medivm with
constant density, preprint University Trento, U.T.M. 177, February 1985,

Manoseritto pervenuto in redazione il 16 maggio 1986.




