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STATIONARY MOTIONS AND THE INCOMPRESSIBLE LIMIT
FOR COMPRESSIBLE VISCOUS FLUIDS
H. Beirao da Veiga

ABSTRACT, We study the system of equations (1.1}, describing
the stationary motion of a compressible viscous fluid in a
bounded domain £ of 3. The total mass of fluid m|$, inside
0, is fixed {condition {1.2)). We prove that for small f and g,
there exists a umique solution (w,p) of the above system of
equations, in a neighborhood of ((im). Moreover, by introducing
a suitable parameter A, we prove that the solution of the
Navier-Stokes equations (1.14) are the incompressible limit of
the solutions of the compressible Mavier-Stokes equations (1.13).
The proofs given here, apply, without supplementary difficulties,
in the context of Sobolev spaces Hk’p, and other functional
spaces, The results can be extended to the case when
temperature dependence is taken into consideration.

1. Introduction and main results. In this paper we study the system
-whu - pdivu + vp(p) = p[f- (u- V)ul, in £2,
{(1.1) <div(pu) =g, in £,
Uip =0,
in a bounded, open domain in R3, locally situated on one side of its boundary I', a c3

manifold. The case n 5 3 can be studied by the same method, As usual,

0
(v-Yu= Ei;:lvi a—:l

System {1.1) describes the stationary motion of a barotropic, compressible fluid;

see Serrin [51. In equation (1.1), p(x) is the density of the fluid, u(x) the velocity
field, f(x} the assigned external force field, and p= p(p} the pressure. In the physical
equation one has g = 0; however, on studying (1.1) from a mathematical point of view,
it is not without interest fo study the general case,

We assume that the total mass of fluid inside € is fixed, ie., we impose to the

solution of (1.1) the constraint
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528 H. BEIRAO DA VEIGA
(1.2) = §_p(x)dx = m,
[€2} " S
where the mean density m is a given positive constant. The function p will be written

in the form p = m + ¢, and the new unknown o(x) has to verify the constraint

—_ 1 _
(1.3) o= ] _fgo(x)dx 0.

We assume that the real function p— plp) is defined and has a Lipschifz
continuous first derivative p'(p) in a neighborhood 1= [m-£&m+ {] of m, for some
positive ¢ <<m/2. We also assumne the {unessential) physical condition k = p'(m) > 0.
Clearly,

(1.9 ppy=pm+o)=k-wlo), Vo&l
where w(0) is a Lipschitz continuous function, such that «w{(0) = 0. We set

gz sup (@ ]
o, 7€[-2.2] |o-71

Concerning the constants » and ¥, we only assume that
(1.5) u>0, v>u
We remark that, by obvious devices, the coefficients g, v can depend on u, p and x.
In the sequel, we write the system (1.1} in the equivalent form
-pfu - v Vdivu + k Ve = w(a) Vo + {m+ g)[f-(uVu],in £,
(1.6) {mdivu+u-Vo+odivu=g,infl,
wp= 0.

Let us introduce some notation. We set

3 aV' a2T

av;
VZ-E IZV‘V?‘*E?’ i
- —_ — l. = N -1 B
v+ iﬂk_l(axk) > VY ’ l’k"laxk 0%

where v is a vector and 7 a scalar.

We denote by Hk, k integer, the Sobolev space Wk’z(ﬂ.), endowed with the usual
norm [! iy, and by iy, { < p < 400, the usual norm in LP = LP(£2). Hence, || lig = {lgs
For convenience, we also utilize the same symbol HX to denote the space of vector
fields v in £ such that viEWk’z(Q.), i=1,2,3. This convention applies to all the
functional spaces and norms utilized here.

Fork 2 1, we define
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Hlé= {VEHk:v:OOnT}_
Moreover,
He={r cH2.7= 0}, ﬁ% = H% n ﬁz,
where T is the mean value in §2 of the scalar field 7(x). Finally, for vector fields we
define
H3 ;= {vEH3: divv=00nT}
0,47 W=rp :

In the sequel, c.cp,cq,¢9,..., denote positive constants depending at most on 2.
Moreover, c’,cé,cf ,..., denote positive constants depending at most on £2, i, v, k, m, £,
and S. The same symbol ¢ (or ¢') will be utilized to denote different constants, even in
the same equation.

In Section 3 we prove the following result:

THEOREM A. There exists positive constants cfy and cy such that if f€ Hl,
g€ H%, and

(L7) Nl +ligly < o,
thern there exists a urigue solution (1,0) € Hg X HZ of problem (1.6), in the ball

(1.8) ltuilz + llolip < ¢y

A crucial tool in proving this result will be the study of the linear system

-pAn - p¥divu+kVo=F,in £,

(1.9) {\mdive+v-Vo+odivy=g,inl,

L‘lil" = 0,
for which we will prove the following result:

THEOREM B. Let F& }_Il, g€ Hz, and vE Hg 4 be given, and assume that

(2.14) holds. Then, there exists a unique solution (n,0) € Ha d X H2 of the linear

system (1.9). Moreover,
| +Hely ptip|
(1.10) gilluliz + Kilolly < (1 +EZZhIEy + o1 el
In Section 4, we assume that the function p{p,\) depends, in a suitable way, ona

parameter A. By leiting X — +eo, we prove that the solution of the Navier-Stokes

equation (1.14) is the incompressible limit of the solutions of system (1.13). For the
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Justification of the physical aspects of the description (i.e., the behavior of p(p,A), as
A = o0y we refer, for imstance, to Klainerman and Majda [2].

We assume that for each value of the parameter A € [Ag,tee] the function plo,A)
is defined in a neighborhood I, = [m -Q?\,m+ Q?\] of m, where 0 <Q7\ < m/2. The
number Ay € R, has no special meaning. Moreover, for each fixed A, the derivative
dp(p,\)/dp = P'(p,N), is Lipschitz continuous on I;\, with Lipschitz constant S?\'

We set khEp'(m,?\), and assume that kA2k0>0. The constant kg has no
special meaning, since we will Iet Ky = +o0, as A = 4oo, We suppose that there exist
positive constants ¢ and £ such that

(L11) 8y < kg, VA =2,
and

(1.12) Hk, =LV Az Ag-

By (eventually) defining a smaller !2)\, we assume, without losing generality, that
Uyky = £. Finally, let wy (o) be defined by p'(m + o A) = ky - wy(0).

Consider the stationary compressible Navier-Stokes equation, with state function
plo.N),

-pbuy -7 divuy + VplepM) = py [f - (" Viuy ],

(1.13) div(p;\uh) =0, in £,

()i =0,

and the incompressible Navier-Stokes equation

HAug, + Ym(x) = mif - (U, V)u],
(1.14) ¢ divu,,=0,in 0,
(um)|F =0.
As above, we set P xy=m+ o3 (x), and we look for solutions of (1.13) verifying
assumption (1.2), ie., such that (1.3) holds.
We denote by E%E} ,1:2,..., positive constants depending at most on 2, p, v, m,
R, ¢ and ko, and we say that a positive constant is of typeﬁc; if it depends at most on
the above parameters.
In Section 4, we vrove the following result:

THEOREM C. There exists positive constants ?0 and 2;1 such that the following
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statement holds:

() Let f€H, belong to the ball
(L1S) Ifl; <%«

Then, for each x = ?\O, problem (1.13) has a unique solution (uh,cr)\) & H(B) X ﬁz in the
bail

(L.16) llmyllz + Ky lhoy 1y <T).

(i) If lim k?\ =400 then

Ao
Uy Uy, weakly in Hg strongly in H%, Vs<3,
div uy =0, weakly in H% strongly in H(S), Vs<{2,
17 oy, 0, strongly in IT{Z,
Vo(oy N = U, weakly in !l strongly in H®, Vs<1,
where (U, V) is the unique solution of problem (1.14).

The existence of the solution (Upo, V) of (1.14} is well known, However, it
follows from our proof, too.

Note that both problems (1.13), (1, 14) are invariant under addition of arbitrary
constants to p(A,p) and m, respectively.

An existence result for system (1.1) was given first by Padula, in reference {4].
Unfortunately, the (quite simple) proof given there depends in a crucial way on a
smallness condition on pu in respect to » {# and » positive constants). This condition
was dropped in Valli's paper {6], where a result similar to Theorem A is proved, by
approximating the stationary solutions with periodic solutions of the corresponding
evolution problem. This technique was applied in [7] to the heat-depending case, and
{o more general boundary conditions.

The proofs given in our paper are quite simple, and apply as well (without any
supplementary difficulty) in the context of other spaces of functions, as for instance
Sobolev spaces Hk’p, 1 <p < oo,

In particular, for every k = 0, for small data (fg)e pktl X ﬁlé+2, there exists a
unique solution (u,0) € Hlé"'?’ X ﬁk+2, in a neighborhood of the origin. (Here we
assume the derivative p(kH) Lipschitz continuous, and § of class CXT3 )

Furthermore, all the results hold again in any dimension of space although on
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dealing with the non-linear problem in HR’P, k must be sufficiently large.

Statements and proofs,in the above general setting up, are given in a forthcoming
paper [1], where (for completeness) we will consider the Leat-conductive-case. In this
paper, we state only the counterparts of Theorems A and B, in Appendix 2. The
proofs can be easily done, by following those of Theorems A and B. Here, we have
preferred to consider the main case (1.1) by itself, in order to avoid secondary
technicalities. In fact, in the heat dependent case a third equation should be added to
system (1.1) (see (6.1)) which is weakly coupled with its companion equations, As a
matter of fact, the more interesting mathematical probleins and the main difficulties,
already appear on studying system (1.1).

It is a pleasure to thank Professor Robert Turner for his fruitful suggestions
about the proof of Theorem C.

Finally, we notice that it has just come to our attention that another direct
approach to the stationary problem is given by Valli in an independent paper [8].

2. Proof of Theorem B. We start by proving the uniqueness of the solution of
the linear system (1.9), under the assumption (2.1) below. Let (u,0) be a solution,
with data F=0, g=0. By mulliplying both sides of equation (1.9)1 by mu and of
cquation (1.9}, by ko, by integrating over & and by adding side by side the two

equations, one easily shows that
k..
mugll Vullg < Sidiv violol3,

where

pg = min{u,u+ v}
Hence,
i <c B%fdiv Vi3,
Moreover, from (1.9)y it follows that
klioiip < ckllVoll_ | < clu + wDlully,
since 0 = 0. Consequently,

2
hal} <c %%{div Visoluli?.
0

This proves that the uniqueness holds whenever
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mugk
2.0 iVl € —
+l)?
colutiv
for a suitable positive constant ¢p; recall that He C L.
in the remainder of this section we prove the existence of the solution of system

(1.9). We assume that v & Hg q verifies the condition
(2.2) [div v, + 2| Vvl = mk/ (1 + »),
and that F e HI ,BE ﬁ% Letr€ EZ, and consider the linear problem

2.3) ™ tv-va=g,
ey’

where

(24) G=Ng+—=divF - [2Vv: Vo7 + Av-Ur + Alr div v)].
utw

The significance of equation (2.3) is strongly related to the identity (2.20). It is
well known (Lax-Phillips [3]) that there exists a linear map G — A, from all of L:2 into
L2, such that for each G e 1.2 the corresponding A is a weak solution of (2.3), and

verifies the estimate

i mk
e | = .
(2.5) 5 MV!.?\HO 1Glg

By a weak solution of (2.3), we mean here a function A € L2 such that
mk ; 1
. - = E N
(2.6} P fﬂ?\cpdx fg?\ div(ipv)dx ng(,OdX, VeEH

For the reader’s convenience, we give a complete proof of this result in the
Appendix I.

By using the embeddings H1 (o L4 and H2 C L™, one verifies that IIG§!0 i
bounded by the right hand side of equation (2.7) below. Hence our solution A of (2.3)
verifies

mk m
2.7 —| < o —IFE + ilgila + | .
2.7 ﬂwl;hlio < C(m-v HE -+ flgily + Bvligiinllg)
letnow § C H% be the solution of the Dirichlet problem

(u+ A =kh-divF, in 2
(2.8)

By using (2.7), one has
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(2.9) (u+0)6lly < (gl + Ivil3lirlin) + clFly

Now define
(2.10) 84(x) =0(x) - 0.
Clearly, 6_0 =0, Let (u,0) be the unique solution in Hg X H? of the following
linear Stokes problem, in £:
wAu+kvo=F+ vvﬁo,
(2.11) {divu=0,
up= 0.
From the L2 estimates for this problem one has
(2.12) pliullz +kllolly < c(IFly + 2] 18gll5 + &l gll2).
By taking in account that [18yll5 < ||181l9, one gets

(2.13) allully +Kllolly < c(1 + %ﬂ%‘)ﬂﬂll + o B gy + vl lirtly).

Now let ¢y be a positive constant such that
|div Wlos + 2| VWl < collwliz, V w € HJ.

In the remainder of this section we assume that the vector field v verifies the
condition

(2.14) lIviig <k,

where, by definition,

Hpm m m

2.14") v =mi .
¢ ) v = min{ ;)2’201(#+ivl)’02(#+v)}

colutip
Assumption (2.14), implies, in particular, (2.1) and (2.2).
From (2,13) and (2.14), one gets

1 utp |
= kil £ L .
(2.15) pliuliz + kholly 2kin’ilg +o(l + e MEIY + = el
At this point, we call attention to the sequence of inear maps, introduced above:
(F.g,7) > (EN) » (F.8) = (F 85} > (u,0),

which were defined by equations (2.3) +(2.4), (2.8), (2.10), (2.11), respectively. The

product map (F,g,7) = (u,0) is linear and continuous, by (2.15). Hence, if (uy,07) is

o
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the solution corresponding to data (F.g7), it follows that (u-uq,0 - 01} is the

solution corresponding to data (0,0,7 - T1) Consequently, (2,15) yields, in particular,

lo - o1lly <27yl

Hence, for fixed F and g, the map 7> ¢ is a contraction in ﬁz. Consequently, it
has a (unique) fixed point 0 =17.

In the sequel we prove that the pair (u,0), corresponding to the fixed pointo =7,
solves eguation (1.9). Equations (1.9} and (1.9)5 follow from (2.11). In order fo
prove (1.9)5, we start by substituting the expression of A, obtained from equation
(2.8),in the first torm on the left hand side of {2.3). This yields, since 7 = ¢,

(2.16) mAG +v-VA+ 2Vv: V20 + Av-Vo + Mo div v) = .

On the other hand, by applying the divergence operator to both sides of equation
(2.11)4, and by utilizing (2.11), one gets A+ )AD + kAa = div F, since A = A8, By
comparison with (2.8}, one shows that A = Ag. By replacing A by Ae in equation
(2.16), it follows that

(2.17) mA divu+ v VAg +2Vv: Vza + AveVo+ Mo divv)-g=10,
or equivalently,

(2.18) Almdivu+v-Vo +odivy- gl =0,in 2.

The function between square brackets (which belongs to Hl) is equal to the
constant -m& on the boundary, by (2.8}, (2.10), (2.11)4, and by the assumptions
v=0, divv = g= 0 on . Consequently,

mdivutv-Votao divv-g=-mg, in £2.

By integrating both sides of this equation in 2, one shows that it must be 9=0.
Hence, equation (1.9)4 is satisfied. Finally, the estimate (1.10) follows from (2.15)m=

REMARK. Orne has to be careful on deducing (2.18) from (2:17), since both

equations hold only in a weak sense. The point is to prove the identity
(2.19) -fﬂ v(v-vo)-Vedx = -J'ﬂ/_\o div(pv)dx + fﬂ[ZVv: V20 + Av-Voledx,
vV 9 E€CY,

which is a weak formulation of
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(2.20) A(v-V0) = vV A0 + 29v: V20 + Av-Vo.

For ¢ € H°, this last identity holds, and yields (2.19). If ¢ € H2, we approximate
it (in the 12 norm) by a sequence of functions o, €H3, and we pass to the limit in
equation (2.19) (written with o replaced by Ty) as n = 400,

3. Proof of Theorem A, For convenience, in this section we will not make explicit
the dependence of the positive constants on the parameters. However, all the
constants depend at most on £2, u, v, k, m, £ and 8.

Let ¢c3 be a constant such that 7| < c3ll7lly, for every T eH2. We will utilize

here the condition

G Iy <2,
c3

which guarantees that m+ 0(x) belongs to the domain of p, for every x € £, since
L<rx)< L
Let v € HJ verify (2.14), and r € HZ verify (3.1), define
(3.2) Fv,r) =(m+0)[f- (v- Vvl + w(n)vr,
and consider the linearized system (1.9) with F(x) given by F(v,7), i.e., the system
-0 - vV divu +kVo = F(v,7), in £,
(3.3y { mdivu+(v-Y)o+ o divv=g, in £,
= 0.
since H! € L4, H2 € L™, and |w(n)]., < Sl7loy < ¢3Sil7lly, one easily shows that

(3.4) Il < oGm + - + i) + esirl.
3

This last estimate, together with (1.10), yields the following result:
THEOREM 3.1. Let veE H(%,d: reH2 and let (2.1),(2.14) and (3.1) be satisfied.
Then, the unique solution (u,0) € Ha,d X H2 of system (3.3), verifies the estimate
(3.5) Hullz + laliy < a(iirlly + !EV|i2)2 +b(lIflly + llgll;),
where the positive constants a and b depend only on Q, u, v, k, m, R and 8.
The existence and uniqueness of the solution (u,0) of system (3.3), enables us to

define the corresponding map (u,0) = T{(v,). The fixed points of the map T are just

the solutions of the non-linear system (1.6). In order fo prove the existence of these




STATIONARY MOTIONS AND THE INCOMPRESSIBLE LIMIT 537

fixed points we assume that

1 i’\V : 6 2
.6 fil{ + = _— min{— vk

and that

. 8 £
7 + <min{-> vk, ).
.7 livily + lIrliy min{s ¥ ,63}

The parameter § €] 0,11, will be fixed later on. Consider the ball
B ={(v.1) € Hy, g X H?: (3.7) holds}.

This is a compact set in Hé X L2. Moreover, by using (3.5), one shows that
TBg C Bg, for every §=<<1. We want to prove that, for a sufficiently small §,
depending only on €, g, », k, m, £ and §, the map T is a contraction in B5.Hence,T
has a (unique) fixed point in Bg, and Theozem A is proved.

Let (u,0) = T{v,7), (ug,09) = T(vy,7y), F=F(v,71), Fp= F(vi,*r]). One has, in £2,

- - up)- oV div(u - uy) +kvio - g1)=F-Fp,

(3.8) {m div(u - up)tv-vio- 01) + (v - vl)'VUI

+oydiviv-v)+(o- oy)divv=0.

By multiplying both sides of equation (3.8)1 by m{u-u 1) and both sides of
equation (3.8)2 by kio - o1), by integrating in £2, and by adding side by side the two
equations obtained in that way, one shows that

(3.9) mle - i Veu - u I < SKIdiv vio o - 011

+ckilogliphv - villlo - oqllg + mllF - Fqll_jilu - uglly.

In proving (3.9}, we utilized the Sobolev’s embedding theorems H2G L™ and

HYS 14, and also the inequality lidiv(u - I <119 - upiZ,

From (3.9) one has
(3.10) Jlu - ugli? < c'ldiv vloollo - oI+ lloyligliv - vyllgllo - o1llg + lIF - Fy1.

On the other hand o - 01”0 < c)is(o - 01)}!_1, since o - oy has mean value zero.
Hence, by using the expression of o - o1} oblained from equation (3.8)1, (or 1.2

estimates for the linear Stokes problem) we show that

G.11) No- oy < chllu - wyl? + CYF - Fy 13
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By multiplying both sides of equation (3.11) by 1 /(2c2'), by adding (side by side)
this equation to equation (3.10), and by using standard devices, we prove that

(3.12) Zluu ~ugll§ + 301 - egldiv violo - o113 < o Wil - 113 + cHiF - By 13,

for some suitable positive constants cé, c;; and ¢’

On the other hand
(3.13) MIF - Fyllp <iiflhyllr - T1llg + (1 + lirllg)(IIvify + H\_qlll)llv -yl

+ eIV + SCirlly + lir g1l - 74 llg-
In fact, by using the embedding nle L4, one easily shows that

Ir - Ty < Iy lir - 74,

Similarly,

v =)y - (v = v lg << clivily + iivqDpliv - villy,
and

rGv-V v - 71 (v Vvl < clirllgli(ve v - vvivll,
+ellvy3llr - 7l

Furthermore,

o) 97 - ex(r PV rlly = 17, 570 ot

W) VT - wir vl Vx TI(X)m 1

7(x)
<| w(®)dgy
|le (Bl
< 8(rloo + 17 loall - 71l
The above inequalities yield (3.13).
For & < a/cycy, one has cqldiv Vi, < c&cllfv||3 < %, by (3.7). Hence, from (3.12),
(3.13) one gets
(3.14) fha-uglf + o - oqIg < undir - 12
T+l 20y + vq)2 + lloy 131 v - v 12
+ellvy 13 + SCirlly + lir ) 2l - 7113,

By choosing § sufficiently small, depending only on §2, i, », k, m, £ and 8, one

Itas

I -ugh? + o - 0113 < 20 - w1113 + e - 41
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Hence T is a contraction in Bg, which proves Theorem A.m

REMARK. By is a compact and convex subset of H(ll X L2, T:By—=Byis
continuous with respect to that topology, and TB; C B;. Hence, we can prove the
existence of (at least) a fixed point in By by using Schauder’s theorem. The
uniqueness follows by using (3.14) (actually, it is quite trivial to obtain more stringent
uniqueness results),

4. Proof of Theorem C. During the proof of part (i) of Theorem C, E3o O3s k?\’
wy, will be denoted by u, o, k, w respectively, Theorem B states that f FEH 1, g=0,

and if v € 11} 4 verifies the condition
(4.1) livlly <9k,

then there exisis a unique solution (u,0) eH% d* H2 of the Hnear system (1.9).
Moreover,

+(v|
4.2 +kllolly < o(1 + £ 21,
(4.2} pilujiz +kllolly < of e NEI

Let us now fix 7 € H2 in the ball

g
(4.3) lIrlly <X or equivalently, krll, < -2
C3 C3

where cqg was defined in Section 3, and ¢ is the positive constant defined in (1.12),
Condition (4.3) guarantees that |[r(x)| < Q)\, V x € Q. In particular m/2 < m + r(x) <
(3m)/2.

By defining F(v,r) as in (3.2) (recali that, now, w = ""?\) one has, as in Section 3,
i
3 A
IRl < ogm+00l + Vi3 + cSylinli3,

Hence,

3 £ 2 201112
(4.4) IFv,nlly = C(~2~m +E;1%E)(Hf”1 +vllZ) + cok“lirll5,

(recall k= k?\)' If v and 7 verify assumptions (4.1) and (4.,3), it follows from (4.2) and
(4.4) that the unigue solution (u,0} of system (3.3) verifies the estimate

(4.5) flullz + likaliy < allkrily + vllg) + bilfll,
where now a and b are constants of typeE The above result corresponds to Theorem

3.1 in Section 3.
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The proof goes on as in Section 3, by now utilizing ko and kr instead of o and T,
respectively. In this way, inequalities (3.5) and (3.1) become (4.5) and (4.3)2,
respectively; condition (4.1) femains unchanged.

Following Section 3, we denote by T the map (u,0) = T(v,r), where the data
v € Hg,d X H2 verify (4.1}, (4.3) and (u,0) is the (corresponding)} solution of
system (3.3),

We fix f & Hl verifying (3.6) (here, g = 0), and we consider the restriction of T to

the ball Bg, 0 <8 <1, defined by the condition

(4.6) IIvlly + llkrlly < m{%;yk,%}.

The substitution of 7 by kr transforms (3.7) on (4.6). Arguing as in Section 3,
and recalling that k>k0, we prove inequalities (3.10), (3.11) and (3.12), provided
that in these inequalities we replace o, o1, 7,71 by ke, ko, kr, kr{ respectively. The
constants ¢', c5, cy, ¢4 are now of type ¢, hence independent of k.

Inequality (3.13) holds, as written in Section 3. Recalling that S?\éqikz, and
that k > k;, we show that (3.13) holds again, if 7, 71, and S are replaced by kr, kry,
and ¢, respectively, and if the right hand side of the inequality is multiplied by
L+ (1/kp).

By choosing § as in Section 3,le,8< a/(clci), we get an inequality similar to
(3.14), where now 7, o, 71 and ¢ are multiplied by k, and the constants are of type;:v.
By choosing § sufficiently small {(depending only on Q, u, v, m, &, ¢, kp) one gets

(A7) flu=aglif + ko - koy I3 < 2 div -1 + fier - k1.

Hence T is a contraction in B &> Which proves the first part of Theorem C.

We now prove part (ii) of that thecrem. Condition (1.15) guarantees the
uniqueness of the solution of problem (1.17), for a sufficiently small EO'

Let us write system (1.13) in the form (1 .6), i.e.,

-,uAuh -vV divuy + ky Vay = wh(a}\) Voy +(m + U}\)[f— (u?\- V)uh] s

(4.8) { m div wy, oy - VG?\ +oy div uy = 0,in 82,

(“?\) = 0.
From (1.16), it follows that there exists U, € Hg, such that (1.17}; holds. Here,

we consider subsequences of th ; the convergence of all the Uy, 1o U, as A = toe, will
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follow from the uniqueness of the limit u, since we will show that u, is the solution
of (1.14).

The bound (1.16), and the hypothesis ky ~>too as X #oo, imply (1.17}5.
Furthermore, equation (4.8),, togéther with (1.16) and (1.17)3, shows that
div uy = 0, strongly in Hé, as A~ too_ Since I|div uy ll5 is bounded, (1.17}y follows. In
particular, div u, = 0.

Now, we pass o the limit in equation (1.13), as A = +oo, One has ,uAuy\ = uhAu,,
and -2V div vy, - 0, weakly in H! and strongly in H%, 0 <<s < 1;and Py m, strongly
in HQ. Moreover, ,oy\(uh- iy, m{u," V) weakly in H2 and strongly in HS,
0<s< 2. By using equation (1.13){, it follows that Iplpy,N) = whug +
m{f - (U, VU], weakly in Hl, strongly in H 0<s<{l. Obviously, the limit
function must be of the form V#(x). Theorem C is completely proved.m

Appendix I. For the readers convenience we prove here the result stated at the
beginning of Section 2, concerning equation (2.3). We assume that the function
VEH3, verifies von=0 on T, and assumption (2.2). This last condition could be
replaced by 1/2]div vlgo + | Wl <M. Let G € Hé, and A, be the solution of

51 {-e DN+ MM+ V-T2, =G, inQ,

Aar =0,
where € is a positive constant. By multiplying both sides of (5.1) by A\, and by
integrating over £2, one easily shows that
elAN NG + [M - (%Idiv Voo + 19 Vlo) 1 IVAIZ < IVGIIIIZANG-

This estimate, together with (2.2), gives

(5.2) WAy < (/MDY VGlg,
and also

(5.3) elladllg </ZeTM || VGlig.

Hence, there exists a subsequence A, such that A, >A € H(l), weakly in H(]) and
strongly in 12, Moreover, eAh, ~ 0 in 12, By passing to the limit in (5.1}, ase >0,

one proves that A is a strong solution of (2.3). In particular, A verifies (2.6). By

multiplying both sides of (2.3) by A, and by integrating over £, one shows that

(5.4) (M -Liaiv vioo)iNllg <Gl
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This gives, in particular, the uniqueness of the solution A, in ul,

Since the linear map T: Hé - Hé, defined by TG = A, is continuous with respect
to the L2 norm, there exists a2 unique linear continuous map T extending T to all of
Lz. Clearly, (5.4) holds again, Furthermore, A = TG is a solution of (2.6).

REMARK. The résult holds again without assuming that v.n =0 on T, and with
condition (2.2) replaced by the weaker condition |div vi,, =< M (or, more generally, by
[div v|o < 2M). In that case, equation (2.6) holds for every test function g € Hé The
proof of this case starts by proving the existence of a solution X for data belonging to
the linear space H generated by an arbitrarily fixed basis (6%, e=12,..,0n L2, Then
we extend the map G — A to all of L2, by continuity.

Appendix 11.

6. The heat-dependent case. In the heat-dependent case the equations are

whu -2y divu+ yplp.8) = plf - (u-v)ul,

div(pu) = g,

(6.1) ) )
XAD t e pugo+ Opg{p.Aydivu=ph+ Y(u,u), in 2,
1.1|1-| = 0, G‘F =1,

where

(6.2) YW = I; ,j(% + 292 4 y(aiv w2,
> o] axj

For convenience, we will assume that 4 >0, p+v>>0,%x> 0, ¢,, A, A" and n> 0,
are constants. We also impose here, as for system (1.1), the additional condition (1.2},

The function p(p,§) is defined, and has Lipschitz continuous first derivatives, in
an f-neighborhood [m-2m+8} X [n-%n+8] of (mn). By setting k= pp(m,n),
¥ = pglm,n), one has pp(m tonta)= k-wiloe), ppim+en+t o) = - wayloa),
where wj, 1= 1,2, are Lipschitz continuous (with norms << §) in the -neighborhood of
(0,0). Moreover w;(0,0) = 0. We assume the physical condition k > 0.

By setting

p=m+o,0=n+aq,

the system (6.1} becomes
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b - vV divu + kVo + yVa = pif - (u-V)ul +w (0,00V0 + w4(0.0)Va,
mdivutu-Vot+todivu=g,
+6.3) ¢ -xAx + yn divu = ph - c,(m+ ayu-o + P (u,u) -y divu
+ wn(o,@)e + n)divu, in 2,
U= 0, o= 0.
The additional constraint is given by (1.13).
The linearized system is now
-pAu-pg divu+ kYo + yVa = F,
(6.4) mdivutvJotodivv=g,
xAa+ yndive =H, in £2,
U= 0, o = 0.
In the sequel, ¢, c(’), cl' , f, denote positive constants, depending at most on £2, on g, v,
v, m, X, 0, A, A, £ and S, The dependence of the constants ¢’ on the above parameters
can be easily checked.
One has the following result:
THEOREM A'. There exist positive constants c and c{ such that if f€ ui ,
g€ ﬁ(z), he Lz, and
(6.5) llflty + lighy + lIhlig < <p,
then there exisis a unique solution (u,o,0) € Hg X HZ X H% of problem (6.1), in the
ball
(6.6) lluilz + llally + ledly <cj.

The proof relies on the following result, for the linearized system (6.4):
THEOREM B'. Zer FCH!, g€HZ, HEL? and vEH] 4 There exists a

positive constant 8, such that if
(6.7) livil3 <8,

then there exists q unique solution (u,0,a) € Hg X HZ X H(z) of the linear system (6.4).

Moreover,

(6.8) llull + flolly + ladly < c'GIFI + liglly + IHIIG).




544 H. BEIRAO DA VEIGA

REFERENCES

L. H. Beirao da Veiga, An LP-theory for the n-dimensional, stationary, compressible, Navier-Stokes
equations, and the incompressible limit for compresvible fluids. The equilibrium solution, tO appear,

2. 8. Klainerman, A, Majda, Singular limits of quasilinear hyperbolic systems with large parameters
and the incompressible limit of compressible fluids, Comm. Pure Appl. Math, 34(1981), 481-324.

3. P.D.Lax, R. §. Phillips, Local boundary conditions for dissipative symmetric linear differential
operators, Comm. Pure Appl. Math., 13(1960), 427-455.

4. M. Padula, Existence and uniqueness for viscous steady compressible motions, to appear.

5. J. Serrin, Mathematical Principles of Classical Fluid Mechanics, Handbuch der Physik, Bd. viii/1,
Springer-Verlag, Berlin, Géttingen, Heidelberg, 1959.

6. A. Valli, Periodic and stationary solutions Jor compressible Navier-Stokes equations via a stability
method, Ann. Scuola Nommale Sup, Pisa, 1984, 607-647.

7. A Valli, Wojciech M. Zgaczkowski, NavierStokes equations for compressible fluids: global
existence and qualitative properties of the solutions in the general case, prepring U.T.M. 183,
Universitd di Trento, 1985,

8. A Vdli, On the existence of Stationary solutions to compressible Navier-Stokes equations, to
appear.

University of Trento
38050-Povo (Trento), Ttaly Received October 29, 1985




