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Abstract

In these notes we give an overview on some known and new results on
sufficient conditions for the regularity of the Navier-Stokes equations in
terms of the direction of the vorticity. After recalling some known results
we state a new theorem (the proof will appear in a forthcoming paper, in
collaboration with L.C. Berselli) which establish that in regular domains
Ω the solutions to the evolution Navier-Stokes equations under the slip-
type boundary condition (2.15) must be smooth if the direction of the
vorticity is 1/2-Hőlder continuous with respect to the space variables.

1 Introduction

In reference [11] it is proved that the solution of the evolution Navier–Stokes
equations in the whole of R3 must be smooth if the direction of the vorticity
is Lipschitz continuous with respect to the space variables. In reference [7] the
above result is improved by showing that Lipschitz continuity may be replaced
by 1/2-Hőlder continuity. We have some evidence that the 1/2 exponent is very
difficult to improve. A next step is the extension of the above type of results to
boundary value problems. In reference [5] the 1/2-Hőlder continuity sufficient
condition is extended to solutions in the half-space R3

+ under the slip boundary
condition. Note that in the half-space (more precisely, in any portion of flat
boundary) this condition coincides with the well-known condition (2.15). In a
forthcoming paper the author and L.C. Berselli prove that the above 1/2-Hőlder
sufficient condition still holds for solutions to the Navier-Stokes equations in any
arbitrary regular open set Ω under the boundary condition (2.15).
In these notes we give an overview on the above results.

2 Known and new results

In the sequel Ω denotes a bounded, connected, open set in R3, locally situated on
one side of its boundary Γ, a manifold of (at least) class C3,α for some α ∈ (0, 1).
We denote by n the unit outward normal to Γ. We do not introduce standard
notation or notation whose meaning is clear from the context. We denote by
‖ · ‖p the canonical norm in the Lebesgue space Lp := Lp(Ω), 1 ≤ p ≤ ∞.
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Hk := Hk(Ω), k positive integer, denotes the classical Sobolev space. Scalar
and vector function spaces are indicated by the same symbol.

Consider the evolution 3-D Navier–Stokes equations

(2.1)





∂u
∂t + (u · ∇)u− ν∆u +∇p = 0 in Ω× [0, +∞),

∇ · u = 0 in Ω× [0, +∞),

u(x, 0) = u0(x) in Ω .

It is well known (under suitable boundary conditions if Γ is not empty) that
there is at least one weak solution in [0, +∞) of the above problem and, for a
suitable τ > 0, a (unique) strong solution in [0, τ). It is not known, however,
whether weak solutions are unique and whether strong solutions are global in
time. We are interested in simple conditions on the vorticity ω,

ω(x, t) = ∇× u(x, t) ,

that guarantee the regularity of the solution. The following is a typical result
(see [?]; see also [?]). Weak solutions are regular provided that

(2.2) ω ∈ Lp(0, T ; Lq) for
2
p

+
n

q
≤ 2, 1 ≤ p ≤ 2 .

This result is an extension to values p ≤ 2 of the classical condition

(2.3) u ∈ Lp(0, T ; Ls) for
2
p

+
n

s
≤ 1, 2 ≤ p < ∞ .

This type of conditions have an analytical character. On the other hand, in ref-
erences [11] and [7], a geometrical assumption is considered. Define the direction
of the vorticity ξ as

ξ(x) =
ω(x)
|ω(x)|

and denote by θ(x, y, t) the angle between the vorticity ω at two distinct points
x and y at time t. In reference [11] the authors prove the following result.

Theorem 2.1. (see [11]). Let be Ω = R3 and u be a weak solution of (2.1) in
(0, T ) with u0 ∈ H1 and ∇ · u0 = 0. If

(2.4) sin θ(x, y, t) ≤ c |x− y|

in the region where the vorticity at both points x and y is larger than an ar-
bitrary fixed positive constant K, then the solution u is strong in [0, T ] and,
consequently, is regular.

In [7] the authors improve the above result by showing that

(2.5) sin θ(x, y, t) ≤ c |x− y|1/2

is sufficient to guarantee the regularity of weak solutions. More precisely
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Theorem 2.2. (see [7]). Let be Ω = R3 and u be a weak solution of (2.1) in
(0, T ) with u0 ∈ H1 and ∇ · u0 = 0. Assume that for some β ∈ [1/2, 1] and
g ∈ La(0, T ;Lb), where

(2.6)
2
a

+
3
b

= β − 1
2
, a ∈

[
4

2β − 1
,∞

]
,

one has

(2.7) sin θ(x, y, t) ≤ g(t, x)|x− y|β

in the region where the vorticity at both points x and y is larger than an ar-
bitrary fixed positive constant K. Then the solution u is strong in [0, T ] and,
consequently, is regular.
In particular (2.5) alone is a sufficient condition for regularity.

In [3] we assume that β ∈ [0, 1/2] and show sufficient condition for the
regularity of weak solutions that involves, simultaneously, the magnitude and
the direction of the vorticity. More precisely,

Theorem 2.3. (see [3]). Let u be a weak solution of (2.1) in (0, T ) with
u0 ∈ H1 and ∇ · u0 = 0. Let β ∈ [0, 1/2] and assume that (2.21) holds in
the region where the vorticity at both points x and y is larger than an arbitrary
fixed positive constant K. Assume, moreover, (2.18),(2.19). Then the solution
u is strong in [0, T ] and, consequently, is regular. In particular (2.5) alone is a
sufficient condition for regularity.

The proof of Theorem 2.3 follows that given in [7].
As remarked in reference [5], in the assumptions made in references [11], [7] and
[3] the quantity sin θ(x, y, t) can be everywhere replaced by

(2.8) |(x̂− y, ξ(x)) Det(x̂− y, ξ(y), ξ(x))| ,

as follows immediately from the proofs. We simply opt for replacing the above
quantity by sin θ(x, y, t). We use the notation ẑ = z

|z| .
Clearly the above quantity can be replaced by any upper bound as, for instance,

| cos ψ(x, y, t)| sin φ(x, y, t)

where ψ(x, t) denotes the angle between ξ(x, t) and x− y , and φ(x, y, t) denotes
the angle between ξ(y, t) and the plane generated by ξ(x, t) and x− y.

A fundamental open problem remains the improvement of the best exponent
β for which the assumption (2.21) guarantees the regularity of the solutions with-
out any other additional hypotheses. The proof given in reference [3] formally
leads us to believe that the sharpness of the regularity exponent β = 1/2 cor-
responds to that of the classical sufficient condition (2.3). Consequently, the
above improvement appears quite difficult to obtain.

Another central problem is the extension of the theory to boundary value
problems. In [5] it is proved that the above 1/2-Hőlder assumption still remains
a sufficient condition for regularity under the Navier, or slip, boundary condition

3



in the half-space R3
+ =

{
x ∈ R3 : x3 > 0

}
. Let us introduce the slip boundary

condition, see (2.13), in the general case of an open set Ω in R3 . Denote by

T = −p I + ν(∇u +∇uT )

the stress tensor, and set t = T · n. Hence

(2.9) Tik = −δikp + ν

(
∂ui

∂xk
+

∂uk

∂xi

)

and

(2.10) ti =
n∑

k=1

Tiknk.

Also consider the linear operator τ ,

(2.11) τ(u) = t− (t · n)n ,

the components of which are given by

(2.12) τi(u) = ν

n∑

k=1

(
∂ui

∂xk
+

∂uk

∂xi

)
nk − 2ν




n∑

k,l=1

∂ul

∂xk
nknl


 ni.

Note that τ(u) is tangential to the boundary.
The slip boundary condition reads

(2.13)





(u · n)|Γ = 0,

τ(u)|Γ = 0 .

This boundary condition (2.13) was proposed by Navier, see [17]. We point
out that this condition, and similar ones, are an appropriate model for many
important flow problems. Besides the pioneering mathematical contribution
[22] by Solonnikov and Ščadilov, this boundary condition has been considered
by many authors. See, for instance, [1], [4], [9], [12], [13], [16], [18], [19], [23]
and references therein.

In the half-space the slip boundary condition has the form (2.13)

(2.14)





u3 = 0,

ν
∂uj

∂x3
= 0, 1 ≤ j ≤ 2.

It is worth noting, and immediate to verify, that in the half space (or, more gen-
erally, in any flat portion of the boundary Γ) the above slip boundary condition
coincides with another well known boundary condition (see for instance [2] and
[10] ), namely

(2.15)





(u · n)|Γ = 0,

(ω × n)|Γ = 0 .
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Theorem 2.4. Let

(2.16) u0 ∈ {v ∈ H1(R3
+) : (∇ · v = 0 and v3(x1, x2, 0) = 0 }

and let u be a weak solution of the Navier-Stokes equations (2.1) where Ω = R3
+,

endowed with the boundary condition (2.14). Let β ∈ [0, 1/2] and assume that,
for almost all t ∈]0, T [,

(2.17) sin θ(x, y, t) ≤ c|x− y|β .

Moreover, suppose that

(2.18) ω ∈ L2(0, T ;Lr),

where

(2.19) r =
3

β + 1
.

Then the solution u is strong in [0, T ] and, consequently, is regular. In particular
the solution is regular if (2.5) holds. In this case (2.18) is superfluous.

The last claim follows from the fact that weak solutions satisfy (2.18) for
r = 2.
In a forthcoming paper [8] we extend the above result to arbitrarily regular open
sets Ω by considering the extension (2.15) of (2.14). More precisely, we prove
the following result.

Theorem 2.5. Let Ω be a regular bounded open set and

(2.20) u0 ∈ V = {v ∈ H1(Ω) : (∇ · v)|Ω = 0 and (v · n)|Γ = 0 } .

Let u be a weak solution in [0, T )× Ω of the Navier-Stokes equations (2.1) under
the boundary condition (2.15).

Assume that, for a.a. t ∈ (0, T ) the assumption (2.5) holds. Then the
solution u is strong in [0, T ], i.e.,

(2.21) u ∈ L∞(0, T ; H1) ∩ L2(0, T ;H2) .

A fundamental tool in proving the Theorem 2.4 is the use of both the Green
and the Neumann functions for R3

+, as suggested by the fact that in (2.14)
the components of the velocity are not mixed. Moreover, localization is not
needed. On the contrary, in order to prove the Theorem 2.5 we need to localize
the problem near any point x0 which lies on the boundary itself or even near
the boundary. This leads to non trivial problems and to a deep study of the
Green function associate to our boundary value problem. A fundamental tool
in the proof are the sharp results on Green matrices for general boundary value
problems proved by V. Solonnikov in his outstanding works [20] and [21]. See
also [15].
Similar ideas have been applied in reference [6] for the non-slip boundary con-
dition

(2.22) u = 0 on Γ ,
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by appealing to the Green function for Ω. In this case the problems connected
to the Green function are easier to treat than in the other cases referred above.
The fundamental estimates concerning the non linear term (ω · ∇)u · ω are
proved. However a new obstacle (due to the specific boundary condition (2.22))
appears, and regularity under the sole assumption sin θ(x, y, t) ≤ c|x − y|1/2

(or even sin θ(x, y, t) ≤ c|x− y|) remains an open, challenging, problem.
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de France Seminar-Vol.IX, 1988, Pitman Research Notes in Mathematics
Series, 181, 179-264.

[3] H. Beirão da Veiga, Vorticity and smoothness in incompressible viscous
flows,in Wave Phenomena and Asymptotic Analysis, volume dedicated to
Professors M. Ikawa and S. Miyatake, RIMS Kokyuroku Series, Vol. 1315,
Kyoto University, Kyoto (2003).

[4] H. Beirão da Veiga, Regularity for Stokes and generalized Stokes systems
under nonhomogeneous slip-type boundary conditions, Advances Diff. Eq.,
9, (2004), 1079-1114.

[5] H. Beirão da Veiga, Vorticity and regularity for flows under the Navier
boundary condition, Comm. Pure Applied Analysis, 5 (2006), 907-918.

[6] H. Beirão da Veiga, Vorticity and regularity for viscous incompressible flows
under the Dirichlet boundary condition. Results and open problems, J. Math.
Fluid Mech., in press.

[7] H. Beirão da Veiga and L. C. Berselli, On the regularizing effect of the vortic-
ity direction in incompressible viscous flows, Differential Integral Equations,
15 (2002), 345-356.

[8] H. Beirão da Veiga and L. C. Berselli,Navier-Stokes equations: Green ma-
trices, vorticity and regularity up to the boundary, to appear.

[9] C. Conca, On the application of the homogenization theory to a class of
problems arising in fluid mechanics, J. Math. Pures Appl., 64 (1985), 31-75.

[10] C. Conca, C. Pares, O. Pironeau and M. Thiriet, Navier-Stokes equatiions
with imposed pression and velocity fluxes, International J. for Numerical
Methods in Fluids, 20 (1995), 267-287.

[11] P. Constantin and C. Fefferman, Direction of vorticity and the problem of
global regularity for the Navier–Stokes equations, Indiana Univ. Math. J. 42
(1993), no. 3, 775–789.

6



[12] G.P. Galdi, W. Layton, Approximation of the larger eddies in fluid motion:
A model for space filtered flow, Math. Models and Meth. in Appl. Sciences,
3 (2000), 343-350.

[13] V. John, Slip with friction and penetration with resistence boundary con-
ditions for the Navier-Stokes equations-numerical tests and aspects of the
implementations, J. Comp. Appl. Math., 147 (2002), 287-300.

[14] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta
Math. 63 (1934), 193–248.
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