Analisi I - IngBM - 2015-16 COMPITO A 20 Settembre 2016

COGNOME	NOME
MATRICOLA	VALUTAZIONE + =

1. Istruzioni

Gli esercizi devono essere svolti negli appositi spazi del presente fascicolo; solo questo sarà ritirato e valutato. I fogli a quadretti messi a disposizione possono essere usati liberamente ma in nessun caso saranno ritirati. Il compito è composto di due parti. La prima parte deve essere svolta preliminarmente. Essa verrà corretta per prima e valutata con un punteggio di $0 \le x \le 10$ punti. Condizione necessaria affinché venga preso in considerazione l'eventuale svolgimento della seconda parte è che $x \ge 6$. In tal caso la seconda parte viene valutata con un punteggio di $0 \le y \le 24$ punti. Il compito sarà sufficiente per l'ammissione alla prova orale se $x + y \ge 18$. In tal caso il voto di ammissione all'orale sarà $y = \min(28, x + y)$.

Attenzione. Tutte le risposte devono essere giustificate.

2. I Parte

Esercizio 0. (0 punti.) Leggere e capire le istruzioni.

Esercizio 1. (3 punti.)

Calcolare, se esiste, il seguente limite

$$\lim_{x \to 0} \frac{2e^{x^2} - 2 - 2x^2 - x^4}{x^6}$$

SOLUZIONE

$$\boxed{\mathbf{x}}$$
 il limite vale $\frac{1}{3}$. $\boxed{}$ il limite non esiste

Giustificazione.

Si perviene a questo risultato o con ripetute applicazioni della regola dell'Hospital o osservando che, utilizzando il polinomio di Taylor, si ha, vicino a 0, $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \epsilon(x)$ ove ϵx è un infinitesimo per $x \to 0$, e quindi che $2e^{x^2} - 2 - 2x^2 - x^4 = \frac{2}{3!}x^6 + x^6 \epsilon x$. Quindi il limite esiste e vale $\frac{1}{3}$.

Esercizio 2. (4 punti.) Sia $\{a_n\}$ con $n \geq 0$, una successione di numeri reali e a un numero reale.

- (1) Dire quali delle espressioni seguenti esprime il fatto che a è il limite della successione $\{a_n\}$ per $n \to \infty$.
- (2) Dire quali delle espressioni seguenti esprime il fatto che a non $\grave{\mathbf{e}}$ il limite della successione $\{a_n\}$ per $n \to \infty$.
- a) $\exists \varepsilon \ \exists \overline{n} \ \text{tale che} \ \forall n \geq \overline{n} \ \text{si ha} \ |a_n a| < \varepsilon$
- b) $\forall \varepsilon \ \exists \overline{n} \ \text{tale che} \ \forall n \geq \overline{n} \ \text{si ha} \ |a_n a| < \varepsilon$
- c) $\forall \varepsilon \ \exists \overline{n} \ e \ \exists n \geq \overline{n} \ tale \ che \ |a_n a| < \varepsilon$
- d) $\forall \varepsilon \ \exists \overline{n} \ \text{tale che} \ \forall n \geq \overline{n} \ \text{si ha} \ |a_n a| > \varepsilon$
- e) $\exists \varepsilon$ tale che $\forall \overline{n} \ \exists n \geq \overline{n}$ tale che $|a_n a| > \varepsilon$

SOLUZIONE

(1)	L'espressi	one che esprime il fatto che a $\grave{\mathbf{e}}$ il limite della successione $\{$	$\{a_n\}$
	X	è quella contrassegnata con la lettera b	
		non è nessuna di quelle proposte.	

(2)	L'espressi	ione che esprime il fatto che a non $\grave{\mathbf{e}}$ il limite della successione \cdot	$\{a_n\}$
	X	è quella contrassegnata con la lettera e	
		non è nessuna di quelle proposte.	

Esercizio 3. (3 punti.) Calcolare la derivata della funzione

$$f(x) = \cos(\log(\sin^2(x) + 1))$$

SOLUZIONE

La derivata della funzione proposta è

$$-\sin(\log(\sin^2(x)+1)) \cdot \frac{2\sin(x)\cos(x)}{\sin^2(x)+1}$$

3. II PARTE.

Esercizio 1. (9 punti.)

Si consideri la funzione $\mathbf{R} \to \mathbf{R}$ definita dalla formula $f(x) = \begin{cases} \log(1+x^2) & \text{se } x \leq 0 \\ |\log x| & \text{se } x > 0 \end{cases}$

- (1) Descrivere l'insieme C dei punti di **R** dove la funzione è continua e l'insieme D dei punti dove la funzione è derivabile.
- (2) Descrivere l'insieme M e m rispettivamente dei punti di massimo e minimo locali della funzione f(x).
- (3) Descrivere gli eventuali asintoti.

SOLUZIONE

(1)
$$C = \mathbf{R} - \{0\}$$

$$D = \mathbf{R} - \{0, 1\}$$

$$(2) M = \emptyset$$

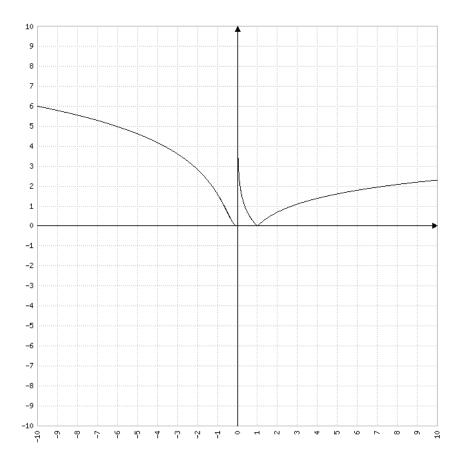
$$m = \{0, 1\}$$

(3) $\boxed{\mathbf{x}}$ l'asse delle y è un asintoto verticale.

il grafico della funzione non ammette asintoti.

Il comportamento della funzione è riassunto nel grafico sottostante

Giustificazioni. Per i punti di minimo e massimo locale si osservi che la funzione al di fuori dei punti 0 e 1 è derivabile. La derivata nell'intervallo $(-\infty,0)$ vale $\frac{2x}{1+x^2}$, quindi è negativa pertanto la funzione in tale intervallo è monotona decrescente: in particolare in un intorno sinistro di 0 si ha f(0) < f(x). Per gli intervalli destri di 0 si osservi che $\lim_{x\to 0^+} f(x) = +\infty$ e quindi in un intervallo destro di 0 si ha f(0) < f(x). Da ciò risulta che 0 è un punto di minimo locale. Analogamente nel punto 1 la derivata della funzione a sinistra di 1 risulta negativa $(f(x) = -\log x, f'(x) = -\frac{1}{x})$ e a destra positiva $(f(x) = \log x, f'(x) = \frac{1}{x})$, da cui si deduce che 1 è un punto di minimo locale. Negli altri punti del dominio la funzione, come si è detto, è derivabile e lo studio della derivata esclude la presenza di altri punti di minimo relativo o di punti di massimo relativo.



Esercizio 2. (5 punti.)

Provare per induzione che $n(n^2+5)$ è divisiblile per 6 per ogni $n \ge 0$. SOLUZIONE

- Passo iniziale. Per n=0 e n=1 la cosa è di immediata verifica.
- Passo induttivo. Mostriamo che la veridicità dell'affermazione per n implica quella per n+1.

$$(n+1)((n+1)^2+5) = n(n^2+5) + 3n(n+1) + 6$$

e ogni singolo termine di questa somma è divisibile per 6: il primo per il passo induttivo, il secondo perché n(n+1) è il prodotto di un pari per un dispari e quindi divisibile per 2 e il terzo per ovvie ragioni.

Esercizio 3. (4 punti.)

Provare che per ogni $z \in \mathbf{C}$ si ha

$$e^{\overline{z}} = \overline{e^z}$$

SOLUZIONE

Un modo per provare la cosa è ricordare che se z = x + iy si ha $e^z = e^x(\cos y + i\sin y)$. Pertanto essendo $\overline{z} = x - iy$ risulta

$$e^{\overline{z}} = e^x(\cos(-y) + i\sin(-y)) = e^x(\cos(y) - i\sin(y)) = \overline{e^z}.$$

Esercizio 4. (6 punti.) Calcolare

$$\int \frac{x^2 + 3x + 2}{x(x^2 + 1)} dx$$

SOLUZIONE Con i metodi usuali la funzione razionale proposta può essere scritta

$$\frac{x^2 + 3x + 2}{x(x^2 + 1)} = \frac{2}{x} - \frac{x - 3}{x^2 + 1} = \frac{2}{x} - \frac{1}{2} \frac{2x}{x^2 + 1} - \frac{3}{x^2 + 1}$$

Quindi

$$\int \frac{x^2 + 3x + 2}{x(x^2 + 1)} dx = 2\log|x| - \frac{1}{2}\log(x^2 + 1) - 3\arctan(x) + c$$