Analisi I - IngBM - 2014-15 COMPITO B 17 Gennaio 2015

COGNOME	NOME
MATRICOLA	VALUTAZIONE + =
1. Ist	TRUZIONI
sarà ritirato e valutato. I fogli a quadr liberamente ma in nessun caso saranno rii prima parte deve essere svolta preliminarm con un punteggio di $0 \le x \le 10$ punti. C considerazione l'eventuale svolgimento della seconda parte viene valutata con un punteg	esiti spazi del presente fascicolo; solo questo retti messi a disposizione possono essere usati tirati. Il compito è composto di due parti. La cente. Essa verrà corretta per prima e valutata Condizione necessaria affinché venga preso in la seconda parte è che $x \geq 6$. In tal caso la gio di $0 \leq y \leq 24$ punti. Il compito sarà suffix $x + y \geq 18$. In tal caso il voto di ammissione
2. Prii	MA PARTE
Esercizio 0. (0 punti) Leggere e capire l	e istruzioni.
Esercizio 1. (2,5 punti) Dire quale tra	le frasi (1) (2) (3) (4) (5) è la negazione della
La funzione $f: \mathbf{R} \to \mathbf{R}$ assume valori nell	'intervallo chiuso e limitato $[-5,7]$.
 (1) Esiste x ∈ (-5,7) tale che f(x) < -6 (2) Per ogni x ∈ R f(x) < -5 oppure (3) Per ogni x ∉ (-5,7) f assume valor (4) Esiste un x ∈ R tale che f(x) < -6 (5) f è periodica di un periodo T comp 	f(x) > 7 i tra -5 e 7 5 oppure $f(x) > 7$
SOLUZIONE	
$\Box 1$ $\Box 2$ $\Box 3$	
$\boxed{\mathbf{x}}$ 4 \Box 5 \Box Nessur	na di queste

Esercizio 2. (4 punti) Sia f(x) una funzione polinomiale non costante e $h(x) := \min(0, e^x)$. Dire, giustificando la risposta, se esiste il limite

$$L = \lim_{x \to +\infty} \left(h(x) + \frac{f^2(x)}{f^2(x) + 5} \right)$$

e in caso affermativo calcolarlo.

SOLUZIONE.

□ Il limite L non esiste perché

x Il limite L esiste e vale 1.

- (a) la funzione $h(x) = \min(0, e^x) = 0$ perché la funzione esponenziale è positiva.
- (b) Poiché f(x) è polinomiale e non costante allora $\lim_{x\to +\infty} f^2(x) = +\infty$. In particolare le funzioni $f^2(x)$ e $f^2(x)+5$ sono definitivamente non nulle per $x\to +\infty$. Quindi:

$$L = \lim_{x \to +\infty} \left(h(x) + \frac{f^2(x)}{f^2(x) + 5} \right) = \lim_{x \to +\infty} \left(0 + \frac{f^2(x)}{f^2(x)(1 + \frac{5}{f^2(x)})} \right) = \lim_{x \to +\infty} \frac{1}{(1 + \frac{5}{f^2(x)})} = 1.$$

La leggittimità dei passaggi è garantita proprio dal fatto che le funzioni $f^2(x)$ e $f^2(x) + 5$ sono definitivamente non nulle.

Esercizio 3. (3,5 punti) Determinare il seguente integrale indefinito

$$\int (1+x^2+x^3)e^{2x}dx \ .$$

SOLUZIONE.
$$I = \frac{e^{2x}}{2} \left(\frac{3}{4} + \frac{1}{2}x - \frac{1}{2}x^2 + x^3 \right) + \text{cost.}$$

L'integrale si ottiene con ripetute integrazioni per parti. Infatti, più in generale, se p è una funzione tale che la derivata quarta $p^{iv} = 0$ si ha, con ripetute integrazioni per parti,

$$\int p(x)e^{ax}dx = \frac{e^{ax}}{a}\left(p - \frac{1}{a}p' + \frac{1}{a^2}p'' - \frac{1}{a^3}p'''\right) + \cos t.$$

Da cui sostituendo si ottiene il risultato.

3. Seconda Parte

Esercizio 1. (10 punti) Per ogni $x \in \mathbb{R}$, indichiamo con [x] la parte intera di x.

a) Determinare il più grande sottoinsieme X di R tale che la formula

$$f(x) = [\cos(x)]$$

definisca una funzione $f: X \to \mathbf{R}$.

- b) Determinare il più grande sottoinsieme $C \subseteq X$ tale che la restrizione di f su C sia continua.
- c) Determinare l'insieme dei punti di $D \subseteq X$ dove la funzione è derivabile.
- d) Determinare l'insieme $M \subseteq X$ dei punti di massimo locale della funzione f.
- e) Determinare l'insieme $m \subseteq X$ dei punti di minimo locale della funzione f. SOLUZIONE.
 - a) $X = \mathbf{R}$. La funzione è una funzione definita su tutto \mathbf{R} in quanto composizione di due funzioni: $x \to \cos(x)$ e $y \to [y]$ che sono definite su tutto **R**. Si osserva
 - i) L'immagine della funzione cos(x) è l'intervallo chiuso e limitato [-1,1].
 - ii) La restrizione della funzione $y \to [y]$ sull'intervallo [-1,1] ha per immagine l'insieme finito $\{-1,0,1\}$; precisamente: [y]=-1 se $y\in[-1,0)$, [y]=0se $y \in [0,1), [1] = 1$.
 - iii) Poiché $\forall x \cos(x+2\pi) = \cos(x)$ si ha $\forall x [\cos(x+2\pi)] = [\cos(x)]$, la funzione pertanto è periodica e $T := 2\pi$ è un periodo.

Basta quindi studiarne il comportamento nell'intervallo $[0,2\pi)$: i valori assunti dalla funzione in tale intervallo sono

- (1) 1 in 0
- (2) 0 nell'intervallo $(0, \frac{\pi}{2}]$
- (3) -1 nell'intervallo $(\frac{\pi}{2}, \frac{3}{2}\pi)$ (4) 0 nell'intervallo $[\frac{3}{2}\pi, 2\pi)$
- b) $C = \mathbf{R} \setminus \left\{ \{2k\pi\}_{k \in \mathbf{Z}} \cup \{\frac{\pi}{2} + k\pi\}_{k \in \mathbf{Z}} \right\}$
- c) D = C. Infatti in tutti i punti di C la funzione è localmente costante e quindi derivabile con derivata nulla. Nei punti di discontinuità la funzione non può essere derivabile (perché una funzione derivabile in un punto è continua in quel punto).
- d) $M = \mathbf{R}$. Infatti in tutti i punti ove la funzione è continua la funzione è localmente costante e quindi questi sono punti di massimo locale; se $x \in \{2k\pi\}_{k\in \mathbb{Z}}$, allora $[\cos(x)] = 1$ quindi x è un punto di massimo assoluto (quindi locale); se $x \in \{\frac{\pi}{2} + k\pi\}_{k \in \mathbb{Z}}$, allora $[\cos(x)] = 0$ mentre se y > x ed è abbastanza vicino a x allora $[\cos(y)] = -1$, se y < x ed è abbastanza vicino a x allora $[\cos(y)] = 0$.
- e) m = C. Infatti in tutti i punti ove la funzione è continua la funzione è localmente costante e quindi questi sono punti di minimo locale; invece se x è

¹Attenzione: questo non dimostra che 2π sia il minimo periodo.

un punto di discontinuità, segue dalle considerazioni fatte in d) che per ogni intorno $I(x,\epsilon)$ di x esiste $y\in I(x,\epsilon)$ tale che f(x)>f(y) e quindi non è un punto di minimo locale.

Esercizio 2. (4 punti) Sia $X \subseteq \mathbb{R}$ definito da

$$X = \{1 - \frac{1}{n} ; n \in \mathbb{N}, n > 0\} \cup ((1, 2] \cap \mathbb{Q}) \cup (2, +\infty) .$$

Determinare:

- (1) La parte interna Int(X) di X.
- (2) La chiusura Ch(X) di X.
- (3) L' insieme Is(X) dei punti isolati di X.

SOLUZIONE.

(1)
$$Int(X) = (2, +\infty)$$

(2)
$$Ch(X) = \{1 - \frac{1}{n}; n \in \mathbb{N}, n > 0\} \cup [1, +\infty)$$

(3)
$$\operatorname{Is}(X) = \{1 - \frac{1}{n}; n \in \mathbb{N}, n > 0\}$$

Esercizio 3. (3 punti)

(1) Verificare che $i \in \mathbb{C}$ è una radice del polinomio

$$p(z) = z^4 + z^3 + 2z^2 + z + 1 .$$

(2) Determinare tutte le radici complesse di p(z).

SOLUZIONE.

Le radici complesse del polinomio sono $\pm i, \frac{-1 \pm i\sqrt{3}}{2}$. Infatti essendo il polinomio a coefficienti reali risulta che anche $\bar{i}=-i$ è una radice. Pertanto il polinomio è divisibile per il polinomio z^2+1 e risulta $p=(z^2+1)(z^2+z+1)$. Da cui il risultato.

Esercizio 4. (7 punti) Calcolare la soluzione dell'equazione differenziale

$$y'' - 6y' + 5y = e^x$$

tale che y(0) = y'(0) = 1.

SOLUZIONE.

Iniziamo con il cercare le soluzioni dell'equazione omogenea associata. Essendo le radici del polinomio caratteristico 1 e 5, tali soluzioni saranno del tipo $C_1e^x + C_2e^{5x}$, $C_1, C_2 \in \mathbf{R}$. Inoltre il termine noto è una soluzione dell'equazione omogenea corrispondente ad una radice semplice del polinomio caratteristico; pertanto l'equazione proposta ammette soluzioni particolari del tipo $\lambda x e^x$ con λ opportuno. Sostituendo e facendo il conto si verifica che in effetti la funzione $-\frac{1}{4}xe^x$ è una soluzione particolare dell'equazione proposta. Quindi le soluzioni sono del tipo $C_1e^x + C_2e^{5x} - \frac{1}{4}xe^x$: imponendo le condizioni richieste abbiamo

$$\begin{cases} C_1 + C_2 = 1\\ C_1 + 5C_2 = \frac{5}{4} \end{cases}$$

da cui otteniamo come valori per le costanti $C_1 = \frac{15}{16}$ e $C_2 = \frac{1}{16}$.