Analisi I BM - 2014-15 - Esercizi, foglio 8.

- **Esercizio 1.** Sia I un intervallo di \mathbb{R} . Dimostrare con tutti i dettagli che se I è compatto per successioni allora è necessariamente chiuso e limitato, cioè $I = [\alpha, \beta]$.
- Esercizio 2. (1) Siano $I = [\alpha, \beta]$ e $I' = [\alpha', \beta']$ due intervalli chiusi e limitati. Dimostrare che la loro unione $A = I \cup I'$ e la loro intersezione $B = I \cup I'$ sono sottoinsiemi compatti per successioni di \mathbb{R} .
- (2) Supponiamo ora che A sia l'unione di una successione di intervalli chiusi e limitati, cioè $A = \bigcup_{n \in \mathbb{N}} [\alpha_n, \beta_n]$. E' vero che A è compatto per successioni? Stessa domanda per l'intersezione $B = \bigcap_{n \in \mathbb{N}} [\alpha_n, \beta_n]$.
- Esercizio 3. Dimostrare che $D \subseteq \mathbb{R}$ è compatto per successioni se e solo se è un insieme chiuso e limitato.
- **Esercizio 4.** Sia $f : \mathbb{R} \to \mathbb{R}$, definita da $f(x) = \max(\sin(x), 1/2)$. Dimostrare con tutti i dettagli che f è continua.
- **Esercizio 5.** (1) Discutere se la formula $f(x) = \log(\sin(x) 2)$ definisce una funzione elementare continua.
- (2) Determinare il più grande sottoinsieme D di \mathbb{R} tale che la formula $f(x) = \log(\sqrt{|x|-1}-1)$ definisce una funzione elementare definita su D. Determinare l'insieme $\mathrm{Int}(D)$ dei punti interni di D.
- **Esercizio 6.** Dimostrare che la funzione $f(x) = x^2 \sin(\frac{1}{x})$ definita su $D = \{x \neq 0\}$ è continua. Dimostrare che f si estende ad una funzione continua F definita su tutto \mathbb{R} .
- **Esercizio 7.** Consideriamo la funzione polimomiale $f(x) = x^6 x 1$ definita su \mathbb{R} . Dimostrare che f ha almeno uno zero positivo e uno zero negativo.
- **Esercizio 8.** Consideriamo la funzione polimomiale $f(x) = x^3 x + 1$ definita su \mathbb{R} . Dimostrare che f(x) ha un unico zero x_0 e dimostrare che $-2 < x^0 < -1$.
- Esercizio 9. Sia $f: \mathbb{R} \to \mathbb{R}$ continua. Supponiamo che $\lim_{x \to \pm \infty} f(x) = -\infty$. Dimostrare che f è superiormente limitata ed esiste un punto di massimo assoluto $x_m \in \mathbb{R}$ per f, cioè per ogni $x \in \mathbb{R}$, $f(x) \leq f(x_m)$.