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1. Introduction

Let us start considering a linear system of differential equations of order 1
on an interval I ⊆ R.

dx

dt
= −Ax, t ∈ I (1.1)

where x = (x1, . . . , xn) ∈ Rn and A = A(t) is an n× n real matrix.

It is well-known that given x0 = (x10, . . . , xn0) ∈ Rn and t0 ∈ I, there
is a unique solution x(t) = (x1(t), . . . , xn(t)) to (1.1) such that x(t0) = x0.
The simplest case is of course if A ≡ 0 and in fact we can change (1.1) into
this by change of gauge

y = gx (1.2)

where g = g(t) ∈ GL(n,R). To see this notice that we want to find g such
that

dy

dt
=
dg

dt
· x+ g · dx

dt
=
dg

dt
· x− gAx = 0.

That is we want

dg

dt
= gA (1.3)

or by transposing

dgt

dt
= Atgt.

That is, the rows of g are solutions to (1.1) with A replaced by −At.
Hence we just choose g0 = g(t0) ∈ GL(n,R) arbitrarily and find the unique
solution corresponding to each row, i.e., we find the unique solution to (1.3)
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2 1. Introduction

with g(t0) = g0. To see that g is in fact invertible we solve similarily the
equation of matrices

dh

dt
= −Ah

with h(t0) = g−1
0 and observe that

d

dt
(gh) =

dg

dt
· h+ g · dh

dt
= gAh− gAh = 0,

thus by uniqueness g · h = 1. Hence we have proved the following proposi-
tion.

Proposition 1.1. Consider a system of equations (1.1) on an interval
I ⊆ R. Let t0 ∈ R and g0 ∈ GL(n,R). Then there is a unique gauge
transformation g = g(t), such that (1.1) is equivalent to

dy

dt
= 0, for y = gx and g(t0) = g0.

Remark. We shall think of g as a family of linear transformations parame-
trised by I, i.e. given by a map ḡg in the commutative diagram

I × R
n I × R

n

I

ḡ

proj proj

with ḡg(t, x) = (t, g(t)x).

We want to generalize this to the case where I is replaced by an open
set U ⊆ Rm or more generally by any differentiable manifold M = Mm. For
that purpose it is convenient to rewrite (1.1) as an equation of differential
forms:

dx = −(Adt)x.

Absorbing dt into the matrix we shall in general consider a matrix A of
differential 1-forms on M and we want to solve the equation

dx = −Ax (1.4)
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for x = (x1, . . . , xn) a vector of functions on M . Again a gauge transforma-
tion is a smooth family af non-singular linear maps g = g(t) ∈ GL(n,R),
t ∈M , or equivalently, a smooth map ḡg in the commutative diagram

M × R
n M × R

n

M

ḡ

proj proj

such that ḡg(t, x) = (t, g(t)x) defines a non-singular linear map g(t) for each
t ∈ M . Again putting y = gx the equation (1.4) changes into the gauge
equivalent equation

dy = −Agy

with Ag = gAg−1 − (dg)g−1. In particular we can transform the equation
into the trivial equation

dy = 0

(which has the obvious solution y = constant) if and only if we can find g
satisfying

dg = gA or g−1dg = A. (1.5)

Example 1.2. Let M = R2 with variables (t1, t2). Consider the equation
(1.4) with A = −t2dt1, that is

dx = (t2dt1)x,

or equivalently, the partial differential equations

∂x

∂t1
= t2x,

∂x

∂t2
= 0. (1.6)

But this implies

0 =
∂2x

∂t1∂t2
=

∂

∂t2
(t2x) = x.

Hence only x ≡ 0 is a solution to (1.6) whereas the equation dy = 0 has
other (constant) solutions as well. Therefore they are not gauge equivalent.
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More systematically let us find a necessary condition for solving (1.5):
Suppose g is a solution; then

0 = ddg = d(gA) = (dg) ∧A+ gdA = gA ∧A+ gdA

and since g is invertible we obtain

FA = A ∧A+ dA = 0. (1.7)

This is called the integrability condition for the equation (1.4) and FA
is called the curvature. We have thus proved the first statement of the
following proposition.

Proposition 1.3. For the equation (1.4) to be gauge equivalent to the
trivial equation dy = 0 a necessary condition is that the curvature FA = 0.
Locally this is also sufficient.

Proof. For the proof of the second statement it suffices to take M = Bm ⊆
Rm the open ball of radius 1, that is Bm = {u = (u1, . . . , un) | |u| < 1}. Let
Sm−1 be the sphere Sm−1 = {u | |u| = 1} and define g:Bm −→ GL(n,R)
by solving the equation

∂g

∂r
= gA

(
∂

∂r

)
, g(0) = 1,

along the radial lines {ru | 0 ≤ r ≤ 1} for each u ∈ Sm−1. Now choose
a local coordinate system (v1, . . . , vm−1) for Sm−1 so that we get polar
coordinates (r, v1, . . . , vm−1) on Bm. By construction the equation (1.5)
holds when evaluated on the tangent vector ∂/∂r. We need to evaluate on
∂/∂vi, i = 1, . . . ,m− 1, as well, that is, we must prove

∂g

∂vi
= gA

(
∂

∂vi

)
, i = 1, . . . ,m− 1. (1.8)

Notice that by construction (1.5) and hence also (1.8) holds at u = 0. Let
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us calculate ∂/∂r of the difference using the assumption

0 = FA

(
∂

∂r
,
∂

∂vi

)

=
∂

∂r
A

(
∂

∂vi

)
− ∂

∂vi
A

(
∂

∂r

)

+A

(
∂

∂r

)
A

(
∂

∂vi

)
−A

(
∂

∂vi

)
A

(
∂

∂r

)
.

Then

∂

∂r

(
∂g

∂vi
− gA

(
∂

∂vi

))

=
∂2g

∂r∂vi
− ∂g

∂r
·A

(
∂

∂vi

)
− g ∂

∂r
A

(
∂

∂vi

)

=
∂g

∂vi
A

(
∂

∂r

)
+ g

∂

∂vi
A

(
∂

∂r

)

− gA
(
∂

∂r

)
A

(
∂

∂vi

)
− g ∂

∂r
A

(
∂

∂vi

)

=
∂g

∂vi
A

(
∂

∂r

)
− gA

(
∂

∂vi

)
A

(
∂

∂r

)

=

(
∂g

∂vi
− gA

(
∂

∂vi

))
A

(
∂

∂r

)
.

By uniqueness of the solution to the equation

∂x

∂r
= xA

(
∂

∂r

)

along a radial we conclude that

∂g

∂vi
− gA

(
∂

∂vi

)
≡ 0

which was to be proven.
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In the global case there are obvious difficulties even for M of dimen-
sion 1.

Example 1.4. Let M = S1 = {(cos 2πt, sin 2πt) | t ∈ [0, 1]} and suppose
A = A0dt for a constant matrix A0. Then, on the interval [0, 1), the unique
gauge transformation to the trivial equation with g(0) = 1 is given by

g(t) = exp(tA0) =

∞∑

n=0

tnAn0
n!

so that g(1) = exp(A0). Hence we have a globally defined gauge transfor-
mation to the trivial equation if and only if g1 = exp(A0) = 1. If g1 6= 1,
on the other hand, we can overcome this difficulty if we replace S1 × Rn

with the vector bundle obtained from [0, 1]×Rn by identifying (1, v) with
(0, g1v).

This example suggests that we should (and will) generalize the problem
to vector bundles (real or complex). However, as seen above, it is really the
Lie group G = GL(n,R) (or G = GL(n,C)) which enters in the question of
gauge transformations. This gives rise to the notion of a principal G-bundle
with a connection where locally the connection is given by the matrix A of
1-forms occuring in the equation (1.4). Again we will encounter the notion
of curvature as in (1.7) which is the starting point for the definition of
characteristic forms and characteristic classes.



2. Vector Bundles and Frame

Bundles

In this chapter we shall introduce the notion of a vector bundle and the
associated frame bundle. Unless otherwise specified all vector spaces are
real, but we could of course use complex vector spaces instead.

Definition 2.1. An n-dimensional differentiable (real) vector bundle is a
triple (V, π,M) where π:V −→ M is a differentiable mapping of smooth
manifolds with the following extra structure:

(1) For every p ∈M,Vp = π−1(p) has the structure of a real vector space
of dimension n, satisfying the following condition:

(2) Every point in M has an open neighborhood U with a diffeomorphism

f :π−1(U) −→ U × R
n

such that the diagram

π−1(U) U × R
n

U

f

π proj

commutes, ie., f(Vp) ⊆ p× Rn for all p ∈ U ; and fp = f |Vp :Vp −→ p× Rn

is an isomorphism of vector spaces for each p ∈ U .

Notation. (V, π,M) is called a vector bundle over M , V is called the total
space, M is the base space, and π is the projection. We shall often write
V instead of (V, π,M). The diffeomorphism f in definition 2.1 is called a
local trivialization of V over U . If f exists over all of M then we call V a
trivial bundle.

7



8 2. Vector Bundles and Frame Bundles

Remark. If (V, π,M) is an n-dimensional vector bundle, then the total
space V is a manifold of dimension n+m, where m = dimM .

Example 2.2. The product bundle M×Rn with π = proj :M×Rn −→M
is obviously a trivial vector bundle.

Exercise 2.3. For g ∈ GL(n,R) show that the quotient space of R × Rn

by the identification (t, x) ∼ (t + 1, gx) where (t, x) ∈ R × Rn, defines an
n-dimensional vector bundle over R/Z ∼= S1.

Example 2.4. The tangent bundle of a differentiable manifold M = Mm,
that is, the disjoint union of tangent spaces

TM =
⊔

p∈M

TpM

is in a natural way the total space in an m-dimensional vector bundle
with the projection π:TM −→ M given by π(v) = p for v ∈ TpM . If
(U, x) = (U, x1, . . . , xm) is a local coordinate system for M then

π−1(U) =
⊔

p∈U

TpM

and we have a local trivialization

x∗:π
−1(U) −→ U × R

m

defined by

x∗

( m∑

i=1

vi · ∂

∂xi

∣∣∣∣p
)

= (p, v1, . . . , vm).

Sections

For a vector bundle (V, π,M) it is useful to study its sections.

Definition 2.5. A (differentiable) section σ in (V, π,M) is a differentiable
mapping

σ:M −→ V

such that π ◦ σ = idM , that is, σ(p) ∈ Vp = π−1(p) for all p ∈M .
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Notation. The set of differentiable sections in V is often denoted Γ(V ).

Example 2.6. Every vector bundle V has a zero section, i.e., the section
σ(p) = 0 ∈ Vp, for all p ∈ M . The zero section is differentiable and in fact
Γ(V ) is in a natural way a vector space with the zero section as the zero
vector.

Example 2.7. A (differentiable) section in the tangent bundle of a mani-
fold M is the same thing as a (differentiable) vector field on M .

Example 2.8. For the product bundle V = M × Rn (Example 2.2) a
section σ in V has the form

σ(p) = (p, s1(p), . . . , sn(p)) = (p, s(p))

and σ is differentiable if and only if s:M −→ Rn is differentiable. Thus
we have a 1-1 correspondence between differentiable sections in V and
differentiable functions s:M −→ Rn.

The Frame Bundle

By the last example the notion of a section in a vector bundle V generalizes
the notion of a function on it. But we can actually do even better: We can
consider a section of V as a function defined on a different manifold, the
so called frame bundle F (V ) for V .

First consider a single n-dimensional real vector space V and define

F (V ) = Iso(Rn, V ) = {linear isomorphisms x: Rn −→ V }.

An element x ∈ F (V ) is determined by the n linearly independent vectors

x1 = x(e1), . . . , xn = x(en)

where {e1, . . . , en} is the standard basis in Rn. The element x ∈ F (V )
is called an n-frame in V . Notice that a choice of basis in V gives an
identification of F (V ) with

Iso(Rn,Rn) = GL(n,R)
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which is an open set in the set M(n,R) = Rn
2

of all n× n matrices.

Now let us return to (V, π,M) a differentiable vector bundle over the
manifold M . We shall make the disjoint union

F (V ) =
⊔

p∈M

F (Vp) =
⊔

p∈M

Iso(Rn, Vp)

into a differentiable manifold such that π̄π :F (V ) −→ M given by π̄π(x) = p
for x ∈ F (Vp) is differentiable. Thus suppose we have a local trivialization
of V

f :π−1(U) −→ U × R
n.

Then there is a natural bijection

f̄f : π̄π−1(U) −→ U ×GL(n,R) (2.1)

defined by

x 7−→ (p, fp ◦ x), for x ∈ F (Vp).

where fp:Vp −→ Rn is the restriction of f to Vp.

Proposition 2.9. There is a natural topology and differentiable structure
on F (V ) satisfying:

(1) F (V ) is a differentiable manifold of dimension m+ n2.

(2) The bijections f̄f defined by (2.1) are diffeomorphisms for all local triv-
ializations f .

(3) The mapping π̄π is differentiable and locally we have a commutative
diagram

π̄−1(U) U ×GL(n,R)

U

f̄

π̄ proj

(4) We have a differentiable right group action

F (V )×GL(n,R) −→ F (V ) (2.2)
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given by

x · g = x ◦ g, for x ∈ F (Vp), g ∈ GL(n,R).

Exercise 2.10. Prove Proposition 2.9.

Remark. (1) The proof of the first statement is similar to the construction
of the differentiable structure on the tangent bundle of a manifold.

(2) That the mapping in (2.2) is a differentiable right group action means
that it is given by a differentiable mapping and that it satisfies

(x · g) · g′ = x · (gg′) for all x ∈ F (V ), g, g′ ∈ GL(n,R),

and

x · 1 = x for all x ∈ F (V ).

Notice also that each F (Vp) is an orbit , that is F (Vp) = x·GL(n,R) for any
x ∈ F (Vp), and we can identify M with the orbit space F (V )/GL(n,R).

Notation. The triple (F (V ), π̄π,M) is called the bundle of n-frames of V or
for short, the frame bundle of V .

Now we can interpret the set of sections of V in the following way:

Proposition 2.11. There is a natural 1-1 correspondence between the vec-
tor space Γ(V ) and the space of equivariant functions on F (V ) with values
in R

n, ie., the set of differentiable functions s̃s:F (V ) −→ R
n satisfying

s̃s(x · g) = g−1s̃s(x), for all x ∈ F (V ), g ∈ GL(n,R). (2.3)

Proof. Let s ∈ Γ(V ) and define s̃s by

s̃s(x) = x−1(s(p)), for x ∈ F (Vp) = Iso(Rn, Vp).

Then it is straightforward to check that s̃s satisfies (2.3). Also, using the
local triviality in (2.1), it follows that s̃s is differentiable if and only if s is.
On the other hand given s̃s:F (V ) −→ Rn satisfying (2.3) it is easy to see
that s̄s:F (V ) −→ V given by

s̄s(x) = x(s̃s(x))

is constant on every orbit F (Vp), and so s̄s defines a function s:M −→ V
such that the diagram
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F (V ) V

M

π̄

s̄

s

commutes. Again s is seen to be differentiable (provided s̃s is) using the
local trivialization in (2.1).

We next study homomorphisms between vector bundles with the same
base M , that is, vector bundles (V, π,M) and (V ′, π′,M).

Definition 2.12. A homomorphism ϕ:V −→ V ′ is a differentiable mapping
of total spaces such that the following holds:

(1) The diagram

V V ′

M

ϕ

π π′

commutes, that is, ϕp = ϕ|Vp maps Vp to V ′
p .

(2) ϕp:Vp −→ V ′
p is a linear mapping for each p ∈M .

An isomorphism ϕ:V −→ V ′ is a bijective map where both ϕ and ϕ−1

are homomorphisms.

Example 2.13. A trivialization f :V −→ M × Rn is an isomorphism to
the product bundle.

Remark. It follows from the definition that a homomorphism ϕ:V −→ V ′

is an isomorphism if and only if ϕ is a diffeomorphism of total spaces such
that ϕp:Vp −→ V ′

p is an isomorphism of vector spaces for every p ∈M . We
can improve this:

Proposition 2.14. A homomorphism ϕ:V −→ V ′ is an isomorphism if
and only if ϕp:Vp −→ V ′

p is an isomorphism of vector spaces for every
p ∈M .
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Proof. (⇒) Obvious.

(⇐) We must show that ϕ is a diffeomorphism. Since ϕ is clearly bijective it
suffices to show that ϕ−1 is differentiable. This however is a local problem,
so we can assume V = M ×Rn, V ′ = M ×Rn. In that case ϕ:M × Rn −→
M × Rn has the form

ϕ(p, v) = (p, ϕp(v))

where ϕp: R
n −→ Rn is a linear isomorphism. It is easy to see using local

coordinates for M that the Jacobi matrix for ϕ at every point (p, v) has
the form

[
I 0
X ϕp

]
(2.4)

where ϕp is the matrix for ϕp: R
n −→ Rn. Since ϕp is an isomorphism the

matrix (2.4) is clearly invertible and hence the proposition follows from the
Inverse Function Theorem.

Corollary 2.15. A vector bundle (V, π,M) is trivial if and only if the
associated frame bundle (F (V ), π̄π,M) has a section; i.e., if there is a dif-
ferentiable mapping σ:M −→ F (V ) such that π̄π ◦ σ = idM .

Proof. (⇒) Let f :V −→M × Rn be a trivialization. Then we define

σ:M −→ F (V ) by σ(p) = f−1
p ∈ Iso(Rn, Vp).

By the definition of the differentiable structure in F (V ) σ is differentiable
since

f ◦ σ(p) = (p, 1) ∈M ×GL(n,Rn).

(⇐) Let σ:M −→ F (V ) be a differentiable section. Then we define a ho-
momorphism ϕ:M × R

n −→ V by

ϕ(p, v) = σ(p)(v), for (p, v) ∈M × Rn.

(here σ(p) ∈ Iso(Rn, Vp)). It follows from Proposition 2.14 that ϕ is an
isomorphism, hence f = ϕ−1:V −→M × Rn is a trivialization.
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Remark. A section σ in F (V ) is equivalent to a set of n sections {σ1, . . . , σn}
in V such that {σ1(p), . . . , σn(p)} ⊆ Vp is a basis for Vp for every p ∈M (cf.
the definition of F (Vp)). A section in F (V ) is also called a moving frame for
V . Since every vector bundle is locally trivial it always has a local moving
frame.

Riemannian Metrics

For the remainder of this chapter we shall study vector bundles with a
Riemannian metric: First recall that on a single vector space V an inner
product 〈 · , · 〉 is a symmetric, positive definite, bilinear form on V , that is,
a function 〈· , · 〉:V × V −→ R such that

(1) 〈v, w〉, v, w ∈ V , is linear in both v and w,

(2) 〈v, w〉 = 〈w, v〉, for all v, w ∈ V ,

(3) 〈v, v〉 ≥ 0, for all v ∈ V , and

(4) 〈v, v〉 = 0 if and only if v = 0.

Now return to V a vector bundle over M .

Definition 2.16. A Riemannian metric on a vector bundle V over M is
a collection of inner products 〈· , · 〉p on Vp, p ∈ M , which is differentiable
in the following sense: For s1, s2 ∈ Γ(V ) the function 〈s1, s2〉 given by
〈s1, s2〉(p) = 〈s1(p), s2(p)〉p is differentiable.

Notation. We shall often just write 〈v1, v2〉 = 〈v1, v2〉p for v1, v2 ∈ Vp.
Example 2.17. The product bundle V = M ×Rn has the standard inner
product given by the usual inner product in R

n:

〈v, w〉 =
n∑

i=1

viwi, for v = (v1, . . . , vn), w = (w1, . . . , wn).

Proposition 2.18. Every vector bundle has a Riemannian metric.

Exercise 2.19. Prove Proposition 2.18. Hint: Use a partition of unity.

Now suppose (V, π,M) is an n-dimensional vector bundle with Rie-
mannian metric 〈 · , · 〉.
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Proposition 2.20. Every point in M has a neighborhood U and a trivial-
ization f :π−1(V ) −→ U × Rn such that fp:Vp −→ Rn is a linear isometry
for every p ∈M (with the metric in U × Rn given by Example 2.17).

Proof. By the remark following Corollary 2.15 every point in M has a
neighborhood U with a local moving frame, i.e. a set of sections {s1, . . . , sn}
of (π−1(U), π, U) such that {s1(p), . . . , sn(p)} is a linearly independent set
for each p ∈ U . By means of the Gram-Schmidt process we can replace this
set by {σ1, . . . , σn} such that {σ1(p), . . . , σn(p)} is an orthonormal basis
for Vp for every p ∈ U . Again σ1, . . . , σn are all differentiable. As in the
proof of Corollary 2.15 we consider {σ1, . . . , σn} as a section of the frame
bundle F (V ) over U , i.e. we obtain an isomorphism ϕ:U × Rn −→ π−1(U)
given by

ϕ(p, v) = σ(p)(v), for (p, v) ∈ U × Rn.

Since ϕp(ei) = σ(p)(ei) = σi(p) and since {σ1(p), . . . , σn(p)} is an or-
thonormal basis for Vp, it follows that ϕp: R

n −→ Vp is a linear isometry for
each p ∈ U . Hence f = ϕ−1:π−1(U) −→ U × Rn has the desired properties.

We can now define the orthogonal frame bundle for a vector bundle
with a Riemannian metric. For a single vector space V with inner product
〈· , · 〉 we let FO(V ) ⊆ F (V ) be the set

FO(V ) = Isom(Rn, V ) = {linear isometries x: Rn −→ V },

that is, x ∈ FO(V ) if and only if the vectors

x1 = x(e1), . . . , xn = x(en)

constitute an orthonormal basis for (V, 〈· , · 〉). We will call x an orthogonal
n-frame in V . With respect to a given orthonormal basis for V we get an
identification of FO(V ) with the orthogonal group O(n) ⊆ GL(n,R), which
is an n(n− 1)/2-dimensional submanifold in GL(n,R).

Now return to (V, π,M) a vector bundle with a Riemannian metric
〈· , · 〉 and we define the orthogonal frame bundle as the subset

FO(V ) =
⊔

p∈M

FO(Vp) ⊆ F (V ).
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Proposition 2.21. (1) FO(V ) ⊆ F (V ) is a submanifold and

π̄π |FO(V ):FO(V ) −→M

is differentiable.

(2) There is a differentiable right O(n)-action

FO(V )×O(n) −→ FO(V )

such that the orbits are the sets FO(Vp), p ∈M .

(3) There are local diffeomorphisms

f̄f : π̄π−1(U) ∩ FO(V ) −→ U ×O(n)

such that f̄f p = f |FO(Vp) maps FO(Vp) to p × O(n) for every p ∈ U , and
also

f̄f (x · g) = f̄f (x) · g, for all x ∈ FO(Vp), g ∈ O(n).

Proof. Choose a local trivialization

f :π−1(U) −→ U × R
n

as in Proposition 2.20. Then the corresponding local diffeomorphism for
the frame bundle (F (V ), π̄π,M)

f̄f : π̄π−1(U) −→ U ×GL(n,R)

is given on Fp(V ) by

f̄f (x) = (p, fp ◦ x), x ∈ Fp(V )

where fp is the restriction of f to Vp. Since fp:Vp −→ Rn is an isometry it
follows that f̄f maps FO(Vp) to p×O(n), that is,

f̄f : π̄π−1(U) ∩ FO(V ) −→ U ×O(n)

is a bijection. Since O(n) ⊆ GL(n,R) is a submanifold it follows that
FO(V ) ⊆ F (V ) is also a submanifold and all the statements in the propo-
sition are now straightforward. We leave the details to the reader.



17

Example 2.22. The real projective n-space RPn is defined as the quotient
space (Rn+1 \ {0})/(R \ {0}), that is, x = (x1, . . . , xn) is equivalent to y =
(y1, . . . , yn) if and only if y = tx for some t ∈ R\{0}. Let η: (Rn+1 \ {0}) −→
RPn be the natural projection, that is,

η(x) = [x] = [x1: . . . :xn+1]

and these (n + 1)-tuples are called the homogenous coordinates. RPn is
an n-dimensional differentiable manifold with coordinate systems (Ui, ζi),
i = 1, . . . , n+ 1, given by

Ui = {[x] ∈ RPn | xi 6= 0}
and ζi:Ui −→ Rn defined by

ζi[x1, . . . , xn+1] =

(
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn+1

xi

)
.

Notice that the inclusion of the unit n-sphere i:Sn ⊆ (Rn+1 \ {0}) gives
rise to a commutative diagram

Sn R
n+1 \ {0}

Sn/{±1} RPn

i

η

ı̄

∼=

Here īi is a homeomorphism; hence RPn is compact.

We shall now construct a 1-dimensional vector bundle with RPn as
basis. This is called the real Hopf-bundle or the canonical line bundle. The
total space H ⊆ RPn × Rn+1 is the subset

H = {([x], v) | v ∈ span{x}}
and the projection π:H −→ RPn is the restriction of the projection onto
the first component. There are local trivializations

hi:π
−1(Ui) −→ Ui × R, i = 1, . . . , n+ 1,

given by

hi([x], v) = ([x], vi).
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Theorem 2.23. (1) H ⊆ RPn × Rn+1 is an embedded submanifold and
π:H −→ RPn is a 1-dimensional vector bundle with local trivializations hi
as above.

(2) The associated frame bundle is η: (Rn+1 \ {0}) −→ RPn. Here the ac-
tion by GL(1,R) = R \ {0} is just given by the usual scalar multiplication.

Proof. (1) As before 〈 · , · 〉 denotes the usual inner product in Rn+1, that

is, 〈x, y〉 =
∑n+1
i=1 xiyi for x, y ∈ Rn+1. For x ∈ Rn+1 \ {0} let Px denote

the orthogonal projection onto span{x}, that is,

Px(y) =
〈y, x〉
〈x, x〉x

and denote the projection onto the orthogonal complement by P⊥
x = id−

Px. Similarily, for i = 1, . . . , n+ 1, let

Pi: R
n+1 −→ R, P⊥

i : Rn+1 −→ R
n

be the projections

Pi(x) = xi, P⊥
i (x) = (x1, . . . , x̂i, . . . , xn)

where the hat indicates that the term is left out. For i = 1, . . . , n+1, define
ki:Ui × Rn+1 −→ Ui × R× Rn by

ki([x], v) = ([x], Pi ◦ Px(v), P⊥
i ◦ P⊥

x (v)).

It is easy to see that ki is a homomorphism between the two product
bundles and that it is injective (and hence bijective) on each fibre. By
Proposition 2.14 ki is therefore an isomorphism, hence in particular a dif-
feomorphism. Since

ki(H ∩ π−1(Ui)) = Ui × R× 0

it follows that H is embedded in RPn × Rn+1, and since ki|H∩π−1(Ui)
=

hi × 0 we have shown (1).

(2) By definition the frame bundle for H is given by

F (H) = H0 = {([x], v) | v ∈ span{x}, v 6= 0}

and π̄π = π|H0
. Now projecting on the second component in H0 ⊆ RPn ×

(Rn+1 \ {0}) gives a diffeomorphism l in the commutative diagram
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H0 R
n+1 \ {0}

RPn

l

∼=

π̄ η

In fact the inverse l−1 is given by

l−1(v) = ([v], v), for v ∈ Rn−1 \ {0}.

Also l clearly respects the action of GL(1,R) = R \ {0} since in both cases
it is given by the scalar multiplication.

Corollary 2.24. H is a non-trivial vector bundle for n > 0.

Proof. If H is trivial then by Corollary 2.15 the frame bundle F (H) −→
RPn has a section. That is we have a differentiable map

σ: RPn −→ R
n+1 \ {0},

such that η ◦ σ = id. For x ∈ Sn ⊆ Rn+1 define f(x) ∈ R by

σ([x]) = f(x)x, x ∈ Sn ⊆ R
n+1 \ {0}.

Then f :Sn −→ R \ {0} is differentiable. But f(−x)(−x) = σ([−x]) =
σ([x]) = f(x), which implies that f(−x) = −f(x). Hence f takes both
values in R+ and R−. Since f is continuous and Sn is connected this is a
contradiction.





3. Principal G-bundles

The frame bundle for a vector bundle is the special case of a principal
G-bundle for the Lie group G = GL(n,R). In the following G denotes an
arbitrary Lie group.

Definition 3.1. A principal G-bundle is a triple (E, π,M) in which π:E −→
M is a differentiable mapping of differentiable manifolds. Furthermore E
is given a differentiable right G-action E×G −→ E such that the following
holds.

(1) Ep = π−1(p), p ∈M are the orbits for the G-action.

(2) (Local trivialization) Every point in M has a neighborhood U and a
diffeomorphism ϕ:π−1(U) −→ U ×G such that the diagram

π−1(U) U ×G

U

ϕ

π proj

commutes, i.e. ϕp = ϕ|Ep maps Ep to p×G; and ϕ is equivariant, i.e.,

ϕ(xg) = ϕ(x)g ∀x ∈ π−1(U), g ∈ G

where G acts on U ×G by (p, g′)g = (p, g′g)

Notation. E is called the total space, M the base space and Ep = π−1(p)
the fibre at p ∈ M . Often we shall just denote the G-bundle (E, π,M) by
E.

Remark. (1) π is surjective and open.

(2) The orbit space E/G is homeomorphic to M .

21
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(3) The G-action is free, i.e.,

xg = x implies g = 1 for all x ∈ E, g ∈ G.

(4) For each x ∈ E the mapping G −→ Ep given by g 7−→ x · g, is a
diffeomorphism.

(5) If N ⊆ M is a submanifold (e.g. if N is an open subset) then the
restriction to N

E|N = (π−1(N), π,N)

is again a principal G-bundle with base space N .

Example 3.2. (1) For (V, π,M) an n-dimensional vector bundle the as-
sociated frame bundle (F (V ), π̄π,M) is a principal GL(n,R)-bundle.

(2) If V is equipped with a Riemannian metric then (FO(V ), π̄π,M) is a
principal O(n)-bundle.

(3) Let G be any Lie group and M a manifold. Then (M ×G, π,M), with
π the projection onto the first factor, is a principal G-bundle called the
product bundle.

Definition 3.3. Let (E, π,M), (F, π′,M) be two principal G-bundles over
the same base space M . An isomorphism ϕ:E −→ F is a diffeomorphism
of the total spaces such that

(1) The diagram

E F

M

ϕ

π π′

commutes, i.e. ϕp = ϕ|Ep maps Ep to Fp.

(2) ϕ is equivariant, i.e.

ϕ(xg) = ϕ(x)g for all x ∈ E, g ∈ G.

Remark. In this case ϕp:Ep −→ Fp is also a diffeomorphism for each p ∈M .
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Definition 3.4. A principal G-bundle (E, π,M) is called trivial if there is
an isomorphism ϕ:E −→M ×G and ϕ is called a trivialization.

Remark. It follows from definition 3.1 that every principal G-bundle E has
local trivializations

ϕ:E|U −
∼=−→ U ×G.

Lemma 3.5. Every isomorphism ϕ:M ×G −→M ×G has the form

ϕ(p, a) = (p, g(p) · a) p ∈M,a ∈ G (3.1)

where g:M −→ G is a differentiable mapping.

Proof. It is easy to see that ϕ defined by (3.1) is an isomorphism with
inverse ϕ−1 given by

ϕ−1(p, b) = (p, g(p)−1 · b) p ∈M, b ∈ G. (3.2)

conversely let ϕ:M × G −→ M × G be an arbitrary isomorphism and let
g:M −→ G be the mapping defined by

ϕ(p, 1) = (p, g(p)) p ∈M.

then g is clearly differentiable and since ϕ is equivariant we obtain for
p ∈M , a ∈ G:

ϕ(p, a) = ϕ((p, 1)a) = (ϕ(p, 1))a = (p, g(p) · a)
that is, (3.1) holds.

Now for an arbitrary G-bundle (E, π,M) choose an open covering of
M , U = {Uα}α∈Σ, and trivializations

ϕα:E|Uα −
∼=−→ Uα ×G.

For Uα ∩ Uβ 6= ∅ we consider the isomorphism

ϕβ ◦ ϕ−1
α :Uα ∩ Uβ ×G −→ Uα ∩ Uβ ×G

and by Lemma 3.5 this has the form

ϕβ ◦ ϕ−1
α (p, a) = (p, gβα(p) · a) (3.3)

where a ∈ G, p ∈ Uα ∩ Uβ and gβα:Uα ∩ Uβ −→ G is a differentiable
mapping.
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Notation. The collection {gβα}α,β∈Σ are called the transition functions for
E with respect to the covering U (and trivilizations {ϕα}α∈Σ).

Remark. For α, β, γ ∈ Σ such that Uα ∩ Uβ ∩ Uγ 6= ∅ the following cocycle
condition holds

gγβ(p) · gβα(p) = gγα(p) for all p ∈ Uα ∩ Uβ ∩ Uγ ,
gαα(p) = 1 for all p ∈ Uα.

(3.4)

Conversely we have the following proposition.

Proposition 3.6. Let U = {Uα}α∈Σ be an open covering of a manifold M
and suppose {gαβ}α,β∈Σ is a system of differentiable mappings gαβ:Uα ∩
Uβ −→ G satisfying the cocycle condition. Then there is a principal G-
bundle (E, π,M) and trivializations ϕα:E|Uα

−→ Uα×G, α ∈ Σ, such that
{gαβ}α,β∈Σ is the associated system of transition functions.

Proof. The total space E is the quotient space

E =
( ⊔

α∈Σ

Uα ×G
) /
∼

of the disjoint union of all Uα × G, α ∈ Σ, for the equivalence relation ∼
defined by

(p, a)α ∼ (q, b)β if and only if p = q and b = gβα(p)a

where (p, a)α ∈ Uα×G and (q, b)β ∈ Uβ×G. The cocycle condition ensures
that ∼ is an equivalence relation. Furthermore the projections Uα ×G −→
Uα give a well-defined continous mapping π:E −→ M and we also have
obvious bijections

ϕα:π−1(Uα) −→ Uα ×G

given by ϕα((p, a)α) = (p, a). It is now straight forward to define a diffe-
rentiable structure on E such that the maps ϕα become diffeomorphisms.
Furthermore one checks that (E, π,M) is a principal G-bundle and by
construction {ϕα}α∈Σ are trivializations with {gαβ}α,β∈Σ the associated
system of transition functions.
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Exercise 3.7. Show that the bundle constructed in Proposition 3.6 is
trivial if and only if there is a system of differentiable mappings

hα:Uα −→ G, α ∈ Σ,

such that

gβα(p) = hβ(p)hα(p)−1, for all p ∈ Uα ∩ Uβ.

In the previous chapter we associated to a vector bundle (V, π,M)
the frame bundle (F (V ), π̄π,M) which is a principal GL(n,R)-bundle. We
shall now show how to reconstruct the vector bundle V from the principal
bundle using the natural action of GL(n,R) on Rn. In general for a Lie
group G and a principal G-bundle (E, π,M) we consider a manifold N
with a left G-action G × N −→ N and we shall associate to this a fibre
bundle (EN , πN ,M) with fibre N . For this we define the total space EN as
the orbit space

EN = E ×G N = (E ×N)/G

for the G-action on E ×N given by

(x, u) · g = (xg, g−1u), x ∈ E, u ∈ N, g ∈ G
so that EN is the quotient space for the equivalence relation ∼, where
(x, u) ∼ (y, v) if and only if there exists g ∈ G such that y = xg and u = gv.
Furthermore let πN :EN −→M be induced by the composite mapping

E ×N −proj−−−→ E −π−→M.

Then we have the following proposition.

Proposition 3.8. (1) EN is in a natural way a differentiable manifold
and πN :EN −→M is differentiable.

(2) There are local trivializations, i.e. every point in M has a neighborhood
U and a diffeomorphism f :π−1

N (U) −→ U ×N such that the diagram

π−1
N (U) U ×N

U

f

πN proj
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commutes.

Exercise 3.9. Prove Proposition 3.8.

Notation. The triple (EN , πN ,M) is called the fibre bundle with fibre N
associated to the principal G-bundle (E, π,M).

Example 3.10. Let (V, π,M) be a vector bundle and (F (V ), π̄π,M) the
corresponding frame bundle. Then the associated fibre bundle with fibre
Rn (F (V )R

n , π̄πR
n ,M) is in a natural way a vector bundle isomorphic to

(V, π,M). In fact there is a natural isomorphism ϕ

F (V )×GL(n,R) R
n

V

M

ϕ

π̄Rn π

given by

ϕ(x, v) = x(v), x ∈ Fp(V ) = Iso(Rn, Vp).

Exercise 3.11. Let (E, π̃π,M) be a principal GL(n,R) bundle and let
(V, π,M) be the associated fibre bundle with fibre Rn using the natural
action of GL(n,Rn) on Rn. Show that V is in a natural way a vector bundle
and that the corresponding frame bundle (F (V ), π̄π,M) is isomorphic to
(E, π̃π,M).

Finally let us consider bundles over different base spaces: Suppose
(E′, π′,M ′) and (E, π,M) are principal G-bundles.

Definition 3.12. A bundle map from E′ to E is a pair of differentiable
mappings (f̄f , f) in the commutative diagram

E′ E

M ′ M

f̄

π′ π

f
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such that f̄f is G-equivariant, i.e.

f̄f (x · g) = f̄f (x) · g, for all x ∈ E′, g ∈ G.

Example 3.13. (1) A bundle isomorphism is by definition a bundle map
of the form

E′ E

M M

f̄

π′ π

id

(2) If N ⊆ M is a submanifold and (E, π,M) is a principal G-bundle,
then the inclusion maps in the diagram

E|N E

N M

π|E|N π

is a bundle map.

(3) In the product bundle M ×G the projection π2 on the second factor
defines a bundle map of the form

M ×G G

M pt

π2

π1

Given a differentiable mapping f :M ′ −→M and a principal G-bundle
(E, π,M) we can construct a G-bundle called the pull-back of E by f over
M ′, denoted f∗(E) = (f∗(E), π′,M ′), and a bundle map (f̄f , f): f∗(E) −→
E. That is, we construct a commutative diagram
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f∗(E) E

M ′ M

f̄

π′ π

f

To do this we let f∗(E) ⊆M ′ × E be the subset

f∗(E) = {(p, x) ∈M ′ × E | f(p) = π(x)}

and let π′ and f̄f be defined by the restriction of the projections to M ′ and
E respectively. Then we have

Proposition 3.14. f∗(E) = (f∗(E), π′,M ′) is in a natural way a principal
G-bundle and (f̄f , f) is a bundle map.

Proof. G clearly acts on f∗(E), and for each p ∈M ′

(π′)−1(p) = {(p, x) | x ∈ Ef(p)}

is mapped bijectively by f̄f to Ef(p) which is a G-orbit. Hence it suffices to
show that f∗(E) is a locally trivial G-bundle. for this we can assume E to
be a product bundle E = M ×G. In this case

f∗(E) = {(p, q, g) ∈M ′ ×M ×G | f(p) = q} ∼= M ′ ×G

by the map (p, q, g) 7−→ (p, g). Via this isomorphism f̄f is furthermore given
by the map (p, g) 7−→ (f(p), g) which shows that f̄f is a bundle map.

Exercise 3.15. (1) Show that if (f̃f , f): (E′, π′,M ′) −→ (E, π,M) is a
bundle map then there is a canonical factorization f̃f = f̄f ◦ ϕ, where
ϕ:E′ −→ f∗(E) is an isomorphism and (f̄f , f) is the bundle map in Propo-
sition 3.14.

(2) Show that this provides a 1-1 correspondence between the set of bundle
maps with fixed map f :M ′ −→ M of base spaces, and the set of isomor-
phisms E′ −→ f∗(E).

(3) In particular there is a 1-1 correspondence between the set of trivial-
izations of a bundle (E, π,M) and the set of bundle maps to the trivial
G-bundle over a point (G, π, pt).
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(4) Show that if f :M ′ −→M is a differentiable map and if {gαβ}α,β∈Σ is
a cocycle of transition functions for a G-bundle E over M with covering
{Uα}α∈Σ then {gαβ ◦ f} is a cocycle of transition functions for f∗(E) over
M ′ with covering {f−1(Uα)}α∈Σ.





4. Extension and reduction of

principal bundles

We will now examine the relation between principal bundles with different
structure groups. In the following let G and H be two Lie groups and
α:H −→ G a Lie group homomorphism. Typically α is the inclusion of a
closed Lie subgroup. Now suppose (F, π,M) is a principal H-bundle and
(E, ξ,M) is a principal G-bundle.

Definition 4.1. Let ϕ:F −→ E be a differentiable mapping of the total
spaces such that the following holds.

(1) The diagram

F E

M

ϕ

π ξ

commutes, ie. ϕp = ϕ|Fp maps Fp into Ep for all p ∈M .

(2) The map ϕ is α-equivariant, ie.,

ϕ(x · h) = ϕ(x) · α(h) for all x ∈ F , h ∈ H.

Then ϕ:F −→ E is called an extension of F to G relative to α and is also
called a reduction of E to H relative to α

Notation. (1) We will often omit the term “relative to α” if α is clear from
the context, e.g. when α is the inclusion of a Lie subgroup.

(2) When α is surjective with non-trivial kernel one usually calls a reduc-
tion a lifting of the bundle E to H .
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(3) Often the extension is just denoted by the target E and similarly a
reduction is denoted by the domain F . But it should be kept in mind that ϕ
is part of the structure. This is important when talking about equivalences
of extensions resp. reductions (liftings).

Definition 4.2. (1) Two extensions ϕ1:F −→ E1 and ϕ2:F −→ E2 are
equivalent if there is an isomorphism ψ in the commutative diagram

E1

E2

F ψ

ϕ1

ϕ2

(2) Two reductions (liftings) ϕ1:F1 −→ E and ϕ2:F2 −→ E are equivalent
if there is an isomorphism ψ in the commutative diagram

F1

F2

Eψ

ϕ1

ϕ2

Example 4.3. (1) Let (V, π,M) be a vector bundle with a Riemannian
metric. Then the inclusion FO(V ) ⊂ F (V ) of the orthogonal frame bundle
into the frame bundle is an extension relative to the inclusion O(n) ⊆
GL(n,R). Thus the Riemanian metric defines a reduction of the principal
GL(n,R)-bundle F (V ) to O(n). Furthermore there is a 1-1 correspondence
between the set of Riemannian metrics on V and the set of equivalence
classes of reductions.

(2) Let GL(n,R)+ ⊆ GL(n,R) be the subgroup of non-singular matrices
with positive determinant. By definition a vector bundle (V, π,M) is called
orientable if the frame bundle F (V ) has a reduction to GL(n,R)+ and a
choice of equivalence class of reductions is called an orientation of V (if
orientable).

Proposition 4.4. Let α:H −→ G be a Lie group homomorphism and let
(F, π,M) be a principal H-bundle. Then there is an extension of F to G
relative to α and any two extensions are equivalent.
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Proof. There is a left H-action on G defined by h ·g = α(h)g for h ∈ H and
g ∈ G. Consider the associated fibre bundle with fibre G, i.e. the bundle
(FG, πG,M) where FG = F ×G G and πG(x, g) = π(x) for x ∈ F, g ∈ G.
Here FG has a natural right G-action given by

(x, g)g′ = (x, gg′), x ∈ F, g, g′ ∈ G.

It now follows from Proposition 3.8 that (FG, πG,M) is a principal G-
bundle. Furthermore the natural mapping ϕ:F −→ F ×G G defined by
ϕ(x) = (x, 1) makes FG an extension of F to G. If ϕ′:F −→ E′ is any other
extension then there is a natural isomorphism ψ:FG −→ E′ given by

ψ(x, g) = ϕ′(x) · g, x ∈ F, g ∈ G

and clearly the diagram

FG

E′

F ψ

ϕ

ϕ′

commutes. Hence ϕ′:F −→ E′ is equivalent to ϕ:F −→ FG.

Hence extensions exist and are unique up to equivalence. Reductions
(or liftings) do however not always exist, and if they do, they are usually
not unique.

Exercise 4.5. Let α:H −→ G be a Lie group homomorphism and (E, π,M)
a principal G-bundle.

(1) Show that E has a reduction to H if and only if there is a covering
U = {Uα}α∈Σ of M and a set of transition functions for E of the form
{α ◦ hαβ}α,β∈Σ, where hαβ :Uα ∩Uβ −→ H are smooth functions satisfying
the cocycle condition (3.4)

(2) If H ⊆ G is a closed embedded Lie subgroup and α is the inclusion,
show that E has a reduction to H if and only if there is a covering U =
{Uα}α∈Σ of M and a set of transition functions {gαβ}α,β∈Σ for E with
{gαβ} mapping into H .
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Let us now restrict to the case where H ⊆ G is a closed embedded Lie
subgroup and α is the inclusion.

We need the following lemma.

Lemma 4.6. The natural projection π:G −→ G/H defines a principal
H-bundle (G, π,G/H).

Proof. Let U ⊆ G be a local cross section, that is, U is an embedded
submanifold of G containing the identity element e, such that π(U) = W
is open in G/H and π:U −→W is a diffeomorphism. Let s:W −→ U be the
inverse. We now get a local trivialization f :π−1(W ) −→W ×H defined by

f(a) = (π(a), s(π(a))−1a).

This is clearly smooth and so is the inverse

f−1(w, h) = s(w) · h.

Also f and f−1 are H-equivariant, hence f is a local trivialization . Simi-
larly over the neighborhood gW we have the trivialization

fg:π
−1(gW ) −→ gW ×H

given by

fg(a) = (π(a), s(π(g−1a))−1g−1a),

with inverse

f−1
g (u, h) = g · s(g−1u) · h.

This shows that (G, π,G/H) is a principal H-bundle.

More generally we can now prove:

Theorem 4.7. Let H ⊆ G be a closed embedded Lie-subgroup and let
(E, π,M) be a principal G-bundle.

(1) There is a natural homeomorphism k in the commutative diagram
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E/H E ×G (G/H)

M

k

∼=

π̄ πG/H

where π̄π is induced by π. In particular E/H has a natural differentiable
structure induced by k.

(2) Let π̃π :E −→ E/H be the natural projection. Then (E, π̃π, E/H) is a
principal H-bundle.

(3) There is a 1-1 correspondence between the set of sections of the bundle
(E/H, π̄π,M) with fibre G/H and the set of equivalence classes of reductions
of E to H.

Proof. (1) The map k is just induced by the natural inclusion E −→ E ×
(G/H) sending x to (x, [H ]) and the inverse is induced by the map E ×
G/H −→ E/H given by k−1(x, gH) = xgH . Since E ×G (G/H) = EG/H
is the total space in the associated fibre bundle with fibre G/H , it has a
differentiable structure as noted in Proposition 3.8.

(2) Since the differentiable structure on E/H is given via the homeomor-
phism k we have local trivializations of (E/H, π̄π,M), that is, over suitable
neighborhoods U ⊆M we have a commutative diagram

π−1(U) U ×G

π̄−1(U) U ×G/H

U U

∼=

∼=

=

π̃

proj

with the horizontal maps being diffeomorphisms.

By Lemma 4.6 G −→ G/H is a locally trivial H-bundle; hence by the
upper part of the diagram above (E, π̃π, E/H) is also locally trivial.
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(3) Suppose we have a reduction ϕ:F −→ E, where (F, π0,M) is a princi-
pal H-bundle. Then ϕ induces a natural map

sϕ:M = F/H −→ E/H

which is easily checked to be a smooth section of (E/H, π̄π,M) using lo-
cal trivializations. Also if ϕ1:F1 −→ E and ϕ2:F2 −→ E are equivalent
reductions then clearly sϕ1

= sϕ2
.

On the other hand if s:M −→ E/H is a section then we get a bundle
map of H-bundles

s∗(E) E

M E/H

s̄

s

and it follows that s̄s: s∗(E) −→ E is a reduction of E to H .

Remark. (1) In particular E has a reduction to H if and only if (E/H, π̄π ,
M) has a section.

(2) For H = {e} Theorem 4.7 gives a 1-1 correspondence between trivial-
izations of E and sections of E.

Exercise 4.8. (1) Let G = H · K be a semi-direct product of the two
closed embedded Lie subgroups H and K, that is, H is invariant and the
natural map K ↪→ G −→ G/H is an isomorphism of Lie groups. show
that if (E, π,M) is a principal G-bundle then (E/H, π̄π,M) is a principal
K-bundle.

(2) For k ≤ n let Wn,k be the manifold of k linearly independent vectors
in Rn, let

Gk(R
n) = Wn,k/GL(k,R)

be the Grassmann manifold of k-planes in Rn, and let γn,k:Wn,k −→
Gk(R

n) be the natural projection. Show that (Wn,k, γn,k, Gk(R
n)) is a prin-

cipal GL(k,R)-bundle.
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(3) Similarly let Vn,k ⊆ Wn,k be the Stiefel manifold of k orthogonal
vectors in Rn with the usual inner product. Show that the inclusion Vn,k ⊆
Wn,k defines a reduction of the bundle defined in (2) to the group O(k) ⊆
GL(k,R)

(4) Show that the natural map

l:Wk(R
n)×GL(k,R) R

k −→ Gk(R
n)× R

n

defined by

l(X, v) = ([X ], Xv)

is an embedding. (Here [X ] = γn,k(X) is the subspace spanned by the col-
umn vectors in the matrix X , and Xv denotes usual matrix multiplication.
Notice that l identifies the total space of the associated bundle with fibre
Rk with the submanifold of Gk(R

n)×Rn consisting of pairs ([X ], w) where
w ∈ [X ].)





5. Differential Forms with

Values in a Vector Space

In the following M denotes a differentiable manifold and V a finite dimen-
sional vector space. We shall consider differential forms with values in V ,
generalizing the usual real valued differential forms.

Definition 5.1. A differential form ω on M with values in V associates
to k differentiable vector fields X1, . . . , Xk on M a differentiable function

ω(X1, . . . , Xk):M −→ V

such that

(1) ω is multilinear and alternating.

(2) ω has the tensor property, ie.,

ω(X1, . . . , fXi, . . . , Xk) = fω(X1, . . . , Xk)

for all vector fields X1, . . . , Xk on M , f ∈ C∞(M) and i = 1, . . . , k.

Remark. Alternatively ω is defined as a family ωx, x ∈ M of k-linear
alternating maps

ωx:Tx(M)× · · · × Tx(M) −→ V

such that for all k-tuples of differentiable vector fields X1, . . . , Xk the map-
ping

x 7−→ ωx(X1(x), . . . , Xk(x))

is differentiable.

39
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Remark. If we choose a basis {e1, . . . , en} for V then we can write ω
uniquely in the form

ω = ω1e1 + · · ·+ ωnen

where ω1, . . . , ωn are usual differential forms on M . Hence relative to a
choice of basis {e1, . . . , en}, there is a 1-1 correspondence between dif-
ferential forms with values in V and n-tuples of usual differential forms
{ω1, . . . , ωn}. Note that we tacitly did so already in the introduction in the
case of V = Rn or V = M(n,R).

Notation. The set of differential k-forms on M with values in V is denoted
by Ωk(M,V ). For V = R we have Ωk(M) = Ωk(M,R).

Similar to the usual case we have an exterior differential

d: Ωk(M,V ) −→ Ωk+1(M,V ).

Relative to a choice of basis {e1, . . . , en} for V it is just defined for ω =
ω1e1 + · · ·+ ωnen by

dω = (dω1)e1 + · · ·+ (dωn)en

and it is easy to see that this equation is independent of basis. Furthermore
we have the usual identities

d(dω) = 0, for all ω ∈ Ωk(M,V ), k ∈ N,

(dω)(X1, . . . , Xk+1)

=

k+1∑

i=1

(−1)i+1Xiω(X1, . . . , X̂iXi , . . . , Xk+1)

+
∑

i<j

(−1)i+jω([Xi, Xj ], . . . , X̂iXi , . . . , X̂jXj , . . . , Xk+1)

(5.1)

for all differentiable vector fieldsX1, . . . , Xk+1. These formulas follow easily
from the corresponding ones for usual differential forms.

In order to generalize the wedge product of two differential forms we
need the notion of the tensor product V ⊗ W of two finite dimensional
vector spaces V and W . First let Hom2(V ×W,R) denote the vector space
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of bilinear maps V ×W −→ R and then define V ⊗W as the dual vector
space

V ⊗W = Hom(Hom2(V ×W,R),R).

For v ∈ V and w ∈W we define v ⊗ w ∈ V ⊗W by

〈ϕ, v ⊗ w〉 = ϕ(v, w), ϕ ∈ Hom2(V ×W,R).

We now have the following proposition.

Proposition 5.2.

(1) The mapping ⊗:V ×W −→ V ⊗W given by (v, w) 7−→ v⊗w is bilinear.

(2) There is a bijection for any vector space U

Hom(V ⊗W,U) −∼=−→ Hom2(V ×W,U)

given by ϕ 7−→ ϕ ◦ ⊗.

(3) V ⊗ W is generated by the set of vectors of the form v ⊗ w, where
v ∈ V and w ∈W .

(4) If {e1, . . . , en} and {f1, . . . , fm} are bases for V resp. W then {ei⊗fj}
is a basis for V ⊗W . In particular

dim(V ⊗W ) = dim(V ) · dim(W ).

Exercise 5.3. Prove Proposition 5.2.

For ω1 ∈ Ωk(M,V ) and ω2 ∈ Ωl(M,W ) we can now define the wedge
product ω1 ∧ ω2 ∈ Ωl+k(M,V ⊗W ) by the usual formula

(ω1 ∧ ω2)(X1, . . . , Xk+l)

=
∑

σ

sign(σ)ω1(Xσ(1), . . . , Xσ(k))⊗ ω2(Xσ(k+1), . . . , Xσ(k+l))

where σ runs over all (k, l)-shuffles of 1, . . . , k + l. As usual one has the
formulas

ω1 ∧ (ω2 ∧ ω3) = (ω1 ∧ ω2) ∧ ω3,
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for all ω1 ∈ Ωk(M,U), ω2 ∈ Ωl(M,V ), ω3 ∈ Ωm(M,W ),

d(ω1 ∧ ω2) = (dω1) ∧ ω2 + (−1)kω1 ∧ (dω2)

for all ω1 ∈ Ωk(M,U), ω2 ∈ Ωl(M,W ). Furthermore for a linear map-
ping P :V −→W there is an induced mapping P : Ωk(M,V ) −→ Ωk(M,W )
defined by

(Pω)(X1, . . . , Xk) = P ◦ ω(X1, . . . , Xk)

and it is easy to see that

d(Pω) = P (dω), ω ∈ Ωk(M,V ).

In particular let T :V ⊗ W −→ W ⊗ V be the linear mapping given by
T (v ⊗ w) = w ⊗ v. Then one has

ω2 ∧ ω1 = (−1)klT (ω1 ∧ ω2) (5.2)

for all ω1 ∈ Ωk(M,V ), ω2 ∈ Ωl(M,W ). Finally for f :M −→ N a differ-
entiable mapping of differentiable manifolds we get as usual an induced
mapping f∗: Ωk(N,V ) −→ Ωk(M,V ), where for ω ∈ Ωk(N,V ), f∗(ω) is
defined pointwise by

f∗(ω)x(X1, . . . , Xk) = ωf(x)(f∗(X1), . . . , f∗(Xk))

for X1, . . . , Xk ∈ Tx(M). Then one also has the formulas

f∗(ω1 ∧ ω2) = (f∗ω1) ∧ (f∗ω2),

d(f∗(ω)) = f∗(dω),

f∗(P (ω)) = P (f∗(ω))

for P :V −→W a linear mapping and for all ω ∈ Ωk(N,V ), ω1 ∈ Ωk(N,V )
and ω2 ∈ Ωl(N,W ).

Exercise 5.4. Prove all unproven statements in the above.
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G-bundles

We now come to our main topic which, as we shall se later, generalizes the
differential systems considered in the introduction. This is the notion of a
connection.

In general we consider a Lie group G with Lie algebra g = TeG, and
we let Ad :G −→ GL(g) be the adjoint representation, i.e., for g ∈ G Ad(g)
is the differential at the identity element e of the mapping x 7−→ gxg−1,
x ∈ G.

Let (E, π,M) be a principal G-bundle. For a fixed x ∈ E the mapping
G −→ E given by g 7−→ xg, g ∈ G, induces an injective map vx: g −→ TxE
and the quotient space by the image of vx is mapped isomorphically onto
Tπ(x)M by the differential π∗ of π. That is, we have an exact sequence of
vectorspaces

0 g TxE Tπ(x)M 0
vx π∗

The vectors in vx(g) ⊆ TxE are called vertical tangent vectors of E and
we want to choose a complementary subspace Hx ⊆ TxE of horizontal
vectors, i.e., Hx is mapped isomorphically onto Tπ(x)M by π∗. This choice
is equivalent to a choice of linear mapping ωx:TxE −→ g, such that

ωx ◦ vx = idg (6.1)

and such that Hx = kerωx. Furthermore we shall require ωx to vary dif-
ferentially, i.e., {ωx | x ∈ E} defines a differential 1-form with values in g,
hence, ω ∈ Ω1(E, g).

Example 6.1. Consider the trivial bundle E = M ×G, π:M ×G −→M
the natural projection. We define ωMC ∈ Ω1(E, g) as follows:

(ωMC)(p,g) = (Lg−1 ◦ π2)∗, p ∈M, g ∈ G (6.2)

43
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where π2:M × G −→ G is the projection onto the second factor and
Lg−1 :G −→ G is left translation by g−1. Let us show that ωMC ∈ Ω1(E, g),
that is, we shall show that ωMC is differentiable. First notice that ωMC =
π∗

2(ω0) where ω0 ∈ Ω1(G, g) is defined by

(ω0)g = (Lg−1)∗. (6.3)

Hence it suffices to show that ω0 is differentiable. For this notice that if
X ∈ g = TeG and X̃X is the corresponding left invariant vector field then

ω0(X̃X ) = X

is constant and hence differentiable. Since every differentiable vector field
Y on G is a linear combination of left invariant ones with differentiable
coefficients it follows that ω0(Y ) is differentiable, hence ω0 is differentiable.
Furthermore ωMC satisfies (6.1): In fact for x = (p, g), vx is the differential
of the map G −→ M × G given by a 7−→ (p, ga), an hence (ωMC)x ◦ vx =
id∗ = id.

Remark. The form ω0 on G is called the Maurer-Cartan form. For G =
GL(n,R) it is just the form

ω0 = g−1dg, g ∈ G.

The form ωMC in example 6.1 satisfies another identity: For g ∈ G
let Rg:E −→ E denote the right multiplication by g, that is Rg(x) = xg,
x ∈ E. In the case E = M ×G we just have

Rg(p, a) = (p, ag) p ∈M, a ∈ G.

Lemma 6.2. In E = M ×G the form ωMC defined by (6.2) satifies

R∗
gωMC = Ad(g−1) ◦ ωMC, for all g ∈ G, (6.4)

where Ad(g−1)◦: Ω1(E, g) −→ Ω1(E, g) is induced by the linear map

Ad(g−1): g −→ g.

Proof. Since ωMC = π∗
2ω0, for ω0 given by (6.3), and since

R∗
gωMC = R∗

g ◦ π∗
2ω0 = π∗

2 ◦R∗
gω0
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it suffices to prove (6.4) for ω = ω0 on G. But here we have for a ∈ G:

R∗
g(ω)a = ωag ◦ (Rg)∗

= (L(ag)−1)∗ ◦ (Rg)∗

= (Lg−1)∗ ◦ (La−1)∗ ◦ (Rg)∗

= Ad(g−1) ◦ (La−1)∗

= Ad(g−1) ◦ ωa,
completing the proof.

With this as motivation we now make the following definition.

Definition 6.3. A connection in a principal G-bundle (E, π,M) is a 1-
form ω ∈ Ω1(E, g) satisfying

(1) ωx ◦ vx = id where vx: g −→ TxE is the differential of the mapping
g 7−→ xg.

(2) R∗
gω = Ad(g−1) ◦ ω, for all g ∈ G, where Rg:E −→ E is given by

Rg(x) = xg.

There is a more geometric formulation of (2): For a 1-form ω ∈ Ω1(E, g)
satisfying (1) in Definition 6.3 let Hx ⊆ TxE, x ∈ E, be the subspace

Hx = kerωx.

Then as noted above π∗:Hx −→ Tπ(x)M is an isomorphism. Therefore
Hx ⊆ TxE is called the horizontal subspace at x given by ω, and a vector
in Hx is called a horizontal tangent vector in E.

Proposition 6.4. For ω ∈ Ω1(E, g) satisfying definition 6.3 (1), the re-
quirement (2) is equivalent to

(2′) (Rg)∗Hx = Hxg, for all x ∈ E and g ∈ G.

That is, the horizontal vector spaces are permuted by the right action
of G on TE.

Proof. (2) ⇒ (2′). If X ∈ Hx, then we obtain

ωxg(Rg∗X) = (R∗
gω)(X) = Ad(g−1)(ω(X)) = 0;
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hence Rg∗X ∈ Hxg.

(2′) ⇒ (2). To prove (2) notice that both sides are zero when evaluated on
horizontal vectors. Hence it is enough the verify (2) when evaluated on a
vertical vector vx(X), X ∈ g. But for g ∈ G we have

Rg∗ ◦ vx = vxg ◦Ad(g−1)

since both sides are the differential of the mapping G −→ E given by

a 7−→ xag = xg(g−1ag).

Hence by (1)

R∗
g(ω)(vx(X)) = ωxg(vxg ◦Ad(g−1)(X)) = Ad(g−1)(X),

completing the proof.

Remark. By Lemma 6.2 the form ωMC ∈ Ω1(M×G) defined in example 6.1
is a connection inM×G. This is often called the Maurer-Cartan connection,
the trivial connection or the flat connection. Notice that in this case the
horizontal subspace at x = (p, g) is the tangent space to the submanifold
M × {g} ⊆M ×G.

Proposition 6.5. (1) Let (f̄f , f): (E′, π′,M ′) −→ (E, π,M) be a bundle
map of principal G-bundles and let ω ∈ Ω1(E, g) be a connection in E.
Then f̄f

∗
ω is a connection in E′.

(2) In particular if ϕ:F −→ E is an isomorphism of principal G-bundles
over M and ω ∈ Ω1(E, g) is a connection in E then ωϕ = ϕ∗ω is a con-
nection on F .

(3) Suppose ω1, . . . , ωk ∈ Ω1(E, g) are connections on the bundle (E, π,M)
and λ1, . . . , λk ∈ C∞(M) satisfy

∑
i λi = 1 then the sum

ω =
∑

i

λiωi

is also a connection on E.

Exercise 6.6. Prove Proposition 6.5.

Corollary 6.7. Every principal G-bundle has a connection.
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Proof. Let U = {Uα}α∈Σ be a covering of M with trivializations

ϕα:E|Uα −
∼=−→ Uα ×G.

By Proposition 6.5 the Maurer-Cartan connection in Uα ×G pulls back to
a connection ωα in E|Uα . Now choose a partition of unity {λα}α∈Σ and put

ω =
∑

α

λαωα.

Then ω is a well-defined 1-form on E, and, by Proposition 6.5 (3), it satisfies
the requirements for a connection (since these are local conditions).

Next let us look at a local description of a connection, i.e., let us look
at a general connection ω in a product bundle:

Proposition 6.8. Let E = M × G be the product bundle with projection
π:E −→M , and let i:M −→ E be the inclusion i(p) = (p, e).

(1) The induced map i∗: Ω1(E, g) −→ Ω1(M, g) gives a 1-1 correspondence
between connections in E and g-valued 1-forms on M .

(2) Let ϕ:E −→ E be an isomorphism of the form ϕ(p, a) = (p, g(p)a) for
g:M −→ G a differentiable map, and let ω ∈ Ω1(E, g) be a connection in
E with i∗ω = A ∈ Ω1(M, g). Then ωϕ = ϕ∗ω satisfies

i∗ωϕ = Aϕ = Ad(g−1) ◦A+ g∗(ω0) (6.5)

where ω0 ∈ Ω1(G, g) is the Maurer-Cartan form on G.

Proof. (1) First notice that given A ∈ Ω1(M, g) there is a unique form

ÃA ∈ Ω1(E, g) with i∗ÃA = A such that

(i) ÃA(X) = 0 for X ∈ TxE a vertical vector.

(ii) R∗
gÃA = Ad(g−1) ◦ ÃA for all g ∈ G.

In fact, for x = (p, e) ÃA is determined by A and (i) since

TxE = ker(π∗)⊕ i∗(TpM),

and for y = (p, g) = Rg(x), (ii) implies that

ÃAy = Ad(g−1) ◦ ÃAx
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which proves uniqueness. On the other hand the form ÃA given by

ÃA(p,g) = Ad(g−1) ◦Ap ◦ π∗ (6.6)

defines a form satisfying (i) and (ii). Now if ωMC denotes the Maurer-Cartan
connection om E then the correspondence

ÃA ←→ ωMC + ÃA

gives a 1-1 correspondence between 1-forms satisfying (i) and (ii), and the
set of connections in E.

(2) As above we write

ω = ωMC + ÃA

where A = i∗ω. Then

ωϕ = ϕ∗ωMC + ϕ∗ÃA

gives

Aϕ = i∗ωϕ = i∗ϕ∗ωMC + i∗ϕ∗ÃA

where ωMC = π∗
2ω0 with π2:M ×G −→ G the projection. Now π2 ◦g ◦ i = g

so that

i∗ϕ∗ωMC = i∗ϕ∗π∗
2ω0 = g∗ω0.

Also by (6.6)

(i∗ϕ∗ÃA)p = ÃA(p,g(p)) ◦ (ϕ ◦ i)∗
= Ad(g−1) ◦Ap ◦ π∗ ◦ (ϕ ◦ i)∗
= Ad(g−1) ◦Ap

since π ◦ ϕ ◦ i = id.

Remark. Notice that for the Maurer-Cartan connection ωMC, A = i∗ωMC =
0.
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Corollary 6.9. Let (E, π,M) be a principal G-bundle and let U = {Uα}α∈Σ

be a covering af M with trivializations {ϕα}α∈Σ and transition functions
{gαβ}α,β∈Σ. Then there is a 1-1 correspondence between connections in E
and collections of 1-forms {Aα ∈ Ω1(Uα, g)}α∈Σ satisfying

Aβ = Ad(g−1
αβ ) ◦Aα + g∗αβω0 (6.7)

on Uα ∩ Uβ.

Proof. If ω is a connection in E the trivialization ϕα:E|Uα −→ Uα × G
defines a connection in Uα ×G by

ωα = (ϕ−1
α )∗ω.

For β ∈ Σ we then have over Uα ∩ Uβ that

ωβ = ψ∗
αβωα (6.8)

where ψαβ : (Uα ∩ Uβ) × G −→ (Uα ∩ Uβ) × G is the isomorphism ψαβ =
ϕα ◦ ϕ−1

β , so that

ψαβ(p, a) = (p, gαβ(p)a).

Hence (6.7) follows from (6.8) and Proposition 6.8, (2).

On the other hand suppose {Aα}α∈Σ is given. Then there are corre-
sponding connections {ωα} in Uα × G as in Proposition 6.8, (1) and by
Proposition 6.8, (2), (6.7) implies (6.8) or equivalently

ϕ∗
αωα = ϕ∗

βωβ

on E|Uα∩Uβ
. Hence we get a well-defined connection ω in E such that the

restriction to E|Uα is ϕ∗
αωα.

Notation. Often a connection is identified with the collection {Aα}α∈Σ of
local connection forms. It is then denoted by A.

In the proof of Proposition 6.8 we encountered two important condi-
tions ((i) and (ii)) on differential 1-forms on the total space E of a principal
G-bundle (E, π,M). Let us state these for general k-forms on E with values
in a finite dimensional vectorspace V .
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Definition 6.10. (1) A differential k-form ω ∈ Ωk(E, V ) is called horizon-
tal if ωX(X1, . . . , Xk) = 0 for all k-tuples of tangent vectors X1, . . . , Xk ∈
TxE for which at least one is vertical.

(2) Let ρ:G −→ GL(V ) be a representation of G on V . Then ω ∈ Ωk(E, V )
is called ρ-equivariant if

R∗
gω = ρ(g−1) ◦ ω, for all g ∈ G.

(3) if ρ in (2) is the trivial representation then a ρ-equivariant form is
called invariant.

(4) If ω is both invariant and horizontal then it is called basic.

Proposition 6.11. Let (E, π,M) be a principal G-bundle and let U =
{Uα}α∈Σ be a covering of M with trivializations {ϕα}α∈Σ and transition
functions {gαβ}α,β∈Σ. Let ρ:G −→ GL(V ) be a representation. Then there
is a 1-1 correpondence between horizontal ρ-equivariant k-forms ω̃ω on E
and collections of k-forms {ωα ∈ Ωk(Uα, V )}α∈Σ satisfying

ωβ = ρ(gβα) ◦ ωα on Uα ∩ Uβ. (6.9)

Here ωα is the pull-back of ω by the local section Uα −→ E|Uα sending
p ∈ Uα to ϕ−1

α (p, e).

Proof. This is proved exactly as in the proof of Corollary 6.9 using the
following lemma. The details are left to the reader.

Lemma 6.12. Let E = M × G be the product bundle with projection
π:E −→ M , and let i:M −→ E be the inclusion i(p) = (p, e). Let ρ:G −→
GL(V ) be a representation.

(1) The induced map i∗: Ωk(E, V ) −→ Ωk(M,V ) gives a 1-1 correspon-
dence between horizontal ρ-equivariant k-forms on E and all V -valued k-
forms on M .

(2) Let ϕ:E −→ E be a isomorphism of the form ϕ(p, a) = (p, g(p)a)
for g:M −→ G a differentiable map. If ω̃ω ∈ Ωk(E, V ) is horizontal and
equivariant and if we put ω = i∗ω̃ω then

i∗(ϕ∗ω̃ω) = ρ(g−1) ◦ ω. (6.10)
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Proof. Again the proof is similar to the proof of Proposition 6.8 and the
details are left to the reader. We only note that given ω ∈ Ωk(M,V ) the
corresponding ρ-equivariant horizontal k-form ω̃ω on E is given by

ω̃ω (p,g)(X1, . . . , Xk) = ρ(g−1)(ωp(π∗X1, . . . , π∗Xk)) (6.11)

for X1, . . . , Xk ∈ T(p,g)(E), p ∈M , g ∈ G.

Corollary 6.13. Let (E, π,M) be any principal G-bundle and let V be a
vector space. Then π∗: Ωk(M,V ) −→ Ωk(E, V ) gives an isomorphism onto
the basic forms on E.

Proof. This follows immediately from Proposition 6.11 since the collection
{ωα}α∈Σ in that case defines a well-defined form ω onM and since by (6.11)
the corresponding horizontal invariant form ω̃ω on E is just the pull-back
by π.

Remark. Let ρ:G −→ GL(V ) be any representation, and for (E, π,M) a
principal G-bundle let (EV , πV ,M) be the associated vector bundle, i.e.,
the associated fibre bundle with fibre V using the left action of G on V
given by gv = ρ(g)v, g ∈ G, v ∈ V (cf. Exercise 3.11). Then Proposi-
tion 6.11 states in particular for k = 0 that there is a 1-1 correspondence
between the set of ρ-equivariant functions s̃s:E −→ V and the set of sections
s of the vectorbundle EV . This set is often denoted Γ(M,EV ) (cf. Propo-
sition 2.11). We shall denote the set of ρ-equivariant horizontal k-forms
on E by Ωk(M,EV ), so that in particular Ω0(M,EV ) = Γ(M,EV ). Notice
that Ωk(M,EV ) is a real vector space.

Corollary 6.14. Let (E, π,M) be a principal G-bundle. Then the set of
connections in E is an affine space for the vector space Ω1(M,Eg). That
is, given one connection ω0 any other connection ω1 has the form ω0 + A
for some A ∈ Ω1(M,Eg).

Notation. The set of connections in (E, π,M) is denoted A(E) or just A
when E is clear from the context.

Definition 6.15. (1) A gauge transformation ϕ of the principal G-bundle
(E, π,M) is an automorphism of E, that is, a bundle isomorphism ϕ:E −→
E.
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(2) Two connections ω1, ω2 ∈ A(E) are called gauge-equivalent if there
exists a gauge transformation ϕ such that

ω2 = ωϕ1 = ϕ∗ω1. (6.12)

Remark. Notice that the set of gauge transformations G = G(E) is a group
and that

(ωϕ)ψ = ωϕ◦ψ, for all ϕ, ψ ∈ G,
ωid = ω.

(6.13)

That is, G acts from the right on the set A and the set of gauge equivalence
classes is just the orbit space A/G.

Exercise 6.16. (1) Show that there is a 1-1 correspondence between G
and each of the following 3 sets.

(1.a) The set of differentiable maps σ̃σ :E −→ G satisfying

σ̃σ(xg) = g−1σ̃σ(x)g, x ∈ E, g ∈ G.

(1.b) The set of sections of the fibre bundle (EiG, πiG,M) associated to
the action of G on itself by inner conjugation (that is, g(a) = gag−1).

(1.c) Given {Uα}α∈Σ a covering of M and trivializations with transition
functions {gαβ}α,β∈Σ, the set of families of differentiable maps {σα:Uα −→
G}α∈Σ satisfying

gαβσβ = σαgαβ on Uα ∩ Uβ. (6.14)

(2) In the above notation let ϕ ∈ G correspond to the family {σα}α∈Σ

and let ω be a connection in E with corresponding local connection forms
{Aα}α∈Σ. Show that ωϕ has local connection forms {Aσα

α }α∈Σ where

Aσα
α = Ad(σ−1

α ) ◦Aα + σ∗
αω0 (6.15)

an ω0 is the Maurer-Cartan form.

Finally let us consider extension and reduction of connections.
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Definition 6.17. Let α:H −→ G be a Lie group homomorphism and let
F be an H-bundle and ϕ:F −→ E an extension of F to G. Furthermore let
ωF be a connection in F and ωE be a connection in E. Then ωE is called
an extension of ωF (and ωF a reduction of ωE) if

ϕ∗ωE = α∗ ◦ ωF . (6.16)

Exercise 6.18. Let α:H −→ G and ϕ:F −→ E be as above.

(1) Show that if ωF is a connection in F and ωE is an extension in E then
ϕ∗ maps the horizontal vector spaces in F isomorphically to the horizontal
vector spaces in E.

(2) Show that if ωF is a connection in F then there is a unique extension
ωE to E.

(3) Let {Uα}α∈Σ be a covering of M with trivializations of F respectively
of E such that the transition functions are {hαβ}α,β∈Σ for F respectively
{α◦hαβ}α,β∈Σ for E. Show that if ωF has local connections forms {Aα}α∈Σ

then the extension ωE has local connection forms {α∗ ◦Aα}α∈Σ.

Remark. In particular if H is a Lie subgroup and α is the inclusion then
ωF and ωE have the same local connection form.





7. The Curvature Form

As before let G be a Lie group with Lie algebra g and let (E, π,M) be a
principal G-bundle with connection ω. We will now define the curvature
form generalizing the form FA in (1.7). Since ω ∈ Ω1(E, g) we have ω∧ω ∈
Ω2(E, g ⊗ g) and we define [ω, ω] ∈ Ω2(E, g) to be the image of ω ∧ ω by
the linear mapping

[−,−]: g⊗ g −→ g

determined by the Lie bracket, i.e. the mapping sending X ⊗ Y to [X,Y ],
X,Y ∈ g.

Definition 7.1. The curvature form Fω ∈ Ω2(E, g) for the connection ω
is defined by the equation (the structural equation)

dω = − 1
2

[ω, ω] + Fω . (7.1)

In the above notation we have the following theorem.

Theorem 7.2. (1) If E = M × G and ω = ωMC is the Maurer-Cartan
connection then FωMC

= 0, that is,

dωMC = − 1
2

[ωMC, ωMC]. (7.2)

(2) In general Fω is horizontal and Ad-equivariant, i.e. defines a 2-form
(also denoted) Fω ∈ Ω2(M,Eg).

(3) (The Bianchi identity) Furthermore

dFω = [Fω , ω]. (7.3)

In particular dFω vanishes on triples of horizontal vectors.

(4) Suppose {Uα}α∈Σ is a covering of M with trivializations {ϕα}α∈Σ of
E|Uα and transition functions {gαβ}αβ∈Σ. Suppose ω has local connection
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forms {Aα}α∈Σ. Then the curvature form Fω corresponds to the family
FAα ∈ Ω2(Uα, g) given by

FAα = dAα + 1
2

[Aα, Aα]. (7.4)

Notation. We will often denote the connection by A = {Aα}α∈Σ and in
that case identify the curvature form with the collection FA = {FAα}α∈Σ

given by (7.4).

For the proof of Theorem 7.2 we need a few preparations. First note
that given A ∈ g there is an associated vector field A∗ on E defined by
A∗
x = vx(A), x ∈ E. Here as usual vx is the differential of the map G −→ E

given by g 7−→ xg, g ∈ G. Notice that for A,B ∈ g we have

[A,B]∗ = [A∗, B∗]. (7.5)

To see this we observe that it is enough to show (7.5) locally, and hence we
can assume that E is a product bundle E = M ×G. If π1:M × G −→ M
and π2:M×G −→ G are the two projections then for A ∈ g, the vector field
A∗ is the unique vector field on E which is π1-related to the zero vector
field on M and is π2-related to the left invariant vector field ÃA on G. Since
[A,B ]̃ = [ÃA, B̃B ] for A,B ∈ g it follows that [A∗, B∗] is again π1-related to

zero and π2-related to [A,B ]̃ , hence (7.5) follows.

Next we observe that the vector field A∗ generates a 1-parameter group
of diffeomorphisms of E given by t 7−→ Rgt , t ∈ R, with gt = exp(tA). That
is, we claim that for each x ∈ E, the curve t 7−→ xgt, t ∈ R, is an integral
curve for the vector field A∗, i.e. it satisfies the differential equation

∂

∂t
Rgt

(x) = A∗
Rgt (x). (7.6)

For t = 0 this follows from the definition of A∗ and hence we have for t
arbitrary:

∂

∂t
Rgt

(x) =
∂

∂s
Rgs+t

(x)|s=0 =
∂

∂s
Rgs

(Rgt
(x))|s=0 = A∗

Rgt (x).

We now have the following lemma.
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Lemma 7.3. Let Y be a differentiable vector field on E and let A ∈ g as
above. Then

[A∗, Y ]x = lim
t−→0

Yx − Y gt
x

t

where Y gt
x = (Rgt)∗(YR−1

gt
(x)) ∈ TxE.

Proof. (For a more general result see e.g. [S, ch.V, Thm. 10] or [W, Propo-
sition 2.25 (b)].)

Since E is locally trivial we can take E = U ×G where U ⊆M has a
local coordinate system (x1, . . . , xn). Also choose a basis A1, . . . , Ak for g.
Then every vector field Y on E has the form

Y =

n∑

i=1

ai
∂

∂xi
+

k∑

j=1

bjA∗
j

where ai, bj ∈ C∞(E). Also, since A∗ is constant in the xi-direction we
have [A∗, ∂/∂xi] = 0, i = 1, . . . , n, so that

[A∗, Y ] =

n∑

i=1

A∗(ai)
∂

∂xi
+

k∑

j=1

(A∗(bj)A∗
j + bj[A,Aj ]

∗). (7.7)

On the other hand

Yx − Y gt
x =

n∑

i=1

(ai(x)− ai(xg−1
t ))

∂

∂xi
+

+
k∑

j=1

((bj(x)A∗
j (x)− bj(xg−1

t )A∗
j (x))) +

+

k∑

j=1

((bj(xg−1
t )A∗

j (x) − bj(xg−1
t )Rgt∗A

∗
j (xg

−1
t ))).
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Hence, using (7.6), we have

lim
t−→0

Yx − Y gt
x

t
=

n∑

i=1

A∗
x(a

i)
∂

∂xi
+

k∑

j=1

A∗(bj)A∗
j (x) +

+

k∑

j=1

bj(x) lim
t−→0

1

t
(A∗

j (x)−Rgt∗A
∗
j (xg

−1
t )).

(7.8)

Here

Rgt∗A
∗
j (xg

−1
t ) = vx(Ad(g−1

t )(Aj));

hence

lim
t−→0

1

t
(A∗

j (x)−Rgt∗A
∗
j (xg

−1
t )) = vx(Bj)

with

Bj = lim
t−→0

1

t
(Aj −Ad(g−1

t )(A)) = − ad(−A)(Aj) = [A,Aj ].

Inserting this in (7.8) and comparing with (7.7) we obtain the formula in
Lemma 7.3

Proof of Theorem 7.2. First notice that (1) follows from (2). In fact, as
in the proof of Lemma 6.2, ωMC = π∗

2ω0, where ω0 is the Maurer-Cartan
connection on the bundle G −→ pt, that is, FωMC

= π∗
2Fω0

. But if Fω0
is

horizontal then it is clearly 0, and hence also FωMC
= 0.

(2) Since ω is Ad-equivariant also Fω = dω + 1
2 [ω, ω] is Ad-equivariant.

We shall just show that it is horizontal, that is, for X,Y ∈ TxE we must
show that if X is vertical then

(dω)(X,Y ) = − 1
2

[ω, ω](X,Y ). (7.9)

Since

[ω, ω](X,Y ) = [ω(X), ω(Y )]− [ω(Y ), ω(X)] = 2[ω(X), ω(Y )]

(7.9) is equivalent to

(dω)(X,Y ) = −[ω(X), ω(Y )]. (7.10)
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We have two cases: (1) Y is vertical; (2) Y is horizontal.

Case (1). Y is vertical. To show (7.10) for X and Y vertical we now
take X = A∗

x, Y = B∗
x for A,B ∈ g and compute using (5.1):

(dω)(A∗, B∗) = A∗(ω(B∗))−B∗(ω(A∗))− ω([A∗, B∗])

= A∗(B)−B∗(A)− ω([A,B]∗)

= −[A,B]

= −[ω(A∗), ω(B∗)]

(7.11)

which is (7.10) in this case.

Case (2). Y is horizontal. Again we take X = A∗
x for A∗ the vector

field associated to A ∈ g as above. Also we extend Y to a vector field
of horizontal vectors (also denoted by Y ). This is possible since for an
arbitrary vector field Z on E extending Y the vector field defined by

Yy = Zy − vy ◦ ωy(Zy), y ∈ E

is horizontal. For the proof of (7.10) we thus have to prove for A ∈ g and
Y a horizontal vector field:

(dω)(A∗, Y ) = 0. (7.12)

Since ω(A∗) = A is constant and since ω(Y ) = 0 we get using (5.1):

(dω)(A∗, Y ) = −ω([A∗, Y ]). (7.13)

Since Y is horizontal we get

ω(Y gt
x ) = (R∗

gt
ω)(YR−1

gt
(x)) = Ad(g−1

t ) ◦ ω(YR−1
gt

(x)) = 0.

Hence

ω([A∗, Yx]) = lim
t−→0

ω

(
Yx − Y gt

x

t

)
= 0,

and by (7.13) we conclude

(dω)(A∗, Y ) = 0
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which proves (7.12) and hence (7.10) in case (2). This finishes the proof of
Theorem 7.2 (2) and hence also of (1).

(3) Let us differentiate the equation (7.1):

0 = − 1
2

[dω, ω] + 1
2

[ω, dω] + dFω

= −[dω, ω] + dFω

= 1
2

[[ω, ω], ω]− [Fω, ω] + dFω

(7.14)

where we have used (5.2) and (7.1). But

[[ω, ω], ω] = 0 (7.15)

since

[[ω, ω], ω](X,Y, Z)

= [[ω, ω](X,Y ), ω(Z)]− [[ω, ω](X,Z), ω(Y )] +

+ [[ω, ω](Y, Z), ω(X)]

= 2([[ω(X), ω(Y )], ω(Z)]− [[ω(X), ω(Z)], ω(Y )] +

+ [[ω(Y ), ω(Z)], ω(X)])

= 0,

by the Jacobi identity. By (7.14) and (7.15) we clearly have proved (7.3).

(4) This follows directly from (7.1)

Remark. Let X and Y be two horizontal vector fields on E. Then by (7.1)
we get

Fω(X,Y ) = −ω([X,Y ]). (7.16)

Remark. Suppose (f, f ): (E′, π′,M ′) −→ (E, π,M) is bundle map and ω

is a connection in E with curvature form Fω . Then f
∗
ω is a connection

in E′ with curvature form f
∗
Fω. In particular if ϕ:E′ −→ E is a bundle

isomorphism and ω connection in E then ωϕ = ϕ∗ω has curvature Fωϕ =
ϕ∗Fω.

Definition 7.4. A connection ω in a principal G-bundle is called flat if
the curvature form vanishes identically, that is if Fω ≡ 0.
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Theorem 7.5. Let (E, π,M) be a principal G-bundle with connection ω.
Then ω is flat if and only if around every point in M there is a neighborhood
U with a trivialization ϕ:π−1(U) −→ U×G such that ω restricted to E|U is
induced by the Maurer-Cartan connection in U×G, that is ω|E|U = ϕ∗ωMC.

Proof. (⇐) This follows clearly from Theorem 7.2 and the above remark.

(⇒) Assume Fω ≡ 0. For x ∈ E letHx ⊆ TxE be the subspace of horizontal
vectors, that is Hx = kerωx, x ∈ E. This defines a distribution which is
integrable; in fact, if X,Y are horizontal vector fields then by (7.16) we
have

0 = Fω(X,Y ) = −ω([X,Y ])

so that [X,Y ] is again a horizontal vector field. By the Frobenius Integra-
bility Theorem there is a foliation F = {Fα}α∈I of E such that for each
x ∈ E Hx is the tangent space to the leaf through x. For g ∈ G the diffeo-
morphism Rg:E −→ E satisfies Rg∗Hx = Hxg, ∀x ∈ E, by Proposition 6.4;
hence Rg maps the leaf through x diffeomorphically to the leaf through
xg. Now fix p ∈ M , x ∈ π−1(p) and let Fα ⊆ E be the leaf through x.
Since TxFα = Hx and π∗:Hx −→ TpM is an isomorphism we can apply the
Inverse Function Theorem and we can choose neighborhoods U of p and
V ⊆ Fα of x such that π:V −→ U is a diffeomorphism. The inverse mapping
s:U −→ V ⊆ π−1(U) defines a differentiable section in the bundle E|U and
hence a trivialization ϕ = ψ−1:π−1(U) −→ U ×G whose inverse is defined
by ψ(q, g) = s(q)g, q ∈ U , g ∈ G. The fact that ϕ is differentiable follows
from the Inverse Function Theorem. Now let ω′ be the connection in E|U
induced by the Maurer-Cartan connection in U ×G, that is ω′ = ϕ∗ωMC.
By the remark following Proposition 6.4 the horizontal vector space at a
point of the form yg, y ∈ V , g ∈ G is

(Rg)∗(Ty(V )) = (Rg)∗Hy = Hyg

which is also the horizontal vector space for ω. Hence ω|E|U and ω′ have
the same horizontal subspaces and therefore they agree.

Corollary 7.6. Let (E, π,M) be a principal G-bundle. Then the following
are equivalent:

(1) E has a flat connection.
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(2) There is an open covering {Uα}α∈Σ and trivializations {ϕα}α∈Σ such
that all transition functions gαβ :Uα ∩ Uβ −→ G are constant.

Proof. (2) ⇒ (1). Since gαβ is constant g∗αβω0 = 0. Hence the collection

{Aα ∈ Ω1(Uα, g) | Aα ≡ 0, α ∈ Σ} satisfies (6.7), and thus defines a
connection ω in E by Corollary 6.9. For this Fω = 0 by Theorem 7.2 d)
since clearly FAα = 0, ∀α ∈ Σ.

(1) ⇒ (2). By Theorem 7.5 we can choose a covering {Uα}α∈Σ and trivial-
izations {ϕα}α∈Σ of M such that the given flat connection ω restricted to
E|Uα is induced by the Maurer-Cartan connection, ωMC in Uα×G, α ∈ Σ.
Furthermore we can arrange that all intersections are connected (e.g. by
choosing a Riemannian metric on M and choosing all Uα to be geodesically
convex sets). Now by construction the local connection forms {Aα}α∈Σ for
ω are all zero, hence by Corollary 6.9 we have g∗αβω0 = 0 on Uα∩Uβ where
ω0 is the Maurer-Cartan form on G. It follows that gαβ:Uα ∩Uβ −→ G has
zero differential and since Uα ∩ Uβ is connected gαβ is constant.

Exercise 7.7. Let (E, π,M) be a principal G-bundle and let {Uα}α∈Σ be
an open covering of M with trivializations {ϕα}α∈Σ and transition func-
tions {gαβ}α,β∈Σ. Let ϕ:E −→ E be a gauge transformation corresponding
to the family of differentiable maps σα:Uα −→ G satisfying (6.14). Let ω
be a connection in E with local connection forms {Aα}α∈Σ.

(1) Show that the curvature form Fωϕ for the connection ωϕ = ϕ∗ω is
given locally by

FAσα
α

= Ad(σα
−1) ◦ FAα , for all α ∈ Σ

where Fω is given locally by {FAα}α∈Σ.

(2) Let H ⊆ G be a Lie subgroup with Lie algebra h ⊆ g. Show that if
there is a reduction of E and ω to H then Fω satisfies the following: For
all x ∈ E there is a g ∈ G such that Ad(g)(h) contains the set {Fω(X,Y ) |
X,Y ∈ TxE}.
(3) The connection is called irreducible if for all x ∈ E, g is generated as
a Lie algebra by the set {Fω(X,Y ) | X,Y ∈ TxE}, i.e., is spanned by all
iterated Lie brackets of such elements. Show, that if G is connected, ω is
irreducible and if ϕ:E −→ E is a gauge transformation given by {σα}α∈Σ

as above then ωϕ = ω if and only if σα(p) ∈ Z(G), for all p ∈ Uα, α ∈ Σ,
where Z(G) is the center of G.



8. Linear Connections

Let us study in particular the case where G = GL(n,R). As usual the Lie
algebra is M(n,R), the set of n× n real matrices with Lie bracket

[A,B] = AB −BA, A,B ∈M(n,R), (8.1)

and the adjoint representation

Ad(g)(A) = gAg−1, A ∈M(n,R), g ∈ GL(n,R). (8.2)

Now consider an n-dimensional vector bundle V on a manifold M and
let E = F (V ) be the frame bundle. A connection in this is therefore a
1-form ω ∈ Ω1(E,M(n)), ie. a matrix of ordinary 1-forms

ω =




ω11 . . . ω1n

...
...

ωn1 . . . ωnn


, ωij ∈ Ω1(E).

Matrix multiplication defines a linear map

M(n)⊗M(n) −→M(n)

sending A⊗B 7−→ AB, and this induces a map

Ω2(E,M(n)⊗M(n)) −→ Ω2(E,M(n)).

The image of ω ∧ ω by this is also denoted ω ∧ ω; that is,

(ω ∧ ω)(X,Y ) = ω(X)ω(Y )− ω(Y )ω(X) (8.3)

and the components are given by

(ω ∧ ω)ij =
∑

k

ωik ∧ ωkj (8.4)
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It follows from (8.1) and (8.3) that

[ω, ω](X,Y ) = 2[ω(X), ω(Y )] = 2(ω ∧ ω)(X,Y ),

1
2

[ω, ω] = ω ∧ ω.
(8.5)

Hence the structural equation (7.1) becomes

dω = −ω ∧ ω + Fω, (8.6)

where Fω is a matrix of 2-forms on E, i.e.,

Fω =



F11 . . . F1n

...
...

Fn1 . . . Fnn


, Fij ∈ Ω2(E).

Given a covering {Uα}α∈Σ and local trivializations of V we get correspond-
ing local trivializations for E, and hence for each α the local connection
form Aα ∈ Ω1(Uα,M(n)) is just a matrix of one forms as in (1.4) and the
corresponding curvature form

FAα = Aα ∧Aα + dAα

is just the formula (1.7). We shall now interprete the connection and cur-
vature in terms of a differential operator on the bundle V .

First observe that there is a natural isomorphism of V with the vector
bundle ER

n associated with E via ι, the identity representation (cf. 3.10
and the remark following Corollary 6.13). This gives another interpretation
of Ωk(M,V ):

Lemma 8.1. Let ω̃ω ∈ Ωk(E,Rn) be a horizontal and ι-equivariant k-form
Then ω̃ω defines for each p ∈M a k-linear map ωp:TpM×· · ·×TpM −→ Vp,
which is differentiable in the following sense: For X1, . . . , Xk differentiable
vector fields on M ω(X1, . . . , Xk) gives a differentiable section of V .

Proof. Let π:E −→ M be the projection in the frame bundle for V and
for p ∈ M choose x ∈ E with π(x) = p. For X1, . . . , Xk ∈ TpM choose

X̃X 1, . . . , X̃X k ∈ TxE with π∗X̃X i = Xi, i = 1, . . . k, and put

ωp(X1, . . . , Xk) = x ◦ ω̃ωx(X̃X 1, . . . , X̃X k) (8.7)
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where we recall that x ∈ Iso(Rn, Vp). This is well-defined since ω̃ω is hor-

izontal and and since for g ∈ GL(n,R), Rg∗X̃X 1, . . . , Rg∗X̃X k ∈ TxgE also
maps to X1, . . . , Xk such that

xg(ω̃ωxg(Rg∗X̃X 1, . . . , Rg∗X̃X k)) = xg(R∗
gω̃ω)(X̃X 1, . . . , X̃X k)

= xg(g−1ω̃ω(X̃X 1, . . . , X̃X k))

= x(ω̃ω(X̃X 1, . . . , X̃X k)).

We leave it to the reader to check differentiability.

Remark. Conversely if ωp:TpM × · · · × TpM −→ Vp satifies the conditions
of the lemma then ω̃ω defined by (8.7) defines a horizontal and ι-equivariant
k-form on E. Hence Ωk(M,V ) is the set of such ω’s.

Now suppose ω ∈ Ω1(E,M(n)) is a connection. We shall construct a
differential operator called the covariant derivative

∇: Γ(M,V ) −→ Ω1(M,V ). (8.8)

For this consider s ∈ Γ(M,V ) and let s̃s:E −→ Rn be the corresponding

ι-equivariant map. Then we define ∇̃∇(s̃s) ∈ Ω1(E,Rn) by the formula

∇̃∇(s̃s) = ds̃s + ωs̃s, (8.9)

where the multiplikation is the usual matrix multiplikation of the matrix
ω and the column vector s̃s.

Proposition 8.2. For s ∈ Γ(M,V ) corresponding to the ι-equivariant

map s̃s:E −→ Rn, the 1-form ∇̃∇(s̃s) ∈ Ω1(E,Rn) is also ι-equivariant and
horizontal, hence defines a form ∇(s) ∈ Ω1(M,V ).

Proof. Let us first show ι-equivariance:

R∗
g∇̃∇(s̃s) = R∗

gds̃s +R∗
g(ω)(s̃s ◦Rg)

= d(s̃s ◦Rg) + (Ad(g−1) ◦ ω)(s̃s ◦Rg)
= d(g−1s̃s) + (g−1ωg)g−1s̃s

= g−1ds̃s + g−1ωs̃s

= g−1∇̃∇(s̃s).
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Next let us show that ∇̃∇(s̃s) is horizontal. For this we first show that for
x ∈ E we have

(ds̃s)(vxA) = −As̃s, A ∈M(n). (8.10)

In fact (ds̃s)◦vx is the differential of the map G −→ E sending g to s̃s(xg) =
g−1s̃s(x), hence (8.10) follows from the fact that the differential of g 7−→ g−1

is given by multiplication by −1. It follows that for A ∈M(n) we have

∇̃∇(s̃s)(vxA) = (ds̃s)(vxA) + ωx(vxA)s̃s(x)

= −As̃s(x) +As̃s(x)

= 0,

which proves the proposition.

Notation. By Lemma 8.1,∇(s) gives us for each p ∈M a linear map ∇(s)p:
TpM −→ Vp. For X ∈ TpM we shall write

∇X(s) = ∇(s)(X) ∈ Vp (8.11)

and this is called the covariant derivative of s in the direction X .

Proposition 8.3. The covariant derivative satifies

(1) ∇X+Y (s) = ∇X(s) +∇Y (s)

(2) ∇X(s+ s′) = ∇X(s) +∇X(s′)

(3) ∇λX(s) = ∇X(λs) = λ∇X(s)

(4) ∇X(fs) = X(f)s+ f(p)∇X(s)

for all X,Y ∈ TpM , s ∈ Γ(M,V ), λ ∈ R and f ∈ C∞(M).

Exercise 8.4. Prove Proposition 8.3.

Next let us express the curvature form of the connection ω on the frame
bundle E in terms of the covariant derivative ∇. First let us introduce the
notation

End(V ) = EM(n) (8.12)

for the vector bundle associated with the adjoint representation (8.2) of
GL(n,R) on M(n). This is justified by the following lemma.
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Lemma 8.5. There is a 1 − 1 correspondence between horizontal Ad-
equivariant k-forms Θ̃Θ ∈ Ωk(E,M(n)) and families of k-linear maps

Θp:TpM × · · · × TpM −→ End(V )p

which vary differentiably in the sense that k vector fields X1, . . . , Xk and
a section s ∈ Γ(M,V ) give rise to another differentiable section Θ(X1, . . .,
Xk)(s) given by

Θ(X1, . . . , Xk)(s)(p) = Θp(X1(p), . . . , Xk(p))(s(p)) (8.13)

Proof. This is analogous to the proof of Lemma 8.1 and the proof is left to
the reader. We only note that for x ∈ π−1(p) and X̃X 1, . . . , X̃X k ∈ TxE with

π∗X̃X i = Xi, i = 1, . . . , k, Θ̃Θ and Θ is related by

Θp(X1, . . . , Xk) = x ◦ Θ̃Θx(X̃X 1, . . . , X̃X k) ◦ x−1, (8.14)

where x ∈ Ep = Iso(Rn, Vp).

Proposition 8.6. Let F̃F ω ∈ Ω2(E,M(n)) be the curvature form for the
connection ω and let Fω ∈ Ω2(M,End(V )) be the corresponding 2-form as
in Lemma 8.5. Let ∇ denote the covariant derivation associated to ω. Then
for X,Y differentiable vector fields on M and s a section of V we have

Fω(X,Y )(s) = (∇X∇Y −∇Y∇X −∇[X,Y ])(s). (8.15)

Proof. Since it is enough to prove (8.15) locally we can assume V and

hence E to be trivial; hence we can choose X̃X and ỸY on E = M ×GL(n,R)

such that X̃X respectively ỸY are π-related to X respectively Y (that is

π∗X̃X x = Xπ(x) and π∗ỸY x = Yπ(x), ∀x ∈ E). Also, as in the proof of

Theorem 7.2 we can assume X̃X and ỸY to be horizontal. Furthermore for
s ∈ Γ(M,V ) let s̃s:E −→ Rn be the corresponding ι-equivariant function.
Then by (8.14) and (7.16) we have for π(x) = p:

Fω(Xp, Yp)(s(p)) = x ◦ F̃F ω(X̃Xx, ỸY x) ◦ x−1(s(p))

= −x ◦ ωx([X̃X , ỸY ]x)(s̃s(x)).
(8.16)

On the other hand by (8.7) ∇Xp(s) = x ◦ ∇̃∇(s̃s)(X̃X x), and hence

∇Yp
(∇Xp

) = x ◦ ∇̃∇(∇̃∇(s̃s)(X̃X ))(ỸY x).
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Therefore (8.15) is equivalent to

−ω([X̃X , ỸY ])(s̃s) = ∇̃∇(∇̃∇(s̃s)(ỸY ))(X̃X )− ∇̃∇(∇̃∇(s̃s)(X̃X ))(ỸY )

− ∇̃∇(s̃s)([X̃X , ỸY ]),
(8.17)

where we have used that [X̃X , ỸY ] is π-related to [X,Y ]. But since X̃X and ỸY
are horizontal we have

∇̃∇(∇̃∇(s̃s(X̃X )))(ỸY ) = d(d(s̃s)(X̃X ))(ỸY ) = ỸY (X̃X (s̃s)),

and similarly for X̃X and ỸY interchanged. Hence the right hand side of (8.17)
becomes

X̃X (ỸY (s̃s))− ỸY (X̃X (s̃s))− [X̃X , ỸY ](s̃s)− ω([X̃X , ỸY ])(s̃s) = −ω([X̃X , ỸY ])(s̃s),

which was to be proved.

Next let us express∇ in terms of local trivializations. Suppose {Uα}α∈Σ

is a covering of M with local trivializations fα:V |Uα −→ Uα × Rn, and as-
sociated transition functions gαβ:Uα ∩ Uβ −→ GL(n,R). Then there is a
1 − 1 correspondence between sections s of V and families {sα}α∈Σ of
differentiable functions sα:Uα −→ R

n, satisfying for α, β ∈ Σ:

sβ(p) = gβα(p)sα(p), p ∈ Uα ∩ Uβ . (8.18)

In fact s and {sα} are related by

fα ◦ s(p) = (p, sα(p)), p ∈ Uα. (8.19)

Now {gαβ}α,β∈Σ are also transition functions for the frame bundle E =
F (V ) corresponding to the local trivializations {ϕα = f α}α∈Σ correspond-
ing to {fα}α∈Σ, as in (2.1). In the notation of Proposition 6.11 we have the
following proposition.

Proposition 8.7. Let s ∈ Γ(M,V ) correspond to the family {sα}α∈Σ

as above, then ∇(s) ∈ Ω1(M,V ) corresponds to the family of 1-forms
{∇(sα)}α∈Σ given by

∇(sα) = dsα +Aαsα (8.20)

where {Aα}α∈Σ are the local connection forms for ω defining ∇.
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Proof. Notice that for α ∈ Σ the trivializations ϕα:E|Uα −→ Uα×GL(n,R)
corresponding to fα has the inverse defined by ϕ−1

α (p, g) = (fα)−1
p ◦ g. and

hence the section σα:Uα −→ E|Uα used in Proposition 6.11 is given by

σα(p) = ϕ−1
α (p, id) = (fα)−1

p ∈ Iso(Rn, Vp) = Ep.

For s ∈ Γ(M,V ) the coresponding ι-equivariant function s̃s:E −→ Rn is
related to {sα}α∈Σ by

sα = s̃s ◦ σα

and hence the local 1-form ∇(sα) corresponding to the horizontal ι-equi-
variant 1-form is given by

∇(sα) = (σα)∗(∇̃∇(s̃s))

= σ∗
α(ds̃s + ωs̃s)

= d(s̃s ◦ σα) + (σ∗
αω)(s̃s ◦ σα)

= d(sα) +Aαsα,

where Aα = σ∗
αω by the proof of Corollary 6.9.

Exercise 8.8. Let G be an arbitrary Lie group and ρ:G −→ GL(n,R) a
representation. Let (E, π,M) be a principal G-bundle. and let V be the
associated vector bundle. Let ω be a connection in E.

(1) Show that the frame bundle of V is the extension of E to GL(n,R) via
ρ, and conclude that ω has a unique extension ωρ to F (V ), cf. Exercise 6.18.

(2) Now choose a covering {Uα}α∈Σ ofM and local trivializations of E and
hence also V and F (V ). Show that the covariant derivative∇ corresponding
to ωρ is given in terms of the local trivializations by

∇(sα) = dsα + ρ∗(Aα)sα (8.21)

where ω corresponds to {Aα ∈ Ω1(Uα, g)}, ρ∗: g −→M(n) is the differential
of ρ, and {sα}α∈Σ defines a section in V .

Again return to the case of a vector bundle V on M , E = F (V ) the
frame bundle and let ∇ be the covariant derivative.
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Definition 8.9. A section s ∈ Γ(M,V ) is called parallel if ∇X(s) = 0 for
all tangent vectors X ∈ TpM and for all p ∈M .

In the notation of Proposition 8.7 we have the following corollary.

Corollary 8.10. Let s ∈ Γ(M,V ) correspond to {sα:Uα −→ Rn}α∈Σ.
Then s is parallel if and only if

dsα = −Aαsα, α ∈ Σ. (8.22)

That is, locally a parallel section satisfies a differential system as in
(1.4).

Proposition 8.11. The following are equivalent:

(1) Every point of M has a neighborhood U and parallel sections σ1, . . .,
σn ∈ Γ(U, V ) such that {σ1(p), . . . , σn(p)} is a basis for Vp for all p ∈ U .

(2) The connection is flat, ie., Fω = 0

Proof. As in the proof of Corollary 2.15 a set of sections σ1, . . . , σn ∈
Γ(U, V ) defining a local frame for V |U gives a trivialization of

V |U , f :V |U −→ U × R
n,

such that

f ◦ σi = (p, ei), i = 1, . . . , n,

where {e1, . . . , en} is the canonical basis for Rn. Hence by (8.20) ∇(σi) is
given in terms of this trivialization by ∇(σi) = Aei, where A is the local
connection form for ω. It follows that σ1, . . . , σn are parallel if and only if
A = 0, that is, ω|E|U is induced by the Maurer-Cartan connection via the
trivalization (2.1) of E|U corresponding to f . The proposition now follows
from Theorem 7.2 (1).

Exercise 8.12. We consider the GL(k,R)-bundle (Wn,k, γn,k, Gk(R
n)), for

k ≤ n, and we consider W (n, k) ⊆M(n, k) = Rnk as the open set of n× k
matrices X of rank k (cf. exercise 4.8).

(1) Show that the 1-form

ω = (XtX)−1XtdX ∈ Ω1(Wn,k,M(k)), (8.23)
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gives a connection in the above bundle.

(2) Show that the curvature form is given by

Fω = (XtX)−1dXt ∧ dX − (XtX)−1dXt ∧X(XtX)−1XtdX.
(8.24)

(3) Show that the restriction of ω to the Stiefel manifold Vn,k ⊆ Wn,k is
given by

ω = XtdX (8.25)

and that this defines a reduction to the O(k)-bundle (Vn,k, γn,k, Gk(R
n))

with curvature form

Fω = dXt ∧ dX − dXt ∧XXtdX

= dXt ∧ dX +XtdX ∧XtdX.
(8.26)

(4) For k = 1 the connection ω in the R∗-bundle (Rn \ {0}, η,RPn−1) is
given by

ω =
xt

|x|2 dx, x ∈ R
n \ {0}.

Show that this connection is flat, ie. Fω = 0, and conclude that the real
Hopf-bundle locally has a non-vanishing parallel section. Notice that this
does not exist globally by Corollary 2.24.





9. The Chern-Weil

Homomorphism

We can now associate to a principal G-bundle (E, π,M) with a connection
ω some closed differential forms on M , and as we shall see, the correspond-
ing classes in de Rham cohomology do not depend on ω but only on the
isomorphism class of the G-bundle.

First some linear algebra: Let V be a finite dimensional real vector
space. For k ≥ 1 let Sk(V ∗) denote the vector space of symmetric k-linear
functions

P :V × V × . . .× V −→ R.

We shall identify P with with the corresponding linear map

P :V ⊗ V ⊗ . . .⊗ V −→ R

which is invariant under the action of the symmetric group acting on V ⊗
V ⊗ . . .⊗ V . That is

P (vσ1
⊗ . . .⊗ vσk

) = P (v1 ⊗ . . .⊗ vk)

for every permutation σ of 1, . . . , k. We also have a product

#:Sk(V ∗)⊗ Sl(V ∗) −→ Sk+l(V ∗)

defined by

P #Q(v1, . . . , vk+l)

=
1

(k + l)!

∑

σ

P (vσ1
, . . . , vσk

)Q(vσk+1
, . . . , vσk+l

)
(9.1)

73
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where σ runs over all permutations of 1, . . . , k+ l. We also put S0(V ∗) = R

and then

S∗(V ∗) =

∞⊕

k=0

Sk(V ∗)

becomes a commutative ring with unit 1 ∈ R = S0(V ∗). The associativity
can be shown directly from (9.1), but it also follows from the proposition
below. Choose a basis {e1, . . . , en} for V and let R[x1, . . . , xn] denote the
polynomium ring in the variables x1, . . . , xn. Let R[x1, . . . , xn]

k denote the
subset of homogeneous polynomials of degree k, and define a mapping

Sk(V ∗) −∼−→ R[x1, . . . , xn]k

by

P̃P (x1, . . . , xn) = P (v, . . . , v), v =

n∑

i=1

xiei (9.2)

for P ∈ Sk(V ∗). We then have

Proposition 9.1. (1) The mapping P 7−→ P̃P is an isomorphism of vector
spaces

Sk(V ∗) ∼= R[x1, . . . , xn]
k. (9.3)

(2) (P #Q)∼= P̃P Q̃Q, hence (9.3) gives an isomorphism of rings

S∗(V ∗) −∼=−→ R[x1, . . . , xn]

Proof. (2) Clearly follows from (9.1) and (1).

(1) We first show injectivity. For this notice that the coefficient to xi11 · · ·xinn
is a positive multiple of

P (e1, . . . , e1, e2, . . . , e2, . . . , en, . . . , en) = ai1...in ,

where ej is repeated ij times, j = 1, . . . , n. Hence if P̃P = 0 then ai1...in = 0
for all {i1, . . . , in} satisfying i1 + · · · + in = k. By the symmetry of P we
conclude that

P (ej1 , . . . , ejk) = 0, for all j1, . . . , jk ∈ {1, . . . , n}.
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Hence by the multi-linearity of P ,

P (v1, . . . , vk) = 0, for all v1, . . . , vk ∈ V ,

that is, P = 0. It follows that S∗(V ∗) is isomorphic to a subring of
R[x1, . . . , xn]. But since

S1(V ∗) = Hom(V,R) −∼−→ R[x1, . . . , xn]1

is clearly an isomorphism, the subring has to contain x1, . . . , xn and hence
is the full polynomial ring.

Remark. We have thus shown that P ∈ Sk(V ∗) is determined by the func-

tion P̃P : v 7−→ P (v, . . . , v). This is called a polynomial function for V . A
choice of basis {ei, . . . , en} for V gives an identification of the ring of poly-
nomial functions with the usual polynomial ring in n variables. The inverse
operation which to a polynomial function P̃P associates a symmetric multi-
linear map P is often called polarization.

We now let V = g be the Lie algebra of a Lie group G. Then the
adjoint representation of G on the Lie algebra g induces an action of G on
Sk(g∗) for every k:

(gP )(X1, . . . , Xk) = P (Ad(g−1)X1, . . . ,Ad(g−1)Xk),

where X1, . . . , Xk ∈ g and g ∈ G.

Definition 9.2. (1) P ∈ Sk(g∗) is called invariant if gP = P , ∀g ∈ G.

(2) The set of invariant elements in S∗(g∗) is denoted I∗(G) and P ∈
Ik(G) is called an invariant polynomial (although it is a k-linear function).

Remark. I∗(G) =
⊕∞

k=0 I
k(G) is a subring of S∗(g∗).

We now return to the situation of a principal G-bundle (E, π,M) with
connection ω. Let Fω ∈ Ω2(E, g) be the associated curvature form. For
k ≥ 1 we have

F kω = Fω ∧ . . . ∧ Fω ∈ Ω2k(E, g⊗ . . .⊗ g) (9.4)

and since P ∈ Ik(G) defines a linear map

P : g⊗ . . .⊗ g −→ R
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we obtain a 2k-form P (F kω ) ∈ Ω2k(E). Since Fω is Ad-equivariant and hor-
izontal (by Theorem 7.2) and since P is invariant, it follows that P (F kω ) is
invariant and horizontal i.e. a basic 2k-form. Hence by Corollary 6.13 there
is a unique 2k-form on M which pulls back to P (F kω ) by π∗: Ω2k(M) −→
Ω2k(E).

Notation. The form on M corresponding to P (F kω ) ∈ Ω2k(E) is also de-
noted by P (F kω ), and is called the characteristic form corresponding to
P .

Remark. In the notation of Theorem 7.2 the characteristic form is given
in Uα by P (F kAα

) ∈ Ω2k(Uα) where A = {Aα}α∈Σ are the local connection

forms. In these terms we shall write P (F kA) ∈ Ω2k(M) for the globally
defined characteristic form.

Proposition 9.3.

(1) P (F kω ) ∈ Ω2k(M) is a closed form, that is, d(P (F kω )) = 0.

(2) For P ∈ Ik(G) and Q ∈ I l(G) we have

P #Q(F k+lω ) = P (F kω ) ∧Q(F lω).

(3) Consider a bundle map (f̄f , f):

E′ E

M ′ M

f̄

π′ π

f

Then for ω a connection in E and ω′ = f̄f ∗ω the induced connection
in E′ we have

P (F kω′) = f∗(P (F kω )).

Proof. (1) Since π∗: Ωk(M) −→ Ωk(E) is injective it suffices to prove that
d(P (F kω )) = 0 in Ωk(E). By Bianchi’s identity we get

d(P (F kω )) = kP (dFω ∧ F k−1
ω ) = kP ([Fω, ω] ∧ F k−1

ω ) (9.5)
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using the symmetry of P . But since the form in (9.5) is horizontal it is
enough to show that it vanishes on sets of horizontal vectors. But this is
obvious since [Fω , ω] vanishes on sets of horizontal vectors.

(2) For σ a permutation of 1, . . . , k + l let Tσ denote the endomorphism
of g⊗k+l given by

Tσ(X1 ⊗ . . .⊗Xk+l) = Xσ(1) ⊗ . . .⊗Xσ(k+l), X1, . . . , Xk+l ∈ g.

Then by (5.2)

F k+lω = Tσ ◦ F k+lω = Tσ ◦ (F kω ∧ F lω)

since Fω has degree two. Hence by (9.1)

(P #Q)(F k+lω ) =
1

(k + l)!

∑

σ

(P ⊗Q) ◦ Tσ ◦ (F k+lω )

=
1

(k + l)!

∑

σ

(P (F kω ) ∧Q(F lω))

= P (F kω ) ∧Q(F lω).

(3) Since Fω′ = f̄f ∗(Fω) we clearly have in Ω∗(E′):

P (F kω′) = f̄f ∗P (F kω ).

Hence the statement follows from the injectivity of

π′∗: Ω2k(M ′) −→ Ω2k(E′).

Remark. In particular if ϕ:E′ −→ E is a bundle isomorphism and ω is a
connection in E then for ωϕ = ϕ∗(ω) we have

P (F kωϕ) = P (F kω )

It follows that gauge equivalent connections have the same characteristic
forms.



78 9. The Chern-Weil Homomorphism

Definition 9.4. Let (E, π,M) be a principal G-bundle with connection ω.
For P ∈ Ik(G) let

w(E;P ) = [P (F kω )] ∈ H2k(Ω∗(M)) = H2k
dR(M)

denote the cohomology class of P (F kω ).

Notation. The mapping w(E;−): Ik(G) −→ H2k(M) is called the Chern-
Weil homomorphism. It is often just denoted by w(−) if the bundle E is
clear from the context. For P ∈ Ik(G), w(E;P ) ∈ H2k

dR(M) is called the
characteristic class for E corresponding to P .

Theorem 9.5. (1) The cohomology class w(E,P ) ∈ H2k
dR(M) does not

depend on the connection ω, and depends only on the isomorphism class of
E.

(2) w(E;−): (I∗(G),#) −→ (H∗
dR(M),∧) is a ring homomorphism.

(3) For a bundle map

E′ E

M ′ M

f̄

π′ π

f

we have w(E′, P ) = f∗w(E,P ).

For the proof we need the following version of the Poincaré Lemma
which we will state without proof.

Let h: Ωk(M×R) −→ Ωk−1(M) be the operator defined as follows: For
ω ∈ Ωk(M × R), k ≥ 1 write ω = ds ∧ α+ β, where s is the variable in R,
and put

h(ω) =

∫ 1

s=0

α, and h(ω) = 0, for ω ∈ Ω0(M × R).

Lemma 9.6. Let i0, i1:M −→ M × R be the inclusions i0(p) = (p, 0),
i1(p) = (p, 1), p ∈M . Then

dh(ω) + h(dω) = i∗1ω − i∗0ω, for ω ∈ Ω∗(M × R).
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Proof of Theorem 9.5. We only have to show that [P (F kω )] is independent
of the choice of connection. Then the remaining statements follow from
Proposition 9.3.

Let ω0 and ω1 be the two connections in E and consider the principal
bundle (E × R, π × id ,M × R). This has connection ω̃ω ∈ Ω1(E × R, g)
defined by

ω̃ω (x,s) = (1− s)ω0x + sω1x, (x, s) ∈ E × R.

This is a connection by Proposition 6.5, and clearly i∗ν(ω̃ω) = ων , ν = 0, 1.
Hence

i∗ν(Fω̃ω ) = Fων , ν = 0, 1

and we obtain from Lemma 9.6:

dh(P (F kω̃ω )) = i∗1P (F kω̃ω )− i∗0P (F kω̃ω )

= P (F kω1
)− P (F kω0

),
(9.6)

since d(P (F kω̃ω )) = 0 by Proposition 9.3. Hence by (9.6) P (Fω1
) and P (Fω0

)
represent the same cohomology class in the de Rham complex.

Motivated by Theorem 9.5 let us introduce the following:

Definition 9.7. A characteristic class c (with R coefficients) for a principal
G-bundle associates to every principal G-bundle (E, π,M) a cohomology
class c(E) ∈ H∗

dR(M) such that for any bundle map (f̄f , f): (E′, π′,M ′) −→
(E, π,M) we have

c(E′) = f∗(c(E)).

If c(E) ∈ H l
dR(M) then c is said to have degree l.

Remark. The set of characteristic classes (with R coefficients) is a ring
denoted H∗

G (or H∗
G(R)).

Corollary 9.8. Let P ∈ Ik(G). Then E 7−→ w(E;P ) defines a character-
istic class w(−, P ) = w(P ).

One can prove the following theorem:
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Theorem 9.9 (H. Cartan). Let G be a compact Lie group. Then

w: I∗(G) −→ H∗
G

is an isomorphism.

Remark. (1) Theorem 9.9 also determines the ring of characteristic classes
in the case G is an arbitrary Lie group with finitely many connected com-
ponents. In that case there is a maximal compact subgroup K ⊆ G and
one shows that the inclusion gives an isomorphism H∗

G
∼= H∗

K .

(2) We can also define the ring of complex valued G-invariant polynomials
on the Lie algebra g, using multi-linear functions (over R) P : g×· · ·×g −→
C. The ring of these is denoted I∗

C
(G). The constructions in this chapter go

through and we can thus define a Chern-Weil homomorphism for (E, π,M)
a G-bundle with connection

wC(E,−): I∗C(G) −→ H(Ω∗(M,C)) = H∗
dR(M,C).

Finally let us consider the behaviour of the Chern-Weil homomorphism
in connection with extensions and reductions. For simplicity we restrict to
the case where H ⊆ G is the inclusion of a Lie subgroup and h ⊆ g the
corresponding inclusion of Lie algebras. Let (E, π,M) be a principal G-
bundle, and suppose F ⊆ E is a submanifold, so that (F, π|F ,M) is a
principal H-bundle. Then F is a reduction of E to H (cf. Chapter 4). The
following lemma is a special case of Exercise 6.18.

Lemma 9.10. If ωF ∈ Ω1(F, h) is a connection in F then there is a unique
connection ωE ∈ Ω1(E, g), such that ωE|F = ωF .

Proof. Let {Uα}α∈Σ be a covering of M with trivializations of F |Uα −→
Uα ×H with transition functions {hαβ}, hαβ :Uα ∩ Uβ −→ H . Then {hαβ}
is also a set of transition functions for E. The form ωF is determined by
{Aα}α∈Σ, Aα ∈ Ω1(Uα, g) such that Aβ = Ad(h−1

αβ) ◦ Aβ + h∗αβω
H
0 . Since

hαβ maps to H ⊆ G and ωG0|H = ωH0 we have h∗αβω
H
0 = h∗αβω

G
0 . Hence

{Aα ∈ Ω1(Uα, g)} determines a unique connection on E by Corollary 6.9

The proof of the following proposition is straight-forward and is left
as an exercise.
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Proposition 9.11. Let (E, π,M) be a G-bundle with a reduction (F, π|F ,
M) and suppose ω ∈ Ω1(E, g) is induced from a connection ωF ∈ Ω1(F, h)
as above. Then for P ∈ Ik(G) we have

P (F kωF
) = P (F kωE

) in Ω2k(M).

In particular we have the following commutative diagram

I∗(G) I∗(H)

H∗
dR(M)

res

w(E,−) w(F,−)

where res denotes the restriction map of polynomials on the Lie algebra g

to the Lie algebra h.





10. Examples of Invariant

Polynomials and

Characteristic Classes

We now give some examples of invariant polynomials for some classical
groups. In all cases we shall exhibit the polynomial function v 7−→ P (v, . . .,
v), v ∈ g for each P ∈ Ik(G).

Example 10.1. G = GL(n,R). The Lie algebra is g = M(n,R), the set of
n× n real matrices with Lie bracket

[A,B] = AB −BA, A,B ∈M(n,R),

and the adjoint representation

Ad(g)(A) = gAg−1, A ∈M(n,R), g ∈ GL(n,R).

For k a positive integer we let Pk/2 denote the homogeneous polynomial of

degree k which is the coefficient of λn−k for the polynomial in λ given by

det

(
λI − 1

2π
A

)
=

n∑

k=0

Pk/2(A, . . . , A)λn−k, A ∈M(n,R).

The polynomial Pk/2, called the k/2-th Pontrjagin polynomial, is clearly
Ad-invariant. For (E, π,M) a principal GL(n,R)-bundle

pk/2(E) = w(E,Pk/2) ∈ H2k
dR(M)

is called the Pontrjagin class for E. For V an n-dimensional real vector
bundle on M we write

pk/2(V ) = pk/2(F (V ))

where F (V ) is the frame bundle.
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Example 10.2. G = O(n) ⊆ GL(n,R) the orthogonal group af matrices
g satisfying gtg = I. The Lie algebra is o(n) ⊆M(n,R) of skew-symmetric
matrices, i.e.

o(n) = {A ∈M(n,R) | A+At = 0}. (10.1)

hence, by transposing

det

(
λI +

1

2π
A

)
= det

(
λI − 1

2π
A

)
, A ∈ o(n).

and it follows that the restriction of Pk/2 to o(n) vanishes for k odd. We

shall therefore only consider Pl ∈ I2l(O(n)) for l = 0, . . . , [n/2]. Notice
that since every vector bundle can be given a Riemannian metric it fol-
lows that the frame bundle has a reduction to O(n). Therefore also for any
GL(n,R)-bundle E we have pk/2(E) = 0 for k odd, although the represent-
ing characteristic form is not necessarily equal to zero.

Example 10.3. G = SO(2m) ⊆ O(2m), the subgroup of orthogonal ma-
trices satisfying det(g) = 1. The Lie algebra is so(2m) = o(2m) given
by (10.1). Hence the Pontrjagin polynomials

Pl ∈ I2l(SO(2m)), l = 0, 1, . . . ,m

are also invariant polynomials in this case. But there is another homoge-
neous polynomial Pf called the “Pfaffian polynomial” of degree m given
by

Pf(A, . . . , A)

=
1

22mπmm!

∑

σ

(sgnσ)aσ1σ2aσ3σ4 · · · aσ(2m−1)σ(2m),
(10.2)

where σ runs through the set of permutations of 1, . . . 2m, and where A =
(aij) satifies aij = −aji.

Let us show that Pf is Ad-invariant: Let g = (gij) ∈ O(2m) and put

gAg−1 = gAgt = A′ = (a′ij)

that is

a′ij =
∑

k1k2

gik1ak1k2gjk2 .
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Then for Pf ′ = 22mπmm! Pf we have

Pf′ (A′, . . . , A′)

=
∑

k1,...,k2m

ak1k2 · · · ak2m−1k2m

∑

σ

sgn(σ)gσ1k1 · · · gσ(2m)k2m
.

In this sum the coefficient to ak1k2 · · ·ak2m−1k2m is just the determinant of
(gikj ). This determinant is clearly zero unless (k1, . . . , k2m) is a permutation
of (1, . . . , 2m). Hence

Pf′ (A′, . . . , A′) =
∑

σ

det(giσj)aσ1σ2 · · · aσ(2m−1)σ(2m)

= det(gij)
∑

σ

sgn(σ)aσ1σ2 · · · aσ(2m−1)σ(2m)

= det(g)Pf ′ (A, . . . , A).

That is

Pf(A′, . . . , A′) = det(g) Pf(A, . . . A) (10.3)

for all A ∈ o(2m), g ∈ O(2m). In particular Pf is an invariant polynomial
for SO(2m), but it is not an invariant polynomial for O(2m) since

Pf(A′, . . . , A′) = −Pf(A, . . . A)

if det(g) = −1.

For an SO(2m)-bundle (E, π,M) the characteristic class

e(E) = w(E,Pf) ∈ H2m
dR (M) (10.4)

is called the Euler class for E. If E is the reduction to SO(2m) of the frame
bundle of an oriented vector bundle V on M then e(V ) = e(E) is called the
Euler class of V . One can show that for a compact oriented Riemannian
manifold of dimension 2m the Euler-Poincaré characteristic χ(M) satisfies

χ(M) = 〈e(TM), [M ]〉 =

∫

M

Pf(Fmω ), (10.5)

where TM is the tangent bundle of M and ω is the connection for the
reduction to SO(2m) of the orthogonal frame bundle of TM determined
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by the orientation. (Usually the connection is chosen to be the Levi-Civita
connection). The formula (10.5) is the higher-dimensional Gauss-Bonnet
Theorem.

Example 10.4. G = GL(n,C). The Lie algebra is M(n,C), the set of
n× n complex matrices. As in the remark at the end of chapter 9 we shall
consider the polynomials with complex values Ck, k = 0, 1, . . . , n, given as
the coefficients to λn−k in the polynomial in λ:

det

(
λI − 1

2πi
A

)
=

∑

k

Ck(A, . . . , A)λn−k, A ∈M(n,C),

(10.6)

with i =
√
−1 . For (E, π,M) a principal GL(n,C)-bundle we thus obtain

characteristic classes in de Rham cohomology

ck(E) = w(E,Ck) ∈ H2k
dR(M,C) (10.7)

where the differential forms have complex values. The polynomials Ck are
called the Chern polynomials and the classes in (10.7) are called the Chern
classes of E. Again for V a complex vector bundle over M we have an asso-
ciated frame bundle of complex frames F (V ) which is a principal GL(n,C)-
bundle and we define

ck(V ) = ck(F (V ))

the Chern classes of a complex vector bundle V . Notice that the restriction
of Ck to M(n,R) satisfies

ikCk(A, . . . , A) = Pk/2(A, . . . , A), A ∈M(n,R).

Hence if we extend a principal GL(n,R)-bundle E to a principal GL(n,C)-
bundle EC then for k = 2l we have in H4l

dR(M,C):

(−1)lc2l(EC) = pl(E). (10.8)

Example 10.5. G = U(n) ⊆ GL(n,C) the subgroup of unitary matrices,
ie. the complex matrices g satisfying gg t = I where g denotes the com-
plex conjugate of g. The Lie algebra is u(n) ⊆M(n,C) of skew-Hermitian
matrices, ie.

u(n) = {A ∈M(n,C) | A+ A
t
= 0}
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In particular we have for A ∈ u(n)

det

(
λI − 1

2πi
A

)
= det

(
λI +

1

2πi
A
t
)

= det

(
λI − 1

2πi
A

)
.

That is, Ck(A, . . . , A) ∈ R for A ∈ u(n), hence Ck is a real-valued polyno-
mial on u(n). For (E, π,M) a U(n)-bundle the Chern classes are therefore
real cohomology classes.

Since every complex vector bundle can be given a Hermitian metric
it follows that any principal GL(n,C)-bundle has a reduction to U(n) and
hence all Chern classes for a GL(n,C)-bundle are real cohomology classes.

Finally let us calculate the first Chern class in a non-trivial case.

Example 10.6. Consider the complex Hopf-bundle over CPn: This is the
GL(1,C) = C∗-bundle (HC, γ,CP

n) with total space HC = Cn+1 \ {0} and
where γ is the natural projection map

γ(z0, . . . , zn) = [z0, . . . , zn], (z0, . . . , zn) ∈ C
n+1 \ {0}.

Notice that the Lie algebra of C∗ is just the abelian Lie algebra C so that
a connection in HC is a complex valued 1-form on C

n+1 \ {0}. We claim
that

ω =
z tdz

|z|2

is a connection. That is, we must check (1) and (2) in the definition of a
connection.

(1) For fixed z ∈ Cn+1 \ {0} the map vz: C −→ Cn+1 given by vz(λ) = zλ
satisfies

ωz ◦ vz(λ) =
zdz(zλ)

|z|2 = λ

as required.

(2) For fixed λ ∈ C∗ we have

R∗
λω =

z tdzλλ

|zλ|2 = ω
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as required since C∗ is abelian.

Hence ω is a connection. Again since C∗ is abelian the curvature is
given by

Fω = dω =
1

|z|2 dz
t ∧ dz + d

(
1

|z|2
)
∧ z tdz

which is also a basic form, i.e. the pullback of a form on CPn. Now the
inclusion S2n+1 ⊂ Cn+1\{0} induces a diffeomorphism S2n+1/U(1) ∼= CPn

and since |z|2 = 1 on S2n+1 we conclude that as a form on S2n+1/U(1) the
curvature is given by

Fω = dz t ∧ dz.

Notice also that

F ω = dzt ∧ dz = −Fω

so Fω takes on purely imaginary values. Finally Fω is invariant under the
action of U(n+ 1) on CPn since

g∗Fω = (dz t)g t ∧ gdz = dz t ∧ dz, g ∈ U(n+ 1).

In the notation of Example A15 Fω = i ImFω now corresponds to the U(n)
invariant real alternating 2-form 2iκ defined on Cn = span{e1, . . . , en}
since

dz t ∧ dz(e1, ie1) = i− (−i) = 2i.

Now the first Chern polynomial on gl(1,C) = C is given by

C1(A) = − 1

2πi
A, A ∈ C.

It follows that

c1(HC) =

[
− 1

2πi
dz t ∧ dz

]
∈ H2

dR(CPn)

= − 1

π
κ ∈ Alt2R(Cn)U(n)
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so in particular c1(HC) 6= 0. The constant in C1(A) is chosen such that for
n = 1

∫

CP 1

c1(Fω) = −1. (10.9)

In order to see this we first observe that in the principal U(1)-bundle
γ:S3 −→ CP 1 we have

∫

γ−1[z]

ω =

∫

|λ|=1

dλ

λ
= 2πi ∀z ∈ S3

so that by Fubini’s Theorem

∫

S3

ω ∧ Fω = 2πi

∫

CP 1

Fω .

On the other hand ω ∧Fω is a U(3)-invariant 3-form on S3 whose value at
the tangent frame {ie0, e1, ie1} ⊆ Te0S3 is

(ω ∧ Fω)(ie0, e1, ie1) = (dz0 ∧ dz1 ∧ dz1)(ie0, e, ie1) = −2.

Hence ω ∧ Fω is −2 times the volume form on S3 so that

2πi

∫

CP 1

Fω = −2 vol(S3) = −4π2

i.e.
∫

CP 1

Fω = 2πi

which proves (10.9).





A. Cohomology of

Homogeneous Spaces

In this section we show how to calculate de Rham cohomology of compact
homogeneous spaces. For notation see [D].

In the following G is a Lie group and H ⊆ G is a closed Lie subgroup,
with Lie algebras g and h ⊆ g respectively. We shall study the homogeneous
manifold M = G/H with projection π:G −→M .

Proposition A1. (1) The following sequence of vector spaces

0 h g TeH(G/H) 0
π∗

is exact.

(2) Given h ∈ H we have the following commutative diagram.

0 h g TeH(G/H) 0

0 h g TeH(G/H) 0

π∗

π∗

Ad(h) Ad(h) Lh∗

Proof. (1) The differentiable structure on G/H is defined as follows: For
g = m⊕h and Um ⊆ m a suitable neighborhood of 0, the composite mapping

Um G G/H
exp π

is a diffeomorphism onto an open neighborhood of eH (see e.g. [D, Theo-
rem 9.43]. Consequently π∗: m −→ TeH(G/H) is an isomorphism, this shows
the claim.
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(2) It is clear that Ad(h) on h is the restriction of Ad(h) on g. The commu-
tativity of the square to the right follows from the following commutative
diagram

G G/H

G G/H

π

σh Lh

π

where σh(x) = hxh−1 and Lh(xH) = hxH .

Remark. We see from the above proposition that π∗ induces an isomor-
phism

π∗: g/h −
∼=−→ TeH(G/H)

and that the isotropy representation of H on TeH(G/H), that is, h 7−→ Lh∗ ,
is identified with the adjoint representation on g/h.

Notation. For V a finite dimensional vector space let Altk(V ), k ∈ N,
denote the vector space of alternating k-linear forms on V . For H ⊆ G as
above with Lie algebras h ⊆ g let

Altk(g/h)H ⊆ Altk(g)

be the subspace consisting of α ∈ Altk(g) satisfying

(1) α(v1, . . . , vk) = 0 if at least one vi ∈ h

(2) α(Ad(h)v1, . . . ,Ad(h)vk) = α(v1, . . . , vk) for all h ∈ H .

Finally for a manifold M let Ωk(M), k ∈ N denote the vector space of
differential forms of degree k on M . If M = G/H as above then

Ωk(M)G ⊆ Ωk(M),

denotes the subspace of G-invariant forms, that is, forms ω satisfying

L∗
gω = ω for all g ∈ G,

where Lg:M −→M is given by Lg(xH) = gxH , for all x ∈ G.
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Proposition A2. Let H ⊆ G and M = G/H as above.

(1) There is a natural isomorphism of vector spaces

ι: Ωk(M)G −∼=−→ Altk(g/h)H .

(2) Furthermore ι is a chain map, where the differential on the right hand
side is defined by

(dα)(v1, . . . , vk+1) =
∑

i<j

(−1)i+jα([vi, vj ], v1, . . . , v̂v i,

. . . , v̂v j , . . . , vk+1),

α ∈ Altk(g/h)H , v1, . . . , vk+1 ∈ g.

Proof. (1) As before we let π:G −→ G/H be the canonical projection map
and let ω ∈ Ωk(M)G be a G-invariant form. We define ι(ω) by

ι(ω) = (π∗ω)e ∈ Altk(g)

and we clearly have that ι(ω) ∈ Altk(g/h)H . Furthermore it is clear that ι
is injective because ω ∈ Ωk(M)G satisfies

ωgH(v1, . . . , vk) = ωeH((Lg−1)∗v1, . . . , (Lg−1)∗vk),

for all g ∈ G and v1, . . . , vk ∈ TgHM . For the surjectivity of ι let α ∈
Altk(g/h)H be given and we define ωgH ∈ Altk(TgHM) by

ωgH(v1, . . . , vk) = α((Lg−1)∗v1, . . . , (Lg−1)∗vk),

g ∈ G v1, . . . , vk ∈ TgHM.

Since α ∈ Altk(g/h)H it easily follows that ωgH is independent of the choice
of g ∈ G and of the choice of representatives for (Lg−1)∗vi in g. To see that
ω is differentiable, we notice that because ω by definition isG-invariant, it is
enough to show that ω is differentiable in a neighborhood of eH . But in this
neighborhood we can find a local cross section, that is, a submanifold U ⊆ G
with e ∈ U such that π:U −→ π(U) is a diffeomorphism. Thus it is enough
to see that π∗(ω) is differentiable. For this we choose a basis {X1, . . . , Xn}
for g and let {X̃X 1, . . . , X̃Xn} be the corresponding left invariant vector fields
on G. Because these are smooth, the 1-forms {γ1, . . . , γn} on G defined by

γi(X̃X j) = δij
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are also smooth. But π∗(ω) is G-invariant so it can be written as a linear
combination of the forms

{γi1 ,∧ . . . ∧ γik | 1 ≤ i1 ≤ . . . ≤ ik ≤ n}

with constant coefficients. It follows that π∗(ω) is smooth.

(2) Because dπ∗ = π∗d and π∗: Ω∗(M)G −→ Ω∗(G)G is injective it is

enough to show the formula on G. As before let {X̃X 1, . . . , X̃Xn} be a basis

for the left invariant vector fields on G, so that {X̃X 1g, . . . , X̃Xng} is a basis
for TgG for every g ∈ G. It suffices to show the formula

(dω)(X̃X l1 , . . . , X̃X lk+1
)

=
∑

i<j

(−1)i+jω([X̃X li , X̃X lj ], . . . ,
̂̃
XX̃XX li , . . . ,

̂̃
XX̃XX lj , . . . X̃X lk+1

)

for all tuples (l1, . . . , lk+1) satisfying 1 ≤ li1 ≤ . . . ≤ lik+1
≤ n. This follows

from the formula for dω because the remaining terms in the formula are
directional derivatives of functions on the form

ω(X̃X l1 , . . . ,
̂̃
XX̃XX lj , . . . , X̃X lk+1

)

which are clearly constant when ω and X̃X j are G-invariant.

Remark. It follows that the formula in (2) defines a form in Altk+1(g/h)H

Exercise A3. Show the claim in the remark above directly. (Hint: First
show that for α ∈ Altk(g/h)H and X ∈ h we have

k∑

i=1

α(v1, . . . , vi−1, [X, vi], vi+1, . . . , vk) = 0, for all v1, . . . , vk ∈ g.

Corollary A4. If H is compact and connected then M = G/H has a
G-invariant volume form, that is, a nonzero element vM ∈ Ωn(M)G, n =
dim(M), and vM is unique up to a scalar multiple.

Proof. Since Altn(g/h) is 1-dimensional we have dim(Altn(g/h))H ≤ 1 with
equality if and only if det(Ad(h)) = 1 for all h ∈ H , where Ad(h): g/h −→
g/h is induced by the diagram in Proposition A1 (2). But λ(h) = det(Ad(h))
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defines a continuous homomorphism λ:H −→ R \ {0}, and since H is com-
pact λ(h) = ±1, for all h ∈ H . Hence λ is locally constant and since H is
connected λ ≡ 1.

Example A5. If we identify SO(n− 1) with the subgroup of matrices in
SO(n) of the form

[
1 0
0 h

]
, h ∈ SO(n− 1),

there is a natural diffeomorphism

π: SO(n)/ SO(n− 1) −∼=−→ Sn−1 ⊆ R
n

given by π(g SO(n−1)) = ge1, g ∈ SO(n), where e1 = (1, 0 . . . , 0) (cf. [DG,
Exercise 9.45]). Notice that π commutes with the SO(n) action, and the
SO(n) action on R

n is given by matrix multiplication. It follows from Corol-
lary A4 that Sn−1 has a SO(n)-invariant volume form vSn−1 ∈ Ωn(Sn−1).

Exercise A6. Given the coordinates (x1, . . . , xn) on R
n show that

vSn−1 = c

n∑

i=1

(−1)ixidx1 ∧ . . . ∧ d̂xidxi ∧ . . . ∧ dxn, c ∈ R \ {0}.

Proposition A7. Let G be a compact Lie group and ρ:G −→ GL(V ) a
representation on a finite dimensional vector space (that is, ρ is a Lie group
homomorphism). Then there exists an inner product on V such that ρ(g)
is orthogonal for all g ∈ G, that is,

〈ρ(g)v, ρ(g)w〉 = 〈v, w〉 for all v, w ∈ V , g ∈ G.

Proof. Pick an arbitrary inner product 〈·, ·〉 on V and choose an orientation
on G. It follows from Corollary A4 with H = {e} that there is a unique
volume form vG on G that satisfies

∫

G

vG = 1.

In fact, for v′G ∈ Ωn(G)G a volume form we have (as G is compact) that
Vol =

∫
G
v′G > 0 and it follows that vG = v′G/Vol. We now define the inner

product on V by

〈v, w〉 =

∫

G

〈ρ(g−1)v, ρ(g−1)w〉vG.



96 A. Cohomology of Homogeneous Spaces

Then, for an arbritrary g′ ∈ G we have for v, w ∈ V :

〈ρ(g′−1
)v, ρ(g′

−1
)w〉 =

∫

G

〈ρ((g′g)−1)v, ρ((g′g)−1)w〉vG

=

∫

G

〈ρ(g−1)v, ρ(g−1)w〉(Lg′−1)∗vG

=

∫

G

〈ρ(g−1)v, ρ(g−1)w〉vG

= 〈v, w〉.

Remark. Let O(V ) ⊆ GL(V ) denote the group of orthogonal transforma-
tions with respect to the inner product 〈·, ·〉. Then O(V ) is compact and
therefore a closed Lie subgroup in GL(V ). It follows that ρ:G −→ O(V ) is
a Lie group homomorphism. If G is connected ρ(g) ∈ SO(V ) for all g ∈ G,
where SO(V ) ⊆ O(V ) is the subgroup of orthogonal transformations with
determinant 1.

Theorem A8. Let M = G/H, with G and H ⊆ G as above and G compact
and connected. We then have the following.

(1) The inclusion i: Ω∗(M)G −→ Ω∗(M) induces an isomorphism on co-
homology.

(2) There is a natural isomorphism

H∗
dR(M) ∼= H∗(Alt∗(g/h)H)

Proof. Clearly (2) follows from (1) and Proposition A2.

To show (1) we pick, according to Proposition A7, an inner product on
the Lie algebra g of G which is invariant under the adjoint representation
Ad :G −→ GL(g), and since G is assumed to be connected we have Ad(g) ∈
SO(g) for all g ∈ G. By multiplying the inner product by a positive scalar
we can assume that the open unit disc

B = {X ∈ g | 〈X,X〉 < 1}

is mapped diffeomorphically under the exponential map onto an open
neighborhood U of e ∈ G. As in the proof of Proposition A7 we let vG
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be the unique left invariant volume form on G that satisfies
∫

G

vG = 1.

Finally for g ∈ G we let Lg:M −→M denote the diffeomorphism given by
left multiplication with g ∈ G.

For ω ∈ Ωk(M) we will define a G-invariant k-form ω ∈ Ωk(M)G, in
the following way: Let p ∈M and v1, . . . , vk ∈ TpM and notice that

g 7−→ (L∗
gω)p(v1, . . . , vk) = ωgp(Lg∗v1, . . . , Lg∗vk)

defines a differentiable function on G. We now put

ωp(v1, . . . , vk) =

∫

g∈G

ωgp(Lg∗v1, . . . , Lg∗vk)vG

or for short

ω =

∫

g∈G

(L∗
gω)vG.

We shall show the following three claims:

(i) ω is a G-invariant differential k-form.

(ii) If ω ∈ Ωk(M)G then ω = ω.

(iii) There are linear operators

S0 = 0, Sk: Ωk(M) −→ Ωk−1(M), k = 1, 2, . . .

satisfying

dSkω + Sk+1dω = ω − ω for all ω ∈ Ωk(M), k = 0, 1, 2, . . ..

The theorem then follows from (i)–(iii).

(i) That ω is differentiable is seen the same way as in the proof of Propo-
sition A2. To see that ω is G-invariant we first notice that vG is a right
G-invariant form on G, that is R∗

g(vG) = vG for all g ∈ G. This follows
from the fact that R∗

g′
vG again is left invariant so that

(Rg′)
∗vG = λ(g′)vG, λ(g′) ∈ R \ {0},
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where λ:G −→ R\{0} is a differentiable homomorphism hence is constantly
equal to 1 since G is compact and connected. We now get

(Lg′)
∗ω =

∫

g∈G

(L∗
g′L

∗
gω)vG

=

∫

g∈G

((Lgg′)
∗ω)vG

=

∫

x∈G

(L∗
xω)((Rg′−1)∗vG)

=

∫

x∈G

(L∗
xω)vG = ω,

where x = gg′ that is g = x(g′)−1 = Rg′−1(x), it follows that L∗
g′−1(ω) = ω ,

which was to be proven.

(ii) For ω ∈ Ω(M)G we have

ω =

∫

g∈G

L∗
g(ω)vG =

∫

g∈G

ωvG = ω

∫

G

vG = ω

(iii) For this we use the neighborhood U = expB. We first notice that

〈U〉 =
⋃

i

U i =

∞⋃

i=1

U · · ·U︸ ︷︷ ︸
i

is an open subgroup in G and since G is connected we have 〈U〉 = G
(because the complement consists of cosets which are also open).

As U i ⊆ U i+1 and G is compact, there is a j ∈ N such that G = U j.
We get that {LgU | g ∈ U j} is an open covering of G hence by compactness

we obtain G =
⋃l
i=1 giU . Now define inductively W1, . . . ,Wl by

W1 = g1U, . . . ,Wi+1 = gi+1U −
( i⋃

ν=1

Wν

)
.

Then G = W1 ∪ . . . ∪Wl is a disjoint union and

V = int(W1) ∪ . . . ∪ int(Wl)
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is a open subset such that ∂V ⊆ ⋃l
i=1 gi∂U , is a union of (m − 1)-

dimensional submanifolds in G, where m = dimG. For f an arbitrary
continuous function on G we thus have

∫

G

fvG =

∫

V

fvG =

l∑

i=1

∫

int(Wi)

fvG.

For g ∈ Wi ⊆ giU , gi ∈ U j , we write g in the form

g = exp(X1) · · · exp(Xj)exp(X)

and define a curve γ(t, g) ∈ G, t ∈ [0, 1] by

γ(t, g) = exp(tX1) · · · exp(tXj)exp(tX).

Then γ(0, g) = e and γ(1, g) = g. From γ we get a homotopy Lγ(t,g):M −→
M , t ∈ [0, 1], where Lγ(0,g) = id and Lγ(1,g) = Lg. As in the proof of the
Poincaré Lemma (see [MT]) we get an operator

Skg : Ω
k(M) −→ Ωk−1(M)

such that

dSkgω + Sk+1
g dω = L∗

gω − ω.
Here Skgω is explicitly given by the formula

Skg (ω)p(v1, . . . , vk−1) =

∫ 1

0

((Lγ(−,g))
∗ω)p

(
d

dt
, v1, . . . , vk−1

)
dt,

v1, . . . , vk ∈ TpM
This is differentiable in g for g ∈ int(Wi) and we may define

Sk(ω) =

∫

g∈V

(Skgω)vG.

By integration of the formula above we get

dSkω + Sk+1dω =

∫

g∈V

(L∗
gω)vG −

∫

g∈V

(ω)vG

=

∫

g∈G

(L∗
gω)vG −

∫

g∈G

(ω)vG

= ω − ω.
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Exercise A9. Let M = G/H , where G is a compact Lie group with
identity component G0 ⊆ G.

(1) Show that the number of components of M is [G:G0H ], and that each
component is diffeomorphic to M0 = G0/G0 ∩H .

(2) Conclude that

H∗
dR(M) ∼= H∗(Alt∗(g/h)G0∩H)[G:G0H].

Exercise A10. Let Mn = G/H , where G is a compact connected Lie
group. Show that the following statements are equivalent:

(1) M is orientable.

(2) Hn
dR(M) 6= 0.

(3) For all h ∈ H , det(Ad(h)) = 1 where Ad(h): g/h −→ g/h.

(4) There is a volume form vM ∈ Ωn(M)G with
∫
M vM = 1.

Exercise A11. Let G be a compact Lie group and ρ:G −→ GL(V ) a
representation on a finite dimensional vector space V . We write gv = ρ(g)v
for g ∈ G, v ∈ V . Now define the dual representation on V ∗ = HomR(V,R)
by

(gv∗)(v) = v∗(g−1v), v∗ ∈ V ∗, v ∈ V, g ∈ G

Let V G = {v ∈ V | gv = v} and (V ∗)G = {v∗ ∈ V ∗ | gv∗ = v∗}.
(1) Show that the natural mapping given by restriction

(V ∗)G −→ (V G)∗

is an isomorphism.

(2) Now let V and V ′ be two finite dimensional vector spaces with G-
representations as above and let B:V × V ′ −→ R be a non-degenerate G-
invariant bilinear function. (B is non-degenerate if the mapping B]:V ′ −→
V ∗ given by B](v′)(v) = B(v, v′), v ∈ V, v′ ∈ V ′, is an isomorphism. B is
G-invariant if B(gv, gv′) = B(v, v′) for all v ∈ V, v′ ∈ V ′, g ∈ G.)

Show that B by restriction gives a non-degenerate bilinear function

B:V G × V ′G −→ R.
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Exercise A12 (Poincaré duality). Let G be a compact connected Lie
group, H ⊆ G a closed Lie subgroup and put M = G/H . Assume that M
is oriented and for k = 0, . . . , n define the bilinear function

Ωk(M)G × Ωn−k(M)G −→ R

by

B(α, β) =

∫

M

α ∧ β, α ∈ Ωk(M)G, β ∈ Ωn−k(M)G.

(1) Show that B is non-degenerate (cf. Exercise A11).

(2) Show the formula

B(dα, β) = (−1)kB(α, dβ), for all α ∈ Ωk−1(M)G, β ∈ Ωn−k(M)G.

(3) Show that B induces a non-degenerate bilinear function

B :Hk
dR(M)×Hn−k

dR (M) −→ R k = 0, . . . , n.

That is B
]
:Hn−k

dR −→ Hk
dR(M)∗ is an isomorphism.

Hints to (1): First show the following lemma: For V an n-dimensional
vector space and v ∈ Altn(V ) a generator, the bilinear function

B: Altk(V )×Altn−k(V ) −→ R

given by

α ∧ β = B(α, β)v, α ∈ Altk(V ), β ∈ Altn−k(V )

is non-degenerate.

We conclude the appendix with a few examples.

Example A13. M = Sn (cf. Example A5). Let Rn+1 have the coordinates
(x0, . . . , xn) and consider the diffeomorphism

π: SO(n+ 1)/ SO(n) −∼=−→ Sn ⊆ R
n+1
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given by π(g SO(n)) = ge0, g ∈ SO(n + 1), where e0 = (1, 0, . . . , 0). The
differential

π∗: so(n+ 1)/so(n) −→ R
n = span(e0)

⊥

satisfies

π∗(Ad(h)X) = hπ∗(X) X ∈ so(n+ 1), h ∈ SO(n)

and thereby induces an isomorphism

Altk(Rn)SO(n) −π∗−−→ Altk(so(n+ 1)/so(n))SO(n) k = 0, ..., n,

where

Altk(Rn)SO(n) = {α ∈ Altk(Rn) | α(hv1, . . . , hvk) = α(v1, . . . , vk)},
for all v1, . . . , vk ∈ Rn and h ∈ SO(n). We now have

Altk(Rn)SO(n) =

{
R det k = n

0 k = 1, . . . , n− 1

where “det” is defined by the determinant. It is clear that “det” is SO(n)-
invariant (by definition). So let us show that every α ∈ Altk(Rn)SO(n),
k < n, is 0:

Let {e1, . . . , en} be the canonical basis for Rn, and notice that α is
determined by {α(ei1 , . . . , eik) | 1 ≤ i1 < . . . < ik ≤ n}. But for k < n
there are h, h′ ∈ SO(n) such that

h(e1) = ei1 , . . . , h(ek) = eik

and

h′(e1) = −ei1 , h′(e2) = ei2 , . . . , h
′(ek) = eik

hence

α(ei1 , . . . , eik) = α(e1, . . . , ek) = −α(ei1 , . . . , eik),

that is α(ei1 , . . . , eik) = 0 . We have thus shown that

Hk
dR(Sn) =





R[vSn ] k = n

0 k = 1, . . . , n− 1

R k = 0

where vSn ∈ Ωn(Sn) is the volume form from Example A5.
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Exercise A14. For M = RPn the n-dimensional projective space, show
that

Hk
dR(RPn) =

{
R k = 0 and k = n odd

0 otherwise.

Example A15. M = CPn = U(n + 1)/(U(1) × U(n)). C
n+1 has the

coordinates (z0, . . . , zn) and H = U(1)×U(n) ⊆ U(n+ 1) is the subgroup
of matrices on the form

g =

(
λ 0

0 h

)
λ ∈ U(1), h ∈ U(n).

It is easy to show that the mapping

π∗: u(n+ 1)/u(n)× u(1) −→ C
n

given by

π∗(X) =



xn,1

...

xn,n




is an isomorphism, and that

π∗(Ad(g)X) = λhπ∗(X), for X ∈ u(n+ 1) ⊆M(n+ 1)

and g ∈ H as above. That is we get an isomorphism

AltkR(Cn)U(n) −π∗−−→ AltkR(u(n+ 1)/(u(1)× u(n)))H

where

AltkR(Cn)U(n) = {α ∈ AltkR(Cn) | α(hv1, . . . , hvk) = α(v1, . . . , vk)},

for all v1, . . . , vk ∈ Cn and h ∈ U(n). Notice that κ ∈ Alt2
R
(Cn) given by

κ(v, w) = −Im(w tv)

is U(n) invariant and that κ(e1, ie1) = 1 so that

Alt2R(Cn)U(n) 6= 0.
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We show that

AltkR(Cn)U(n) =

{
Rκk/2 0 ≤ k ≤ 2n, k even

0 otherwise.
(A.1)

Since C
n = spanR{e1, . . . , en, ie1, . . . , ien}, α ∈ Altk(Cn)U(n) is determined

by the values

α(ei1 , . . . , eip , iej1 , . . . , iejq),

where 1 ≤ i1 < · · · < ip ≤ n, 1 ≤ j1 < · · · < jp ≤ n and p+ q = k. But if
there is a js /∈ {i1, . . . , ip} then the mapping

el 7−→
{−el l = js
el l 6= js

is unitary so that

α(ei1 , . . . , eip , iej1 , . . . , iejq) = −α(ei1 , . . . , eip , iej1 , . . . , iejq),

that is α(ei1 , . . . , eip , iej1 , . . . , iejq) = 0. In the same way we show that if
it /∈ {j1, . . . , jq} then α(ei1 , . . . , eip , iej1 , . . . , iejq) = 0. That is, α = 0 if
p 6= q and for k = 2p, α is determined by the values

α(ei1 , . . . , eip , iei1 , . . . , ieip).

There is an h ∈ U(n) such that h(el) = eil , l = 1, . . . , p, hence α is
determined by α(e1, . . . , ep, ie1, . . . , iep).

We conclude that Alt2p
R

(Cn)U(n) is at most 1-dimensional, so it is
enough to show that κp 6= 0. An easy calculation shows that

κp(e1, . . . , ep, ie1, . . . , iep) = p! , p ≤ n,

which shows (A.1). This also shows that

Hk
dR(CPn)=

{
Rκk/2 0 ≤ k ≤ 2n, k even

0 otherwise.
(A.2)

Exercise A16 (Symmetric spaces). Let M = G/H , where G is a com-
pact connected Lie group and H ⊆ G is a closed Lie subgroup. Let h ⊆ g
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be the Lie algebras for H and G respectively, and assume that there is a
complement m ⊆ g such that g = m ⊕ h and such that the following is
satisfied:

(1) Ad(h)(X) ∈ m for all h ∈ H , X ∈ m.

(2) [X,Y ] ∈ h for all X,Y ∈ m.

Show that there is a natural isomorphism

Hk
dR(M) ∼= Altk(m)H , k = 0, 1, 2, . . .

where the action of H on Altk(m) is induced by the adjoint action of H on
m given by (1).

Exercise A17. Let G be a compact connected Lie group. As G acts on
the Lie algebra g by the adjoint representation, show that there is a natural
isomorphism

Hk
dR(G) ∼= Altk(g)G.

Hint: Use Exercise A16 for the case H ⊆ G×G, H = {(g, g) | g ∈ G}.
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