G215-16: VARIETÀ, 1

- Per ogni intero $n \geq 0$, uno spazio topologico X è n-localmente euclideo se per ogni $x \in X$ esiste (U, ϕ) dove U è un intorno aperto di x in X, $\phi : U \to W$ è un omeomorfismo, essendo $W \subset \mathbb{R}^n$ un aperto.
- Uno spazio topologico X è una n-varietà topologica (TOP) se è n-localmente euclideo ed inoltre è T_2 e 2-numerabile. Per esempio una 0-varietà è un insieme numerabile munito della topologia discreta; è compatto se e solo se è finito.
- Per ogni n, esistono spazi n-localmente euclidei che non sono T_2 , oppure che non sono 2-numerabili.
- Ogni coppia (U, ϕ) come sopra è detta una carta locale di X; $(W, \psi = \phi^{-1})$ è detta una parametrizzazione locale di X. L'insieme \mathcal{A}_X di tutte le carte locali è detto atlante massimale di X e individua la sua struttura di n-varietà topologica. Un atlante di X è una famiglia di carte locali $\{(U_j, \phi_j)\}_{j \in J}$ che ricopre X, cioè $\{U_j\}_{j \in J}$ è un ricoprimenmto aperto di X.
- Per specificare la struttura di varietà topologica su X è sufficiente esibire un atlante; l'atlante massimale è implicitamente definito e viene usato per esempio ogni volta che restringiamo una carta locale (U, ϕ) a $(U', \phi|U')$, dove $U' \subset U$ è un aperto.
- Un aperto U di \mathbb{R}^n è una n-varietà topologica. Possiamo prendere l'atlante formato da una sola carta $\{(U,\phi)\}$, dove $\phi:U\to\mathbb{R}^n$ è l'inclusione.
- La sfera unitaria $S^n \subset \mathbb{R}^{n+1}$ è una n-varietà topologica; possiamo prendere l'atlante formato da due carte $\{(U_+, p_+), (U_-, p_-)\}$, dove $U_{\pm} = S^n \setminus \{x_{\pm}\}, x_{\pm} = (0, \dots, 0, \pm 1)$ e

$$p_{\pm}: U_{\pm} \to \mathbb{R}^n = \{(x_1, \dots, x_n, 0)\} \subset \mathbb{R}^{n+1}$$

- è l'omeomorfismo definito come la proiezione stereografica di centro x_{\pm} . S^n è compatta.
- Lo spazio proiettivo \mathbf{P}^n è per definizione lo spazio topologico quoziente di $\mathbb{R}^{n+1}\setminus\{0\}$ mediante la relazione di equivalenza proiettiva per cui $x\sim y$ se e solo se x e y generano lo stesso sottospazio vettoriale 1-dimensionale di \mathbb{R}^{n+1} . In modo equivalente si può ottenere \mathbf{P}^n come quoziente di S^n mediante la restrizione della precedente relazione, per cui $x\sim y$ se e solo se $y=\pm x$. Da questo segue che \mathbf{P}^n è compatto. \mathbf{P}^n è una n-varietà topologica. Possiamo prendere l'atlante formato da n+1 carte $\{U_j,\phi_j\}_{j=1,\ldots,n+1}$, dove $U_j=\{[x];x\in\mathbb{R}^{n+1},\ x_j\neq 0\},\ \phi_j:U_j\to\mathbb{R}^n,\ \phi_j([x])=(1/x_j)(x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_{n+1})$. La proiezione sul quoziente $p_S:S^n\to\mathbf{P}^n$ è localmente un omeomorfismo "2:1", cioè per ogni $x\in\mathbf{P}^n,\ p_S(x)^{-1}$ è formato da due punti.
- Se M è una m-varietà (TOP), M' una n-varieta', allora il prodotto $M \times M'$ è una (n+m)-varietà. Infatti Le proprietà T_2 e 2-numerabile si sollevano al prodotto, e il "prodotto" degli atlanti massimali $\mathcal{A}_M \times \mathcal{A}_N = \{(U \times U', \phi \times \phi')\}$ è un atlante di $M \times M'$.
- Se $f: Y \to X$ è un omeomorfismo e X è una n-varietà TOP, allora anche Y lo è; infatti se $\mathcal{A}_X = \{(U, \phi)\}$ è l'atlante massimale di X, allora $f^{-1}(\mathcal{A}_X) = \{(f^{-1}(U), \phi \circ f)\}$ (la restrizione di f è sottintesa) lo è per Y.
- I "morfismi" tra varietà topologiche sono le applicazioni continue; gli "isomorfismi" sono gli omeomorfismi. Quindi le varietà topologiche individuano un settore dello studio degli spazi topologici, ottenuto specializzando gli spazi ma non i morfismi.
- Le funzioni continue, possono avere comportamenti strani e piuttosto lontani dall' intuizione geometrica. Ricordiamo ad esempio la cosiddetta "curva di Peano" che consiste in un' applicazione continua e surgettiva definita sull'intervallo [0,1] a valori nel quadrato $[0,1]^2$. D'altra parte lavorando con le funzioni continue e con gli omeomorfismi, succede che fatti intuitivamente plausibili (ad esempio "Se \mathbb{R}^n è omeomorfo a \mathbb{R}^m , allora n=m") siano veri ma di difficile dimostrazione. Le cose si semplificano se è possibile restringere la classe di funzioni con cui operare. Ad esempio si può dimostrare che non esistono curve di Peano differenziabili; l'invarianza della dimensione è ben nota se ci limitiamo agli

isorfismi lineari. Queste considerazioni motivano la specializzazione della nozione di varietà definendo la classe delle varietà differenziabili (DIFF).

• Indichiamo con M(k,n) lo spazio delle matrici reali $k \times n$ che può essere naturalmente identificato con \mathbb{R}^{kn} e coincide con lo spazio delle applicazioni lineari $Hom(\mathbb{R}^n, \mathbb{R}^k)$. Ricordiamo che $f: U \to R^k$ definita sull'aperto $U \subset R^n$ è differenziabile se esiste l'applicazione differenziale

$$df: U \to Hom(\mathbb{R}^n, \mathbb{R}^k), \ x \to d_x f$$

tale che per ogni $x \in U$,

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - d_x f(h)}{||h||} = 0.$$

Se $f: U \to W$, W aperto di \mathbb{R}^k , $g: W \to \mathbb{R}^m$, f, g differenziabili, allora per ogni $x \in U$,

$$d_x(g \circ f) = d_{f(x)}g \circ d_x f; \ d_x \mathrm{id} = I.$$

L'applicazione $f \in C^0$ se è continua; è C^r se è differenziabile e df è C^{r-1} ; è C^{∞} (si dice anche "liscia") se è C^r per ogni r > 0.

- f è liscia se esistono e sono continue le derivate parziali

$$\frac{\partial^r f_j}{\partial x_{i_1} \dots \partial x_{i_r}}$$

per $j = 1, \ldots, k$, per ogni ordine $r \ge 0$. In particolare, per ogni $x \in U$,

$$d_x f = (\partial f_j / \partial x_i(x))_{j=1,\dots,k;\ i=1,\dots,n}$$

detta anche $matrice\ Jacobiana\ di\ f\ in\ x.$

 $f: U \to W$ come sopra è un diffeomorfismo se è liscia, invertibile e con f^{-1} liscia.

- Se $f:U\to W$ è un diffeomorfismo, allora n=k (passando ai differenziali, ci riconduciamo al caso degli isomorfismi lineari).
- Data una n-varietà TOP X, un atlante differenziabile (DIFF) $\{(U_j, \phi_j)\}_{j \in J}$ è un atlante tale che per ogni $(i, j) \in J^2$, $\phi_j \circ (\phi_i)^{-1}$, definito su $\phi_i(U_i \cap U_j)$ e a valori in $\phi_j(U_i \cap U_j)$, è un diffeomorfismo tra aperti di \mathbb{R}^n . Una struttura di n-varietà DIFF su X è individuata da un atlante DIFF massimale (cioè non propriamente contenuto in alcun atlante DIFF).
- Per specificare una struttura di varietà DIFF su X è sufficiente esibire un atlante DIFF; l'atlante massimale DIFF è implicitamente definito e viene usato per esempio ogni volta che restringiamo una carta locale (U, ϕ) a $(U', \phi|U')$, dove $U' \subset U$ è un aperto.
- Gli esempi di varieta' e atlanti visti sopra (aperti di \mathbb{R}^n , sfere S^n , \mathbf{P}^n) sono in effetti di classe DIFF.
- Il prodotto di varietà DIFF è una varietà DIFF.
- \bullet Data un'applicazione continua tra varietà DIFF $f:M\to N,$ una rappresentazione locale di fè della forma

$$\psi \circ f \circ \phi^{-1} : \phi(U) \to \psi(W)$$

dove (U, ϕ) appartiene all'atlante DIFF massimale di M, (W, ψ) all'atlante DIFF massimale di N, $f(U) \subset W$. f è liscia se per ogni $x \in M$ esiste una rappresentazione locale liscia tale che $x \in U$.

- Se f è liscia, allora ogni rappresentazione locale di f è liscia.

f è un diffeomorfismo se è liscia, invertibile e con inversa liscia.

- Sia M_0 una varietà DIFF e $f: M_1 \to M_0$ un omeomorfismo. Se \mathcal{A}_0 è l'atlante DIFF massimale di M_0 , allora $\mathcal{A}_1 = f^{-1}(\mathcal{A}_0)$ è l'atlante massimale di una struttura DIFF su M_1 per cui f è "tautologicamente" un diffeomorfismo. In particolare se $M_1 = M_0 = M$, in generale \mathcal{A}_0 e \mathcal{A}_1 sono strutture DIFF differenti su M (in altre parole $id: M \to M$ non è un diffeomorfismo), che però sono tra loro "isomorfe" (cioè diffeomorfe) mediante il diffeomorfismo f.