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1 pp-definable groups

We study the left modules over a given associative ring R with identity (we
do not require commutativity). From our point of view an R-module will be a
structure over the language LR = {0,+,−, r}r∈R, so that a module is effectively
an abelian group endowed with a family of endomorphism for every element of
R.

Notation In the following text x, y, z will denote single variables, x will denote
a tuple of variables x1, . . . , xn and in this case we define |x| := n to be the length
of the tuple. r, r1, . . . will denote elements of R.

Definition We call equation an atomic formula:

r1x1 + r2x2 + · · ·+ rnxn = 0

and positive primitive formula (ppf) a formula of type:

∃z γ1(x, z) ∧ · · · ∧ γn(x, z)

where the γi are equations.

The concept of pp-formula is most important, so we would like to give an
alternative interpretation. Suppose we have the pp-formula:

ϕ(x) ≡ ∃z γ1 ∧ · · · ∧ γn,

given x we can look at it as a proposition about the existence of a solution z to
a system of equations, or, alternatively, we ask if for a given vector x is there a
solution z to the equation:

Az = Bx

where A e B are matrices with coefficients in R.
Before moving on with the theory, let’s look at some of examples and some

properties of pp-formula:

Example Suppose R = k is a field and M = kk. We want to study the set
defined by the formula ϕ(x) with x = (x1, . . . , xn). As we said this is the set
of vectors x for which the system Az = Bx has a solution z. By a change of
basis (Gauss) we can rewrite it as:(

I 0
0 0

)(
z1

z2

)
=

(
B′11 B′12

B′21 B′22

)(
x1

x2

)
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We now see that the set defined by the equation is:

ϕ(kn) = ker
(
B′21 B′22

)
Note that this is not the same as considering M = kn, in fact in this case the
only pp-definable set turns out to be M and 0.

Example Let ϕ(x) be as in the previous example, but suppose now that R is a
PID. This time we can’t use Gauss reduction, but we can still use Smith normal
form to rewrite the equation as:

Dz = B′x,

where D is a diagonal matrix. This means that the formula ϕ(x) is equivalent
to ϕ′(x) ≡ ∃z γ′1 ∧ · · · ∧ γ′n where each γ′i(x, z) is of type:

dizi = b′i1x1 + · · ·+ b′inxn

We can also take Smith normal form of B and rewrite the equation as

A′z = D̃x,

where D̃ is a diagonal matrix. In this case each γ′i(x, z) is of type:

a′i1z1 + · · ·+ a′inzn = d̃ixi

In general we can’t give a more explicit description of a pp-definable set.
Still we can prove some important properties.

Proposition 1.1. Let ϕ(x1, . . . , xn) be a pp-formula. The set ϕ(Mn) is a
subgroup of Mn. If moreover R is commutative then it is a submodule.

Proof. Let Az = Bx be the equation associated with ϕ. The zero is in ϕ(Mn),
because the equation Az = B 0 always has the trivial solution z = 0. Let now
x1 and x2 be in ϕ(Mn). This means that we can find z1 and z2 such that
Az1 = Bx1 and Az2 = Bx2. The vector x1−x2 is then in ϕ(Mn), because the
equation Az = B(x1 − x2) has a solution (take z = z1 − z2). The last point
follow immediately from Arz = rAz = rx, for any r ∈ R.

We can easily see that, for a pp-formula ϕ(x,y), the formula ϕ(x,0) still
defines a group. The following proposition gives a characterization of the set
defined by ϕ(x,a).

Proposition 1.2. Let ϕ(x,y) be a pp-formula and a = (a1, . . . , am) be a
sequence of elements in M . Then the set ϕ(Mn,a) is empty or a coset of
ϕ(Mn,0).

Proof. If ϕ(Mn,a) is not empty, fix x0 in ϕ(Mn,a). If x1 is in ϕ(Mn,0) then
x0 + x1 is in ϕ(Mn,a) because the associated system:

Az = B

(
x0 + x1

a

)
is easily seen to have a solution. On the other hand if x0 and x1 are in ϕ(Mn,a)
then x1 − x0 is in ϕ(Mn,0).
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Last we note that pp-definable subgroups are closed under ∩ and +. In
fact we can see any equation γ(x,y) in some variables as an equation γ̃(x,y, z)
relating more variables, simply attaching zero coefficients to the new variables.
Hence we can combine two pp-formulas without mixing up existentials:

(ϕ ∩ ψ)(x) = ϕ(x) ∧ ψ(x)

(ϕ+ ψ)(x) = ∃y, z ϕ(y) ∧ ψ(z) ∧ x = y + z.

Example Let M = RR. Is easy to see that every pp-definable subgroup of M
is a right ideal.

Conversely every finitely generated right ideal is pp-definable. In fact let
g1, . . . , gn be the generators of the ideal, then the x ∈ R such that

∃z ∈ Rn (g1, . . . , gn)z = x

are precisely the elements of the ideal. It follows that every right ideal of a
noetherian ring is pp-definable and these are the only pp-definable subgroups.
The converse, that is, if every right ideal is pp-definable then R is noetherian,
is also true if we assume R to be weakly saturated (the proof is quite simple).

Example Let M be an R module. A definable subgroup of M is closed under
endomorphism of M . In fact if x ∈ M is such that ∃z(az = bx) then we also
have ∃z′(az′ = b (xϕ)), take z′ = zϕ.

Let then R = Z and M = Q. The Z-endomorphisms of Q act transitively,
so by what we just said the only pp-definable subsets of Q are 0 and Q.

The same is true if we let R = k be a field (or more generally a division
algebra) and M a k-vector space.

2 Quantifier elimination

We want to prove the following weak form of quantifier elimination.

Theorem 2.1. For every module M , every LR-formula is equivalent to a boolean
combination of positive primitive formulas. That is, given a formula ψ(x) we
can find ϕ(x) a boolean combination of pp-formulas so that:

M |= ψ(x)↔ ϕ(x)

for every x in Mn.

Let’s first introduce some convenient terminology. Fix a group G. We say
that a subset X of G is G-big if a finite number of translations of X cover G,
else we say that X is G-small. Note that a subgroup H of G is G-big if and only
if G/H is finite. We leave to the reader to verify that a finite union of small
sets is small.

Lemma 2.2 (B.H. Neumann). Let Hi be subgroups of an abelian group G. If
H0 + a0 ⊂

⋃n
i=1Hi + ai and Hi ∩H0 is small in H0 for i > k, then H0 + a0 ⊂⋃k

i=1Hi + ai
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Proof. Translating everything by −a0 and taking the intersection with H0, the
hypothesis reads H0 =

⋃n
i=1Hi +ai with Hi ⊂ H0 and Hi is H0-small for i > k.

We must prove that we can throw away the small set. Let C = H0\
⋃k

i=1Hi+ai.
If C is empty we have finished. If it is not empty then C is necessarily H0-big.
In fact H1, . . . ,Hk are H0-big (e.g. H0/Hi is finite) and by basic group theory
we deduce that H1∩ · · ·∩Hk too is H0-big. Let now c be an element in C, then
(H1∩· · ·∩Hk)+c is G-big and is contained in C, because (

⋂k
j=1Hj +c)∩ (Hi +

ai) ⊂ (Hi + c)∩ (Hi + ai) = ∅ for i ≤ k. But by hypothesis C ⊂
⋃n

i=k+1Hi + ai
and the latter is a finite union of small set, so it can’t contain a big set.

Lemma 2.3. Let Ai be sets. If A0 is finite, then A0 ⊂
⋃k

i=1Ai iff

∑
∆⊂{1,...,k}

(−1)|∆|

∣∣∣∣∣A0 ∩
⋂
i∈∆

Ai

∣∣∣∣∣ = 0.

Proof. A simple application of the inclusion-exclusion principle.

We are now ready to prove the theorem.

Proof of Theorem 2.1. The only thing we have to prove is that if ϕ(x,y) is
equivalent to a boolean combination of pp-formulas, so is ψ(y) ≡ ∀xϕ(x,y).
Note that pp-formulas are closed under conjunction, so we can write:

ϕ ≡ ¬ϕ0 ∨ ϕ1 ∨ · · · ∨ ϕk ≡ ϕ0 → ϕ1 ∨ · · · ∨ ϕk

where ϕi are pp-formulas. Set-wise this means that M |= ψ(y) iff ϕ0(M,y) ⊂
ϕ1(M,y) ∪ · · · ∪ ϕk(M,y). Setting Hi = ϕi(M, 0), by Proposition 1.2 we can
rewrite this as H0 + a0 ⊂

⋃n
i=1Hi + ai for some ai in Mn. By Lemma 2.2 we

can assume H0 + a0 ⊂
⋃k

i=1Hi + ai and H0/Hi ∩ H0 finite. We now have to
find a boolean combination of pp-formulas that express this inclusion, but being
H0 infinite this isn’t a simple task (if it were finite we could simply impose the
inclusion element by element). However if we take the quotient by H0∩· · ·∩Hk

(a H0-big set) we are left with the inclusion of a finite set:

H0/(H0 ∩ · · · ∩Hk) + a0 ⊆
k⋃

i=1

Hi/(H0 ∩ · · · ∩Hk) + ai (1)

We can now apply Lemma 2.3 to (1). Let N∆ be

N∆ =

∣∣∣∣∣
(
H0 ∩

⋂
i∈∆

Hi

)
/(H0 ∩ · · · ∩Hk)

∣∣∣∣∣ .
The set ((H0 + a0) ∩

⋂
i∈∆(Hi + ai))/(H0 ∩ · · · ∩ Hk) is empty or it has N∆

elements (Proposition 1.2), so Lemma 2.3 reads:

M |= ∀x ϕ ⇔
∑

∆∈N
(−1)|∆|N∆ = 0, (2)

where

N =

{
∆ ⊂ {1, . . . , k} | ∃x

(
ϕ0(x,y) ∧

∧
i∈∆

ϕi(x,y)

)}
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We have to prove that the sum in (2) can be written as a boolean combination
of pp-formulas. To do this, list all the (finite) N for which the sum is zero and
write a formula that says that we are in one of those cases. It is easily seen that
this can be done with boolean combination of pp-formulas.

Corollary 2.4. Two R-modules M1 and M2 are elementary equivalent iff for
every ppf ϕ ⊆ ψ we have

ϕ/ψ(M1) = ϕ/ψ(M2),

where by ϕ/ψ(M) we mean [ϕ(M) : ψ(M)] if it is finite, or else ∞.
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