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z¢-Interpretations of Modal Logic.

ALESSANDRO BERARDUCCI

Sunto. — Consideriamo la logica modale predicativa della dimostrabilits nella
Aritmetica di Peano (PA), in cui peré la interpretazione di ogni formula
modale atomica viene ristretta ad appartenere all'insieme Z3. Viene dimo-
strato che per distinti m le corrispondenti logiche modali formano una
gerarchia stretta e che ognuna di esse ¢ IT3-completa.

1. - Introduction.

The language L, of (predicate) modal logic consists of a coun-
table set of n-ary relation symbols (for every n > 0), propositional
constants (i.e. 0-ary relation symbols), variables, boolean connec-
tives, quantifiers, and the unary operator O (box). In other words
we expand the language of first order logic (without identity and
function symbols) by adjoining the operator O0. An (arithmetical)
interpretation of the modal language L, is a map f which assigns
to every formula 6 of L,, a formula 6’ of the (first order) language
of Peano Arithmetic (P4) having the same free variables and such
that f commutes with boolean connectives and quantifiers and in-
terprets the [J-operator as the provability predicate of PA. So for
example (VzO 6(x))’ = V& Thm,, (sub([0(v,)’], #)). The usual con-
ventions about renaming of bound variables are assumed. We also
require that f commutes with substitutions of variables, hence if
two atomic formulas differ only by a change of variables so do
their interpretations. Clearly f is determined by its restriction to
the atomic formulas. The (predicate modal) logic of provability is
the set of all the modal formulas 6 such that for every arithme-
tical interpretation f, PA 6" So for example O Vz A(r)—
— Vo A(z) belongs to the logic of provability. In [Var85] Var-
dayan showed that the logic of provability is J7%-complete (thus
answering a question by F. Montagna in [Mon84]). For I' a set
of formulas of PA and f an (arithmetical) interpretation, we say
that f is a Iintepretation if A’ I whenever A is atomic. The
Ilogic of provability is the set of all the (predicate) modal for-
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mulas 6 such that for all I-interpretations f, PA+ 7. So for ex-
ample 4 —0O A belongs to the Xj-logic of provability but not to
the I7%-logic of provability. Let S, be the X}-logic of provability
and P, be the II'-logic of provability. It is clear that §,2 8.4
and P,2 P,y (n>1). We prove that all these inclusions are strict
and that for each »>1 the modal theories S, and P, are I13-com-
plete (so in particular they are not recursively axiomatizable).
Note that in this terminology the logic of provability is just the
intersection of all the theories S, (and is II3-complete by Var-
dayan’s result). To extablish our results we will use a technique
employed in [Var85], [Art85] and [BM87], namely a formalized
version of Tennenbaum’s theorem (every recursive model of PA
is standard), which we will present in the next section. To place
our results in their context we want to mention some related in-
vestigations about the «true» logics of provability. In [Sol76]
R. Solovay proved that the true propositional modal logic of prov-
ability, namely the theory {0 propositional modal formula |Vf,
o =0}, is decidable. In [Art85] Artemov showed that the true
predicate modal logic of provability is not arithmetical and in
[BM87] Boolos and McGee proved that this theory is actually
II%-complete in the theory of w. From the proof of our results it
will follow that the true Z’-logics of provability, namely the pre-
dicate modal theories {| for every X -interpretation f w =6}, are
all distinet for different natural numbers »>1.

2. — Tennenbaum’s theorem.

Tennenbaum’s theorem. says that every recursive model of PA
is standard (it is known on the other hand that there are 4; non-
standard models of P4). It turns out that the full strenght of P4
is not actually needed, a big enough finitely axiomatizable sub-
theory, for example I.X, will suffice. So if M is a recursive model
of IX,, then M ~ w. Our next goal is to state a formalized ver-
sion of Tennenbaum’s theorem which is provable in PA. In the
following we will always assume that the language L, of modal
logic contains L(PA) (formulated as a relational language). So
L, contains the relation symbols O(z) (zero), s(,y) (successor),
+ (x, 9, 2), - (@, 9, 2), ® =y. An arithmetical interpretation f of L,
induces a model of the language L(P4) (with underlying set o)
simply by interpreting 0, s, -+, -, = as the relation defined by
0/, 8%, 7, -7, =’ in . We do not assume that =’ is the identity
relation. Let y;; be a sentence which axiomatizes IZ;. Since
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L, > L(PA), y;5, is a sentence of L,, so it makes sense to speak
of the relativized sentence yJy (which is a sentence of P4). Now
let A(x) be a formula of PA. We express, in PA, the fact that
{x|A(x)} is recursive by:
3¢ Vax [A(x) — {6}(x) = 1A- A(x) > {}(x) = 0] .

In the following definitions f is a fixed arithmetical interpretation

- of the modal language L.

DEFINITION. — « f induces a recursive model of IX» is defined
as the sentence of PA obtained by taking the conjunction of yf,,
and the sentences expressing that 07, s, +/, -/, =’ are recursive.

Notice that if the sentence just defined holds (in the standard
model), then the structure of the language of PA induced by f
is indeed a recursive model of IX;. As already remarked we do
not assume that =7 is the identity relation, hovewer if I.X, holds,

" then in particular =’ is a congruence, hence we can consider the

quotient structure modulo =’ (which will still be a model of I12}).
The fact that this quotient model is standard can be expressed in
PA as follows:

DEFINITION. — « The quotient model induced by f is standard»
is' the sentence Vy 3z R,(z, y) where R,(w,y) is the formula of P4
which naturally expresses the following: Ju:w codes a finite se-
quence of length # + 1 and

1) u(@) =y;
2) Ve<ua, ¢'(u(z), uw(z +1));
3) u(0) = 07 (that is Iz, wlu(z) = wA0(z) A0’ (w)]).

REMARK. — Note that y}; implies, in PA, that Va Iy B,(z, y).
‘We can think at R, as the graph of an embedding of the standard
model into the model induced by f (except that =’ migh not be
the identity). So Vy 3z B,(w, y) says that this embedding is onto.
Notice that if f is a ZC-interpretation, then R,(z, y) is a Z5-formula.
This will be important in the sequel.

The promised formalized version of Tennenbaum’s theorem,
which we state without proof, is the following:

THEOREM 1. — For every interpretation f PA proves: « f induces
a recursive model of IX,» — «the quotient model induced by f is
standard ».
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This version of Tennenbaum’s theorem is essentially Lemma 4
of [BM87]. The results of [Art85], [Var85] and [BM8T7] are all based
on the above theorem and on the existence of a modal sentence I
(of L,) such that for every interpretation f, the relativised sentence
I’ implies, in PA, that f induces a recursive model of T2y

DEFINITION. — The modal formula «I» is the conjunction of
the following:

1) s,
2) -0+

3) Va, @y, 25(A(x) >0 A(x))
where A ranges over the atomic and negated atomic formulas
of PA, that is A(x) is one of the following: 0(w), s(zy, 22),
C (@1, By ), (@1, B, B), Ty = T, Or the negation of one of
these formulas.

THEOREM 2. — For every interpretation f PA proves: I — «f in-
duces a recursive model of IX)».

PROOF. — I’ says that PA is consistent and that the relations
0, s/, -7, -1, =7 are decided by PA. This clearly implies that
these relations are recursive.

COROLLARY. — For any sentence ¢ of PA (and every interpre-
tation f) PA proves I’ — [p <> ¢’]. More generally for any formula
@(x) of PA, PA proves: I’ implies @(x) <> ¢(y)" whenever the 2’s
and the #’s satisfy the relation Ry(w, ¥)-

PROOF. — By meta-induction on ¢ using the fact that I implies
that the quotient model induced by f is standard.

This result can be extended as follows (with a similar proof):
Let A(y) be a new predicate symbol (not in L(PA)), let p[A] be
a sentence in the enriched language, and let F be the sentence
expressing the fact that « = » is a congruence (even with respect
to the new predicate 4). Then we have:

TEEOREM 3. — PA proves (IAEY — (p[A]«<> @[AY) where
A@) =y [47(y) AR,(w, y)]. More generally PA proves that (INEY
implies p[A](x) <> p[A)(y) whenever the a's and the y's satisfy the
relation R, (z, y)

We can think at A as the isomorphic image in the standard
model of the set defined by A’ in the quotient model induced by f
(this makes sense since —’ is a congruence with respect to A7).
For the details of the proof the reader can see [BM87] (Lemma 7).
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3. — Z}-completeness.

We are finally in a position to prove that the theory S, (n>1)
defined in the introduction is I7;-complete. It is clear that 8, is
a II? set of formulas. To prove that it is complete we will show
that for every ¢cw we can effectively find a modal sentence 0,
of L, such that

{¢} is total«> for each X)-interpretation f, PA 0]

This will suffice since {e|e is total} is IT;-complete.

Our modal language L, will include L(PA) and a new unary
relation symbol A(z). For n>1 we know that there is a XP-for-
mula of PA, Truey(,y), which gives a truth definition for Z}-for-
mulas of PA with one free variable. So if 6(v,) € 2y and 2 = [6(,)],
then Truess(w,y)«>0(y) (provably in PA). Since I, L(PA4),
Trueys(s, y) is a formula of L,.

DEFINITION. — Let B,[A] be the formula (of L,) which says
that Vo if v is the least number such that Vy [Truez:(v, ¥)«> A(y)],
then (Vu<v){e}(u)|.

DEFINITION. — Let # be the formula (of I,) which says that
« =» i3 a congruence (even with respect to the new predicate A(w)).

DEFINITION. — 6, is the modal formula IAE — B,[A]. Note
that the O-operator appears only in the subformula I.

THEOREM 4. — For n>1, {¢} is total <> for each Z)-interpretation
f, PA—6].

PROOF. — (—): Suppose {¢} is total. Let f be a Xj-interpre-
tation. We have to show that PA w6, that is PA +— (INE —
— B[A])!. Let M |=PA. Assume (IAE) holds in M. Let A(x) =
= 3y (A/(y)\Ry(®, y)). Then, in M, B,[AY <> B,[A] (by the results
about Tennenbaum’s theorem). Therefore it is enough to show
that B,[4] holds (in M). Now B,[A] says that if v is the least
element such that Vy [Truez(v, ¥) <> A(y)] then (Vu<o){e}(u)}. So
let v &€ M be such a least element. Since f is a ZJ-interpretation,
A7e X} and (by a previous remark) R,e X°. It follows from the
definition of 4 that A eZX?. Thus clearly v<[A]. So » is stand-
ard. Now {e} is total and « {e}(x)} » is a Z}-assertion, so for every

standard n, M = {¢}(n)|, whence M = (Vu<v){e}(u)| and we are
done.
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(«): We will prove the following stronger assertion: if for
every X%-interpretation f, o =0}, then {¢} is total. So assume the
antecedent. Let ke w and let f, be the X3 -interpretation defined
as follows:

1) f. is standard on L(PA)
(that is 07, s*, +7, -/, =’ coincide with 0, s, +, -, =)

2) An(y) > (y = k) _
(more precisely A’(y) is the 2}-formula of our relational lan-
guage of PA which naturally expresses «y =1F& »)

By hypothesis o =07, that is o = (IAE — B,[A])* Since f,
is standard on L(PA4), = (IAE)" Therefore, w =B[4]* So,
using again the fact that f. is standard on L(PA), w = B[4"].
Hence, by definition of B,, if v, € w is the least number such that
Vy [Truez(v, y) <> A%(y)], then (Vu<v){e}(w)} (in w). So to
prove that {¢} is total it is enough to show that if &k —-oo, then
v, —oco. But this is clear since the map which sends % to v, is
inijective.

4. — Hierarchy theorem.

'We will prove that all the inclusions 8,2 8,4, (n>1) are strict;
this will follow immediately from the following stronger result:

THEOREM 5. — For every n>1 there is a modal sentence 0, such
that: '

1) for each Z°-interpretation f, PA 0,
2) there is a ITC-interpretation | such that o |7 6},

Like in the previous proofs our modal language will include
L(PA) and a new unary predicate A(z). The formulas I and ¥
are defined above. We recall in particular that F says that « =»
is a congruence even with respect to 4. The desired modal sen-
tence 0, = 0,[A] is defined as follows:

DEFINITION. — 0,[A] = (IAT) ~ 3¢ Va [4 (@) <> Truez(e, 2)]

PrOOF OF THEOREM 5. — 1) Let f be a X -interpretation. So
A7 e 2° and (by a previous remark) B, € Z3. Let A(s) = Jy [4/(y)A
ARz, y)]. Then 4 is also X, so there is a natural number ¢ € w
such that PA — Val[A(2)<> Truezs(¢, #)]. Let M be a model of PA.
‘We have to show that M =0,[A). So assume that (IAE) holds
in M. Let ¢ € M be such that M= R,(e,¢'). Since M |=PA4,
M = Va[A(w) <> Trueym(e, ). So by the results about Tennen-
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baum’s theorem, M = Va[A(2) <> Truez(¢', #)I, whence M =0,[4]
and we are done.

2) For the second part choose f so that f is standard on
L(PA) and A’ is a II’-formula which is not equivalent, in w, to
any ZXS-formula (for example A’(z)= - Trues(w,»)). Since f is
standard on L(PA), (IAE) holds (in w), but on the other hand
JeVaw[A!(x) <> Truegs(e, )] is false. Thus w |+ 0,[4]) (note: since f
is standard on L(PA), 0.[A) = 6,[A47]). This completes the proof
of the hierarchy theorem.

REMARK. — From the hierarchy theorem it also follows that the
predicate modal theories {f|for every Zy-interpretation fw =6},
are all distinet for different natural numbers n>1.

5. — II -interpretations.

In this section we extende our analysis to I7,-interpretations.
With a proof completely similar to the one that the Xi-logics of
provability form an hierarchy, we can prove the analogous result
for the I7)-logics of provability, namely P,., strictly includes P,
(P, and 8, are defined in the introduction). It is also easy to see
that P, and 8, are many-one reducible to each other (whence P,
is also IT%-complete). To see this let § be the result of replacing
each atomic subformula of 6 by its negation, then the map which
sends 0 to § gives both reductions. Notice that for II’-interpreta-
tions f the relation R, is not necessarily /I3, so we cannot give
a direct proof of the fact that P, is I73-complete analogous to the
one for §,.

I want to thank Prof. Robert Solovay for many helpful discus-
sions concerning the modal logic of provability.
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