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Structures

A structure M is a non-empty set M = dom(M) equipped with some
functions, constants, and relations.
Groups, rings, modules, ordered sets, boolean algebras, are examples of
structures.
Each structure has a language L, consisting of the “symbols” (or “names”) of
its functions, constants, and relations.
The language of ordered rings consists of the symbols ≤,+, ·, 0, 1.
Each symbols of L has a “type”, speficying whether it has to be interpreted as
a function, a relation or a constant, and its “arity” (numer of arguments).
Given two structures M,N in the same language L, a morphisms from M to
N is a function f : M → N which preserves the intepretation of the symbols
of L.
Sometimes it is convenient to consider many-sorted structures, with more
than one domain and functions and relations between the various domains
(for instance a valued field). For the moment we consider one-sorted
structures.
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Examples

Three of the most important structures in mathematics are:

1 (Z,+, ·), a “gödelian” structure;
2 (C,+, ·), a “stable” structure;
3 (R, <,+, ·), an “o-minimal” structure.

In the early foundational period logicians were mostly interested in gödelian
structures, focusing on indecidability and incompleteness results.
The study of stable structures brought to light connections with algebraic
geometry (e.g. [Hru96]).
O-minimal structures, have an order < and a topology induced by the order.
Real-algebraic and subanalytic geometry, as well as PL topology, fit into this
context. They recently have found applications to number theory
(e.g. [Wil04, PZ08, PW06]).
NIP structures encompass both the stable and the o-minimal structures. Keisler
measure play a key role in their study.
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Formulas

Given a language L, the L-formulas are expressions built up from:

1 the symbols of the language L (namely the names of the functions, constant
and relations);

2 the equality sign;
3 variables and parenthesis;
4 the boolean connectives, and the quantifier ∀x and ∃x

According to the following grammar:

Term ::= variable | constant | function symbol applied to terms
Formula ::= (Term = Term) | relation symbol applied to terms | (Formula
∧Formula) | ¬Formula | ∀xFormula | etc.

Terms are generalizations of polynomials. Given a structure, they represent
functions on the structure. Formulas represent statements about the structure and
its elements. The variables range in the domain of the structure.
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Definable sets

Given an L-structure M, and an L-formula ϕ(x̄) with free variables included in
x̄ = (x1, . . . , xn), we write

{ā ∈ Mn : M |= ϕ(ā)},

for the set of n-tuples from M satisfying the formula (also denoted ϕ(M)).
A ∅-definable set in M is a set of the form {ā ∈ Mn : M |= ϕ(ā)} for some
L-formula ϕ(x̄);
A definable set in M is a set of the form {ā ∈ Mn : M |= ϕ(ā, b̄)} for some
L-formula ϕ(x̄ , ȳ) and parameters b̄ from M.
If the parameters b̄ belong to a subset B of M we say that the set is
B-definable (so “definable” means “M-definable”). We consider ϕ(x̄ , b̄) as a
formula with parameters from b̄, or “over B”.
Formulas with no free variables are called sentences. They are either true or
false in M.
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Example

In the structure (N; +, ·, 0, 1) the set P of primes is definable:

n ∈ P ⇐⇒ N |= ∀x , y(x · y = n→ x = 1 ∨ y = 1).

The factorial function is also definable in the same structure. Indeed, by Gödel’s
theorems, every computable function is definable in (N; +, ·, 0, 1), as well as many
non-computable ones.
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Adding constants to the language

1 In (R,+, ·) the non-negative elements are ∅-definable: x ≥ 0 iff ∃y(y2 = x).
2 A circle of radious r is definable with parameter r ∈ R (by the formula

x2 + y2 = r2).
3 If r is real algebraic, the circle of radious r is ∅-definable. �
4 The positive elements are not definable in (R,+, 0). �

Given a subset A ⊆ M, we can turn A-definable subsets of Mn into ∅-definable
sets by working in a bigger language L(A) ⊇ L obtained by adding constants for
the elements of A, and considering M as an L(A)-structure. Formally we should
use a different notation, so we denote by MA, or (M, a)a∈A, the expansion of M
to the bigger language.
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Theories and elementary equivalence

A L-theory T is a collection of L-sentences, called the axioms of T .
By the compactness theorem, if every finite T0 ⊆ T has a model, then T has
a model.
We write T ` ϕ if ϕ is true in all the models of T .
Again by compactness, T ` ϕ iff T0 ` ϕ for some finite T0 ⊆ T .
This has non-trivial consequences such as: if a sentence ϕ in the language of
rings is true in all fields of characteristic zero, then it is true in all fields of
sufficiently big finite characteristic.
An L-theory T is complete if for every L-sentence ϕ, either T ` ϕ or T ` ¬ϕ.
The complete theory of M, written Th(M), is the set of all L-sentences true
in M.
M and N are elementarily equivalent, written M ≡ N, if Th(M) = Th(N).
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Morphisms

Given two structures M,N in the same language L, a morphism from M to N

is a function f : M → N which preserves the intepretation of the symbols of
L (e.g. the ring morphims Z→ Z/nZ).
An isomorphism is an invertible morphism (whose inverse is a morphism).
A morphism is an embedding if is an isomorphism towards its image.
M is a substructure of N if M ⊆ N and the inclusion map is an embedding. .
An elementary embedding is an embedding f : M→ N such that, for any
L-formula ϕ(x1, . . . , xn) and a1, . . . , an ∈ M, M |= ϕ(a1, . . . , an) iff
N |= ϕ(a1, . . . , an). Taking n = 0, this implies Th(M) = Th(N).
M is an elementary substructure of N, written M � N, if M ⊆ N and the
inclusion map is an elementary embedding.

1 Q is a substructure of R but it is not an elementary substructure �.
2 A structure M can have a substructure N ⊆M isomorphic to itself (hence

elementary equivalent) which is not an elementary substructure �.
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Model completeness

A theory is model complete if every embedding among models of T is an
elementary embedding.
Equivalently, every formula is equivalent in T to an existential formula.
By Tarski’s elimination of quantifiers, the complete theories of (C,+, ·, 0, 1)
and (R, <,+, ·, 0, 1) are model complete.
Model completeness allows to “transfer” first-order information (given by
L-formulas with parameters) from one model to another. For instance if a
system of polynomial equations with coefficients in C has a solution in some
algebrically closed field K ⊃ C, then it has a solution in C.

Macintyre’s article in [Bar77] contains more information and applications of
model-completeness.

Alessandro Berarducci (Dipartimento di Matematica Università di Pisa)Short course on definable groups: part I Leeds, 17-19 Jan 2015 11 / 134



Types

Fix a L-structure M and a subset A ⊆ M. Let p(x̄) be a collection of
L(A)-formulas ϕ(x̄) with free variables included in x̄ .

We say that p(x̄) is a type of Th(MA) if it is finitely satisfiable in M, namely
for every finite set {ϕ1(x̄), . . . , ϕn(x̄)} ⊆ p(x̄) there is a tuple b̄ from M such
that M |=

∧
i≤n ϕi (b̄).

(More generally p(x̄) is a type of a theory T if p(x̄) ∪ T has a model.)
For instance if M = (R, <,+, ·) we may consider the type
p(x) = {x > n : n ∈ N}.
By the compactness theorem, given a type p(x̄) of Th(MA) there is N �M

and b̄ in N such that N |= p(b̄), namely N |= ϕ(b̄) for all ϕ(x̄) ∈ p(x̄). We
say that b̄ realizes p(x̄).
For instance, there is an elementary extension M � R with an element a ∈ M
bigger than any natural number. Its inverse 1/a is infinitesimal. We can
re-interpret dy/dx in terms of infinitesimals as in Robinson’s “non-standard
analysis”.
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Complete types

A type p(x̄) of Th(MA) is complete if for every L(A)-formula ϕ(x̄), either
ϕ(x̄) or ¬ϕ(x̄) belongs to p(x̄).
If b̄ is a tuple from M, the type of b̄ over A is the collection tpx̄(b̄/A) of all
L(A)-formulas ϕ(x̄) such that M |= ϕ(b̄). Clearly tpx̄(b̄/A) is a complete
type.
In (R, <,+) there are three types of elements over ∅: positive, negative, zero
�.
In (R, <,+, ·) every element has a different type over ∅ �.
If x̄ = (x1, . . . , xn), the family of complete types p(x̄) of Th(MA) is denoted
Sx̄(A) or Sn(A) (We omit M from the notation since if N �M, then
Th(MA) = Th(NA).)
Each complete type of Th(MA) is the type of some tuple in some elementary
extension N �M.
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Types and ideals

Complete types can be see as a generalization of prime ideals.
Given an algebraically closed field K , there is a bijective correspondence
between the prime ideals of K [x̄ ] and the complete types p(x̄) ∈ Sx̄(K ). If
p(x̄) ∈ Sx̄(K ), the prime ideal Ip ∈ Spec(K [x̄ ]) associated to p(x̄) consists of
all the polynomials f ∈ K [x̄ ] such that the formula “f (x̄) = 0” belongs to
p(x̄) �.
The unique complete type containing all the formulas of the form f (x̄) 6= 0
corresponds to the zero ideal.

The article of Marker in [MMP96] contains more information.
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Saturation

Definition
If κ is an infinite cardinal, a structure M is κ-saturated if every type with < κ
parameters from M is realized in M. If κ is the cardinality of M we say that M is
saturated.

The field of real numbers is not saturated. Indeed the type containing all the
formulas x > n with n ∈ N is not realized in R.
The field of complex numbers is saturated.

Theorem
Given κ, every structure M has a κ-saturated elementary extension.

The question whether one can find a κ-saturated elementary extension of
cardinality κ involves set-theoretic subtlelties (one needs the generalized
continuum hypothesis or some stability assumptions). For our purposes it is
harmless to ignore these difficulties and pretend that saturated extensions always
exist.
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Galois theoretic intepretation

A definable set X in M can be seen as a “functor” which associate to each N �M

a definable set X (N) in N (= the set defined by the same formula). We write X
instead of X (N) when N is clear from the context or irrelevant.

Fact
Two n-tuples b̄, c̄ of M have the same type over A ⊆ M iff there is an
elementary extension N �M and an automorphism of N fixing A pointwise
and taking b̄ to c̄ .
Let A ⊆ M. Suppose that X is definable in M. Then X is definable over A iff
for every N �M, X (N) is setwise fixed by any automorphism of N fixing A
pointwise. (We say that X is A-invariant.)

The set of positive elements is not definable in (R,+) since x 7→ −x is an
automorphism of (R,+) which takes positive to negative elements.

The set of even numbers is not definable in (N, 0, succ) �(hint: reason by
contradiction and go to an elementary extension).
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Tame and wild structures

Loosely speaking a structure is “tame” if its definable sets are not too
complicated. A necessary condition is that the ring of integers is not definable.

Examples
1 Let M = (C,+, ·). A set X ⊆ Mn is definable iff it is constructible namely a

boolean combination of affine algebraic varieties.
2 Let M = (R, <,+, ·). A set X ⊆ Mn is definable iff it is semialgebraic,

namely a boolean combination of sets defined by polynomial inequalities
p(x1, . . . , xn) ≥ 0.

3 Let M = (R, <,+, ·, sin(x)). The definable sets are very complicated, for
instance one can define the Mandelbrot set or the Peano curve

In the last structure one can define the ring of integers: n ∈ Z iff sin(nπ) = 0.
One can also find a definition without parameters �.
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Strongly minimal structures

Definition
An structure M is minimal if every definable subset of M is finite or cofinite. We
say that M is strongly miminal if all the structures elementary equivalent to M are
minimal.

Example
By Tarski’s elimination of quantifiers, the field (C,+, ·) is strongly-minimal.

There is a vast literature on strongly minimal structures and more generally on
“stable” structures. Moreover, there are various monographs on stable groups of
finite Morley rank [BN94]. In this lectures I will concentrate on groups definable in
a different kind of structures, the “o-minimal” ones.
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O-minimal structures

Definition
An ordered structure M = (M, <, ...) is o-minimal if every definable subset of M is
a finite union of points and intervals (a, b) with a, b ∈ M

⋃
{±∞}.

Example
By Tarski’s elimination of quantifiers, the ordered field (R, <,+, ·) is o-minimal
(so the subset Z is not definable).

Remark
If M is o-minimal, any definable set X ⊆ M has a sup in M ∪ {+∞}. Moreover X
is either finite or it contains a non-trivial interval.
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Examples

The following are o-minimal
(R, <,+, ·);
Any real closed field M = (M, <,+, ·);
(R, <,+, ·, exp) [Wil96];
(R, <,+, ·, exp, f )f∈an where an is the collection of all the real analytic
functions restricted to a compact box [a, b]n ⊂ Rn [vdDM94, vdDM95]

(Q;<,+, ·) is not o-minimal (the integers are definable [Rob49]).
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Definably complete exponential fields

Definition
A definably complete exponential field M = (M, <,+, ·, exp) is an ordered field
with a differentiable exp : M → M satisfying exp(0) = 1 and exp′(x) = exp(x)
and such that every definable set has a sup in M ∪ {+∞}.

Theorem (see [BS04, FS10, FS12, Hie11])
Every definably complete exponential field is o-minimal.

The theory of definably complete exponential fields is not known to be complete.
If it were, the theory of Rexp would be recursively axiomatizable, hence decidable
(a major open problem of Tarski).
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Topology

Definition
Let M = (M, <, . . .) be o-minimal. Put on M the topology generated by the open
intervals (a, b) and on Mn the product topology.

When M 6= R this topology is rather bad:
intervals [a, b] are neither connected nor compact;
M2 can be homeomorphic to M.

However:
intervals are definably connected: they cannot be written as the union of two
definable non-empty open subsets X .
there is no definable bijection from M2 to M.
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Piecewise monotonicity and uniform bounds

Assume M o-minimal.

Theorem ([PS86], see also [vdD98])
If f : (a, b)→ M is definable, there are a = a0 < a1 < · · · < aN = b such that, for
every i , the restriction of f to (ai , ai+1) is constant, or strictly increasing and
continuous, or strictly decreasing and continuous.

Theorem ([KPS86], see also [vdD98])
If f : X → Y is definable, there is k ∈ N such that all the fibers of f of cardinality
> k are infinite.

The existence of uniform bounds implies that every structure elementary
equivalent to an o-minimal one is o-minimal�. For instance, together with R, we
get all the real closed fields.
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Cells

A cell in M is an open interval (possibly unbounded) or a point.
A cell in Mk+1 is either:

I the graph of a definable continuous function f : C → M, where C ⊂ Mk is a
cell,

I or the region (f , g)C = {(x , y) ∈ C ×M | fx < y < gx} bounded by two such
functions. (We allow f = −∞ or g = +∞.)

Any cell C is definably homeomorphic to an open subset of Md for some d
and we define dim(C ) = d .
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Cell decomposition theorem

Theorem ([KPS86], see also [vdD98])

Any definable subset of Mk can be partitioned into cells
Given a definable function f : X → Y there is a cell decomposition of X
(definable over the same parameters) such that f is continuous on every cell
of the partition.

Corollary
Every definable function f : X → Y is continuous almost everywhere.

Proof.
The union of the cells of X of maximal dimension is open and dense in X .�
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Algebraic closure, definable closure

Definition
Given a structure M and A ⊆ M we say b ∈ acl(A) if b belongs to a finite
A-definable set X . If X has only one element, we say b ∈ dcl(A).

Examples
In (C,+, ·) we have

√
−1 ∈ acl(∅) witnessed by the ∅-definable finite set

{x : x2 = −1} (note that 1 is ∅-definable).
In general, given a ∈ C, we have

√
a ∈ acl(a).

In (R,+, ·),
√
2 ∈ dcl(∅).

In general, in any ordered structure, acl = dcl �.
In R or C the field-theoretic algebraic closure coincides with the
model-theoretic one �(use Tarski’s quantifier elimination).
In any structure, b ∈ dcl(ā) iff there is a ∅-definable (partial) function f such
that b = f (ā) �.
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Steinitz exchange property

Definition
A structure M has the exchange property if for all a, b ∈ M and A ⊆ M

b ∈ acl(Aa) & b /∈ acl(A) =⇒ a ∈ acl(Ab),

where Aa := A ∪ {a}. A complete theory T is pregeometric if every model of T
has the exchange property. We say that M is pregeometric if Th(M) is
pregeometric.

Examples
(R,+, ·) and (C,+, ·) are pregeometric (in fact “geometric”, see below).
(Z, |) does not have the exchange property (x |y means “x divides y ”).
� Hint: 3 ∈ acl(15), but 15 /∈ acl(3) because every permutation of the
primes induces an automorphism of (Z, |).
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O-minimal =⇒ exchange property

Theorem ([PS86, Theorem 4.1])
O-minimal structures have the exchange property (i.e. they are pregeometric).

Proof.
Suppose b ∈ acl(Aa) and b /∈ acl(A). We need to show a ∈ acl(Ab).
In ordered structures, acl coincides with dcl.
So there is an A-definable (partial) f : M → M such that b = f (a).
Since b /∈ acl(A), b lies in the interior of an open A-definable interval I on
which f is striclty monotone.
So a = g(b) where g is the inverse of f in that interval.
Hence a ∈ acl(Ab).
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Dimension of types, transcendence degree

Let M be pregeometric, let A ⊆ M and let ā be a tuple from some elementary
extension of M.

Definitions
dim(ā/A) is the least cardinality of a subtuple ā′ of ā such that ā ⊆ acl(Aā′).
dim(ā/A) depends only on the type p(x̄) of ā over A.
Given p ∈ Sx̄(A), define dim(p) := dim(ā/A) where ā is a realization of p(x̄)
(in some N � M).
A set I ⊆ M is independent (over A) if, ∀b ∈ I , b does not belong to the
algebraic closure of I \ {b} (union A).

If M is an algebraically closed field, dim(ā/A) coincides with the transcendence
degree of ā over the subfield generated by A. �
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Properties

1 dim(ā/A) is the cardinality of any maximal independent (over A) subtuple of
ā.

2 (monotonicity) If A ⊆ B, dim(ā/A) ≥ dim(ā/B);
3 (additivity) dim(āb̄/A) = dim(ā/Ab̄) + dim(b̄/A);
4 (extension) If p(x̄) ∈ Sn(A) and A ⊆ B, then there is p′(x) ∈ Sn(B) such

that p ⊆ p′ and dim(p) = dim(p′).
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Dimension of definable sets

Definition
Given a model M of a pregeometric theory and an A-definable set X ⊆ Mn, let

dim(X ) = max{dim(a/A) : a ∈ X}

where the tuple a may belong to an elementary extension N � M (i.e. a ∈ X (N)
for some N � M).

1 dim(X ) does not depend on the choice of A by the extension property �.
2 If M is ω-saturated, there is no need to go to an elementary extension.
3 If M is o-minimal, the definition of dim(X ) agrees with the previous

definition of dimension of a cell. In particular dim(X ) ≥ n iff there is a
definable f : X → Mn whose image contains an open subset of Mn �.
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Examples

Dimension of the circle
1 In (R,+, ·) the circle x2 + y2 = 1 has dimension 1 because you can find a

point (a, b) ∈ R2 in the circle with a trancendental (so dim(ab/∅) = 1).
2 Consider the real algebraic numbers Ralg := Q ∩ R. In this field there are no

transcendental elements, but the circle has still dimension 1 (because you can
find transcendental elements in elementary extensions).

Definition
Let X be a A-definable set. A point a ∈ X is generic over A if
dim(X ) = dim(a/A). (To find a generic point you may need to go to an
elementary extension.)
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Properties of dimension in pregeometric theories

In a model of a pregeometric theory T we have:
1 dim(X ) = 0 iff X is finite and non-empty. The empty set has dimension −∞.
2 (Additivity) If f : X → Y is definable and all the fibers of f have constant

dimension k , then dim(X ) = dim(Y ) + k .
3 (Monotonicity) dim(X ∪ Y ) = max{dim(X ), dim(Y )}.
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Geometric theories

We say that T is geometric if it is pregeometric and satisfies the following
equivalent properties:

(Definability of dimension) For every definable function f : X → Y and
k ∈ N, the set {y ∈ Y : dim(f −1(y)) = k} is definable.
(Uniform boundedness) for every L-formula ϕ(x , ȳ) there is n ∈ N such that,
in every model, ∃∞xϕ(x , ȳ) ⇐⇒ ∃≥nxϕ(x , ȳ), where ∃∞ means “there are
infiniteley many”.

A structure is geometric if its complete theory is geometric.

O-minimal structures are geometric (for instance real closed fields).
Strongly minimal structures are geometric (for instance algebraically closed fields).

Note that the theory of (N, <) does not have uniform bounds �.
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Definable groups

A definable group in M is a definable set G ⊆ Mn with a definable group
operation.

(Assume M has field operations)
An algebraic subgroup of GL(n,M), like for instance:

SO2(M) =

{(
a −b
b a

)
: a2 + b2 = 1

}
.

An elliptic curve y2 = x3 + ax + b in P2(M) or P2(M[
√
−1]) (we can identify

Pn(M) with a subset of Mn+1 using charts).
More generally, an abelian variety.
Finally we observe that every compact real Lie group is definable in the
o-minimal structure Ran.
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One-dimensional examples

Assume M = (M, <,+, ·, . . .) expands a field. Besides (M,+) and (M 6=0, ·) we
have the following one-dimensional examples of definable groups:

1 SO(2,M).
2 T := [0, 1) ⊆ M with addition defined by

x + y mod (1) =

{
x + y

x + y − 1
if x + y < 1
if x + y ≥ 1

3 For a > 1, the group [1, a) ⊆ M with multiplication defined by

x · y mod (a) =

{
x · y
x · y/a

if x · y < a

if x · y ≥ a

When M = (R,+, ·) these groups are isomorphic to S1 ∼= R/Z, but the
isomorphism may not be definable in L = {+, ·} (need sin, cos, exp).
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Elimination of imaginaries

Let M be a structure (one-sorted, for simplicity).

If G is a definable group in M and H C G is a definable subgroup, in general the
quotient G/H is not definable in M (since its domain is not a subset of Mn).

One way to deal with this problem is to assume that Th(M) has “elimination of
imaginaries”.

Definition
Given a complete theory T , we say that T has elimination of imaginaries if (in any
model of T ) for every definable equivalence relation E on a definable set X there
is a definable set Y and a definable surjective function f : X → Y (over the same
parameters) such that xEy ⇐⇒ f (x) = f (y). In this case we can identify X/E
with Y and consider it as a definable object.
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Imaginaries in o-minimal structures
Assume M = (M, <,+, ·, . . .) is an o-minimal expansion of a divisible group.
Then Th(M) is geometric and has elimination of imaginaries (because we can
definably pick representatives equivalence classes, see [vdD98, p. 94]).
Example: to pick a representative c from the interval (a, b), let
c := (a + b)/2.
Given a definable group G in M and a definable subgroup H < G (not
necessarily normal), we may then consider the coset space G/H as a
definable set in M.
By the addivitity of dimension,

dim(G/H) = dim(G )− dim(H)

Since the non-empty sets of dimension zero are exactly the finite sets, it
follows that [G : H] is finite ⇐⇒ dim(H) = dim(G ).
An arbitrary o-minimal structure M may not have elimination of imaginaries
[Joh14].
However any definable group G in M (with the induced structure from M)
does have elimination of imaginaries [Edm03, Thm. 7.2],[EPR14], so G/H
can always be considered as a definable set in M and the dimension formula
remains valid.
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Meq

Given any structure M there is a related structure Meq which eliminates
imaginaries. Given a definable equivalence relation E on a definable set X the
quotient X/E is definable in Meq “by definition”.

Definition of Meq

For each ∅-definable set X in M and each ∅-definable equivalence relation E
on X , the structure Meq has a sort SE for elements ranging in X/E and a
function symbol πE for the projection X → X/E .
Taking for E the equality relation, we can identify the elements of the “home
sort” M with the elements of sort S= of Meq.
The language Leq of Meq includes L and the various πE : S= → SE .
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Intepreted structures

We say that a L′-structure N is interpretable in the L-structure M if N is
isomorphic to a structure definable in Meq.

Examples
1 We can interpret (Z,+) in (N,+) identifying an element of Z as a pair

(a, b) ∈ N× N modulo the ∅-definable equivalence relation
(a, b)E (a′, b′) ⇐⇒ a + b′ = a′ + b. The idea is that (a, b) ∈ N× N
represents a− b ∈ Z.

2 Another example is the interpretation of the real numbers in the standard
model of euclidean geometry (as axiomatized by Hilbert, say).

3 Finally, the whole of mathematics is interpretable in set theory!

If M is geometric, we can extend the dimension function dim(−) to Meq [Gag05]
(although Meq is not geometric) so we can speak of the dimension of quotients
X/E . If Th(M) eliminates imaginaries there is no need to pass to Meq.
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The quantifiers “few” and “most”

In a geometric theory the following quantifiers are first order expressible:

(Few x ∈ X )ϕ(x) :⇐⇒ dim({x ∈ X : ϕ(x)}) < dim(X );
(Most x ∈ X )ϕ(x) :⇐⇒ (Few x ∈ X )¬ϕ(x).

Exercise�
(Most x ∈ X )ϕ(x) ⇐⇒ every generic point x of X satisfies ϕ(x).
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Large sets
Given X ⊆ Y we say that X is large in Y if dim(Y \ X ) < dim(Y ).

Theorem
Let M be a geometric structure and let X ⊆ Y be M-definable sets. Suppose X is
large in Y and Y defined over a model M0 ≺ M. Then X (M) ∩ Y (M0) 6= ∅.

Proof.
Suppose Y (M) ⊆ Mn and argue by induction on n. Let d = dim(Y ).

If d = 0, then Y is finite and X coincides with Y , so assume d > 0.
If n = 1 then dim(Y ) = 1 and Y \ X is finite, so X (M0) 6= ∅.
Assume n > 1 and consider the projection p : Mn → M.
For most m ∈ p(Y ) the fiber Ym = Y ∩ p−1(m) must have dimension d − 1
and Xm must be large in Ym.
One of these m must lie in M0, so the corresponding Ym is defined over M0
and we can apply the induction hypothesis.
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Covering a group by translates of a large set

Theorem ([Pil88])
Let G be a group definable in a geometric structure M and let X be a large
definable subset of G . Then X is left-generic, namely finitely many left-translates
of X cover G . Similarly for “right”.

Proof.
Suppose G is defined over M0 ≺ M.

By the previous result, every right tranlate Xg contains some m ∈ G (M0).
Equivalently, every g ∈ G is contained in a left-translate mX with
m ∈ G (M0).
By compactness finitely many left-translates mX cover G .
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t-topology

Theorem ([Pil88])
Let G ⊆ Mn be a definable group in an o-minimal structure M. Then G has a
group topology, called the t-topology, which coincides with the topology induced
by Mn on a large open subset V of G .

Proof.
Let Y ⊆ G × G × G be the set of points (a, b, c) ∈ G × G × G such that
(x , y , z) 7→ xyz ∈ G is continuous in a neighbourhood of (a, b, c). By
o-minimality Y is large (and open) in G .
Let V be the set of points x ∈ G such that for most (g1, g2) ∈ G × G the
triples (g1, x , g2) and (g1, g

−1
1 xg−1

2 , g2) belong to Y . Then V contains all
generic points of G �, so it is large in G .
Define O ⊆ G to be t-open if for all a, b ∈ G the subset aOb ∩ V is open in
V .

For a similar proof and the details see also [BM13, Lemma 9.7].
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Subgroups of finite index

Theorem ([Pil88])
For groups H < G definable in an o-minimal structure M, the following are
equivalent:

1 dim(G ) = dim(H);
2 H has finite index in G ;
3 H is open in G (in the t-topology).

Proof.
Since dim(G/H) = dim(G )− dim(H) we have 1 ⇐⇒ 2. Now, if H has finite
index in G , then it has interior in the t-topology of G , and being a subgroup it is
open in G . On the other hand if H has infinite index in G , then it has lower
dimension, hence no interior.
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Definable subgroups are closed

Theorem ([Pil87, Prop. 2.7])
Let G be a definable group in an o-mimimal structure and H < G a definable
subgroup. Then H is closed in the t-topology.

Proof.
The closure H is definable group and H has full dimension in H (because in
o-minimal structures dim(X \ X ) < dim(X )). So H is open in H and being a
subgroup it is also closed in H.

Example
The circle group S1 ∼= R/Z is definable in (R,+, ·). There are dense sugroups of
S1 × S1 isomorphic to R (infinite spirals), but they are not closed, so they cannot
be definable.

Alessandro Berarducci (Dipartimento di Matematica Università di Pisa)Short course on definable groups: part I Leeds, 17-19 Jan 2015 48 / 134



Descending chain condition on definable subgroups

Theorem ([Str94a, Thm. 2.6])
Let G be a definable group in an o-minimal structure M. Then G has finitely
many definable subgroups H with dim(H) = dim(G ).

Proof.
Let H < G with dim(H) = dim(G ). Then H is open in G , hence clopen. Let V
be a large open subset of G where the t-topology coincides with the o-minimal
topology. Decompose V into cells. Since H is clopen in the t-topology and cells
are definably connected, every cell is contained in H or disjoint from H. So there
are ≤ 2k choices for H ∩ V , where k is the number of cells of V . Now observe
that H = H = H ∩ V .

Corollary (DCC on definable subgroups)
G is a definable group in an o-minimal structure, then G has no infinite
descending chains of definable subgroup.

By contrast, (Z,+) does not have the DCC.

Alessandro Berarducci (Dipartimento di Matematica Università di Pisa)Short course on definable groups: part I Leeds, 17-19 Jan 2015 49 / 134



Connected component G 0

1 Given a definable group G in a structure M, we say that G is connected if it
has no subgroups of finite index.

2 The connected component G 0 of G is the intersection of all definable
subgroups of finite index.

3 In the o-minimal case there is a smallest such subgroup (by the DCC), so G 0

is definable.
4 It can be shown that G 0 coincides with the definable path-connected

component in the t-topology.
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Divisibility

Proposition ([Pil88])
If G is divisible, then G is definably connected.

Proof.
Consider the connected component G 0 C G and the morphism G → G/G 0. Since
G/G 0 is finite and divisible it must be trivial.
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Definability of centralizers

Another consequence of the DCC is that the intersection
⋂

i∈I Hi of a family
of definable subgroups of a definable group G coincides with the intersection
of a finite subfamily, and therefore it is definable.
In particular, if A ⊆ G (M) is a set of parameters (not necessarily definable),
then the centralizer

CG (A) = {g ∈ G : (∀a ∈ A)(ga = ag)}

is definable (because by the DCC it must coincide with the centralizer of a
finite subset of A).
Moreover, there is a smallest definable sugroup 〈A〉 containing A.
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Existence of infinite abelian subgroups

Using the above tools one can prove the following:

Theorem ([Pil87, Prop. 5.6])
Let G be an infinite group definable in an o-minimal structure. Then G has an
infinite definable abelian subgroup. Indeed, any infinite connected subgroup
H < G of minimal dimension is abelian.
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Euler characteristic

O-minimal Euler characteristic:
Let X ⊆ Mk be a definable set and consider a partition of X into cells. Define

E (X ) := Σi (−1)i #cells of dimension i

(= the number of even dimensional cells minus the number of odd dimensinal
cells).

For X closed and bounded, E (X ) is the o-minimal analogue of the classical Euler
characteristic χ.
When X is not closed and bounded there are differences:

1 Classically χ((0, 1)) = χ([0, 1]) = 1 (because both spaces are contractible).
2 In the o-minimal case E ((0, 1)) = −1, while E ([0, 1]) = E (pt) = 1.
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Properties of E(X)

Properties

1 E (X ) = #X if X is finite,
2 E (X ∪ Y ) = E (X ) + E (Y ) if the union is disjoint,
3 E (X × Y ) = E (X ) · E (Y ),
4 If f : X → Y is definable and E (f −1(y)) = m for each y ∈ Y , then

E (X ) =E (
⋃

y∈Y f −1(y)) = E (Y ) ·m.
5 If f : X → Y is a definable bijection E (X ) = E (Y ).

In 4 and 5 we do not require f to be continuous !
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Computation of E (S1)

We can compute E (S1) in two ways:

1. Write it as a union of two 0-cells and two 1-cells:
E (S1) = 1 + 1 + (−1) + (−1) = 0.

2. Consider the fibers of p : S1 → [0, 1]:
the fibers over 0 and 1 are single points, the fibers over (0, 1) consist of two
points. So E (S1) = 1 + 1 + E ((0, 1)) · 2 = 0.
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Euler characteristic of groups

Theorem
If H < G are definable groups, then E (H) divides E (G ).

Proof.
E (G ) = E (H) · E (G/H) (by definable choice quotients are definable).

Corollary
If E (G ) = ±1, then G has no elements of finite order.

Example
No semialgebraic group structure on R or R2 can have torsion (because
E (R) = −1 and E (R2) = 1).
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Elements of order p
Theorem ([Str94a])
Let G be a definable group and p a prime number. If p divides E (X ), then G has
an element of order p.

Proof.
Let S := {(a1, . . . , ap) | ai ∈ G ,

∏
i ai = 1};

S is in (definable) bijection with G p−1;
p|E (G ), so E (S) = E (G p−1) = E (G )p−1 ≡ 0 mod p;
Z/pZ acts on S by cyclic permutations;
write S = S1 t Sp where:
Sp is the union of the orbits of size p, so E (Sp) ≡ 0 mod p;
S1 is the union of the orbits of size 1 and is in bijection with
G [p] := {x ∈ G : xp = 1};
Thus 0 ≡ E (S) ≡ E (S1) + E (Sp) ≡ E (S1) ≡ E (G [p]) mod p;
Therefore 0 ≡ 1 + E (elements of order p) mod p.
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Groups with E (G ) = 0

Corollary
If E (G ) = 0, then G has elements of every prime order.

Thus for instance if the underlying set of G is a circle, then G has elements of
every prime order.
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p-groups

Theorem ([Str94a, 2.17, 2.21])
Let p be prime and pk divide E (G ). Then:

1 G has a subgroup of order pk .
2 If E (G ) 6= 0 there is a maximal such k and all the subgroups of order pk are

conjugated.
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Groups of bounded exponent

Theorem ([Str94a, 5.7])
Let G be a definable abelian group and G [n] := {x ∈ G : xn = 1}. Then G [n] is
finite.

So for instance (Z/2Z)(ω) cannot be isomorphic to a definable group.

Proof.
Since H := G [n] contains no elements of order > n, E (H) 6= 0. Write
E (H) = ±1 ·

∏k
i=1 p

ai
i with pi prime. Let Fi be a subgroup of H of order paii .

Then E (⊕iFi ) =
∏

i p
ai
i and therefore E (H/⊕i Fi ) = ±1. It follows that H/⊕i Fi

has no elements of finite order. But H is torsion. So H = ⊕iFi .

By a reduction to the abelian case one can prove:

Theorem ([Str94a, 6.1])
Any definable group of bounded exponent is finite.
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Torsion free groups

Theorem
A definable group G is torsion free if and only if E (G ) = ±1.

Proof.
E (G ) 6= ±1 ⇐⇒ E (G ) is divisible by a prime p ⇐⇒ G contains an element of
order p (for some p).
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Definable compactness
A subset X of Mn is closed and bounded iff every definable curve f : (0, ε)→ X
has a limit in X (with the induced topology from Mn). This suggests the
following:

Definition [PS99]
G is definably compact if every definable curve f : (0, ε)→ G has a limit in G in
the t-topology.

Note that when M has field operations, replacing G with a definably isomorphic
copy, we can assume that the t-topology coincides with the induced topology from
Mn (Robson’s embedding theorem [vdD98]).

Question [PS99]
Let G be definably compact. Does G have torsion elements?

The efforts to answer the question led to the introduction of tools from algebraic
topology in the o-minimal context. We shall prove that if G is definably compact
and infinite, then E (G ) = 0, and therefore, by [Str94a], G has torsion (indeed it
has elements of every prime order).
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Simplicial complexes

We modify the classical definition by allowing “open” simplexes.
Given an ordered field M, an (open) n-simplex in Mk , with vertices
p0, . . . , pn ∈ Mk , is the set of all M-linear combinations

∑
i xipi ∈ Mk with

0<xi<1 in M and
∑

xi = 1.

A simplicial complex in Mk is a finite collection K of
simplexes in Mk such that for for all σ1, σ2 in K
either cl(σ1) ∩ cl(σ2) is empty or it is equal to cl(τ)
for some common face τ of σ1 and σ2.
Let |K | ⊆ Mk be the union of all the simplexes of K .

We say that K is closed, if whenever it contains a simplex, it contains all its faces.
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Triangulation theorem

Let M = (M, <,+, ·, . . .) be an o-minimal expansion of an ordered field
(necessarily real closed).

Theorem [vdD98]
Every M-definable set X ⊆ Mn can be triangulated, namely there is a finite
simplicial complex K and a definable homeomorphism f : |K |(M)→ X .

To deal with the case when X is not closed, we must allow “open simplexes”,
namely simplexes without some of the faces.
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Definable homotopy

Consider an o-minimal structure M and fix two points “0” and “1” in M with
0 < 1.

Definition
Two definable functions f0, f1 from X to Y are definably homotopic if there is a
definable continuous map F : [0, 1]× X → Y such that f0(x) = F (0, x) and
f1(x) = F (1, x).

We say that X and Y are definably homotopy equivalent if if there are continuous
maps f : X → Y and g : Y → X such that g ◦ f is definably homotopic to idX
and f ◦ g is definably homotopic to idY

Example
The figure “8” is (definably) homotopy equivalent to R2 minus two points.
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O-minimal fundamental group

Work in an o-minimal expansion of an ordered field. In analogy with the classical
case we define:

Fundamental group
Let X be a definable set with a fixed base point x0 ∈ X . The o-minimal
fundamental group π1(X , x0) is the group of definable loops modulo definable
homotopies, where a definable loop is a definable continuous maps γ : [0, 1]→ X
with γ(0) = γ(1) = x0. The group operation is concatenation of loops.

If X is definably connected, π1(X , x0) does not depend on the choice of the base
point, so we can write π1(X ).

Example
Let S1 be the circle. Then π1(S1) ∼= Z, where [γ] 7→ n if γ winds n times around
the circle in the clockwise direction.
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Properties
Work in an o-minimal expansion M = (M, <,+, ·, . . .) of an ordered field.

Theorem [BO02]
1 Every definable continuous map f : X → Y induces a group homomorphism
π1(f ) : π1(X )→ π1(Y ).

2 Definably homotopic maps induce the same group homomorphism.
3 π1(X ) is invariant under elementary extension N � M,

i.e. π1(X (N)) = π1(X (M)).
4 π1(X ) is invariant under o-minimal expansions of the language. In particular,

if X is semialgebric (definable in L′ = {<,+, ·} ⊆ L), it suffices to consider
semialgebraic loops.

5 π1(X ) is finitely generated.

IDEA: triangulate X ≈ |K |(M) and show, using an o-minimal version of van
Kampen theorem, that π1(X ) ∼= π1(K ) ∼= π1(|K |(R)) can be computed
simplicially.
WARNING. The following classical argument fails: given ε > 0 there is a
subdivision of the given triangulation where all simplexes have diameter < ε.
Reason: ε can be infinitesimal.
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Homology groups

One can define an o-minimal version of the singular homology groups Hi (X )
and prove their invariance under elementary extensions and o-minimal
expansions of the language [EW08, BO03, BEO07].
One adapts the classical definition by working with definable singular
simplexes σ : |∆|(M)→ X (M) in the given o-minimal structure M
(expanding a field).
Given a finite simplicial complex K (with vertices in Q, say) we have

Hi (|K |(M)) = Hi (|K |(R)).

By the triangulation theorem it follows that, for every definable set X , the
group Hi (X ) is finitely generated.
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Lefschetz fixed point theorem
Using the properties of the o-minimal homology functors Hi one can prove:

Theorem [BO03, EW09]
Let K be a finite closed simplicial complex of Euler characteristic different from
zero and let X = |K |. Suppose that X (M) is an orientable definable manifold. Let
f : X → X be a definable continuous map definably homotopic to the identity.
Then f has a fixed point.

The corresponding classical result holds without the assumption that X is
orientable (in fact one does not even need the fact that X is a manifold). For our
applications to definable groups the above version will suffice.

Example
We prove the classical result that every every element of SO3(R) corresponds to a
rotation around some axis (under the natural action of SO3(R) on R3). Indeed an
element of SO3(R) induces a self-map f : S2 → S2 on the unit 2-sphere in R3 and
since E (S2) 6= 0 there is a fixed point x = f (x) ∈ S2. Clearly f fixes the axis from
the origin 0 ∈ R3 to x .
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Existence of torsion elements

Corollary (Edmundo, see survey [Ote08])
If G is infinite and definably compact, then E (G ) = 0, so G has torsion.

We present the proof in [BO03].

Proof.
Since E (G ) = E (G/G 0)E (G 0) we can assume G connected (hence definably
path-connected in the t-topology). It follows that if 1G 6= g ∈ G the map x 7→ gx
is definably homotopic to the identity. This map has no fixed points, so by the
o-minimal Lefschetz fixed point theorem E (G ) = 0 (using the fact that G is an
orientable definable manfifold).

For simplicity we implicitly assumed that the t-topology coincides and the ambient
topology, but if M expands a field we can reduce to this case by Robson’s
embedding theorem [vdD98].
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0-groups and Strzebonksi tori

By the above results E (G ) = 0 iff G has torsion elements of arbitrarily high order.

Definition
A zero-group is a definable group G such that E (G/H) = 0 for each proper
definable subgroup H of G (not necessarily normal).
A Strzebonski torus is a zero-group G such that all its connected definable
subgroups are 0-groups.

Theorem ([Str94a, 5.17])
Any zero-group is abelian and connected (i.e. has no definable subgroups of finite
index).

A fundamental result in the theory of Lie groups is that every compact Lie group
is covered by the conjugates of a maximal torus. Our next goal is to study an
o-minimal version of this result.
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A 0-group which is not a Strzebonski torus

Example ([Str94a, Ex. 5.3])
Let M = (R,+, ·) and define addition in G = R× [1, e) by

(x , u) + (y ,w) =

{
(x + y , u · w

(x + y + 1, u · w/e
if u · w < e

if u · w ≥ e

Then G is a 0-group containing a connected subgroup which is not a 0-group.
Indeed R is a subgroup of G and E (R) = −1. (Note that [1, e) is not a sugroup
of G .)

The notion of zero-group is not very “robust”, namely it is not invariant under
expansions of the language (if we add exp the above group is not a zero group).
By contrast, we shall see that the notion of Strzebonski torus is robust.
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(Lack of) one-dimensional subgroups

Despite the similarites with Lie groups, a definable group may lack one-dimensional
definable subgroups. In particular, unlike classical tori, a Strzebonski torus may
not have one-dimensional definable subgroups [PS99] (examples could be abelian
varieties). In the non-compact case things behave better:

Theorem ([PS99])
If G is not definably compact, it contains a torsion free definable subgroup.

Using this, we can give a “robust” topological characterization of Strzebonski tori.
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Characterization of Strzebonski tori

Theorem (see [Ber08])
The following are equivalent

1 G is a Strzebonski torus.
2 G is abelian, connected, definably compact.

Proof.
Assume 2. By the Lefschetz fixed point theorem if G is a definably compact
infinite group, then E (G ) = 0. Let H < G be a proper definable subgroup. Since
G is abelian and connected, H is normal. To obtain 1 it suffices to observe that
definable compactness is preserved under taking subgroups and quotient groups. .
Assume 1. Then G is connected (if not E (G/G 0) = #G/G 0 is finite non-zero)
and by [Str94a, 5.17] it is also abelian. If it were not definably compact, it would
contain a torsion free definable subgroup L [PS99]. But such subgroups have
E (L) = ±1, contradicting the assumption.
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Maximal tori

Theorem ([Str94a, Cor. 5.19, Thm. 2.14])
Maximal Strzebonski tori of a definable group are conjugated. If H < G is
maximal Strzebonki torus, E (G/H) 6= 0.

Example
The maximal tori of SO(3,R) (the group of rotations of R3) are the
one-dimensional subgroups fixing an axis of rotation.
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Union of the maximal tori
The following result was proved independently in [Edm05, Ber08]. I present the
proof in [Ber08].

Theorem
If G is definably compact and connected, G is the union of its maximal tori.

Proof.
Let g ∈ G and let H < G be a maximal torus. Consider the map
Lg : G/H → G/H, xH 7→ gxH. Since G is connected Lg is definably homotopic to
the identity. By Lefschetz there is a fixed point xH = gxH ∈ G/H. But then
gx ∈ xH and g ∈ xHx−1.

Corollary
If G is definably compact, then G is divisible.

Proof.
By a reduction to the abelian case using the fact that G is the union of its
maximal tori (see [Ote09] for a different proof).
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Counting the torsion points

Let G be Strzebonski torus (i.e. G is definably compact, abelian, definably
connected.
We want to study the structure of the k-torsion subgroup G [k].

When M = R, there is an (analytic) isomorphism G (R) ∼= (R/Z)n, so
G [k] ∼= (Z/kZ)n.
If dim(G ) = 1, then G [k] = Z/kZ [Raz91].
If dim(G ) > 1, G may not have 1 dimensional definable subgroups [PS99], so
we cannot reduce to the one-dimensional case.

The strategy in [EO04] is the following:
1 It can be shown that x 7→ kx is a covering map G → G .
2 From the theory of covering spaces we have G [k] ∼= π1(G )/kπ1(G ).
3 So we must study π1(G ).
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Fundamental group of a Strzebonski torus

Theorem ([EO04])
Let G be a Strzebonski torus of dimension n. Then π1(G ) ∼= Zn, and therefore
G [k] = (Z/kZ)n.

Proof.
We know that π1(G ) is finitely generated [BO02, Cor. 2.10]
Since G is abelian, the map pk : G → G , x 7→ kx , is a homomorphisms.
It is also a definable covering map, so it induces an injective homomorphism
pk∗ : π1(G )→ π1(G ), given by [γ] 7→ k[γ].
Since this holds for every k , π1(G ) is torsion free.
Being also abelian and finitely generated, π1(G ) ∼= Zs for some s.
The proof of s = n is more difficult: it uses the study of H∗(G ;Q) as a
graded Hopf algebra.

Alessandro Berarducci (Dipartimento di Matematica Università di Pisa)Short course on definable groups: part I Leeds, 17-19 Jan 2015 83 / 134



Proof of s=n

1 We have π1(G ) ∼= H1(G ;Z) ∼= Zs .
2 We can write H1(G ,Q) = Qy1 + . . .+ Qys (direct sum).
3 Let p2 : G → G , x 7→ 2x .
4 H∗(G ,Q) = Λ[y1, . . . , ys , . . . , yr ] with r ≥ s and yi “primitive”, so that

p∗2(yi ) = 2yi .
5 ωG :=

∏
i≤r yi is a generator of the top-cohomology Hn(G ;Q).

6 We have p∗2(ωG ) = 2rωG , hence deg(p2) = 2r .
7 On the other hand deg(p2) is bounded by | ker(p2)| = |G [2]|.
8 G [2] ∼= π1(G )/2π1(G ) ∼= (Z/2Z)s .
9 So r ≤ s. Hence s = r = n.
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Higher homotopy groups

O-minimal versions of the higher homotopy groups πn(X ) are studied in
[BO09, BMO10]
A definable subgroup H < G determines a definable fibration G → G/H and
gives rise to a long exact sequence

. . .→ πn+1(G/H)→ πn(H)→ πn(G )→ πn(G/H)→ πn−1(H)→ . . .

The higher homotopy groups of a definable set need not be finitely generated.
For instance let X = S1 ∧ S2. This is a circle with a 2-sphere tangent to it,
and its universal cover X̃ is a line with infinitely many 2-spheres tangent to
it. It follows that π2(X ) = π2(X̃ ) = Z(ω) is not finitely generated (however it
is finitely generated as a Z[π1(X )]-module).
However we shall see that when G is a definable group, πn(G ) is finitely
generated.
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πm(G ) is finitely generated

Definition
A path connected space is simple if its fundamental group acts trivially on all
homotopy groups.

Fact
1 A path connected H-space is simple [Spa66, Ch. 7, Thm. 3.9].
2 (Serre 1953) If X is a simple space and Hm(X ) is finitely generated for all m,

then πm(X ) is finitely generated for all m [Whi78, Ch. 13, Cor. 7.14].

Using this and some homotopy transfer results in [BO09] we obtain:

Theorem ([BMO10, Thm. 3.2])
Let G be a definable group. Then πn(G ) is finitely generated for all n ∈ N.
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Higher homotopy of Strzebonksi tori

Theorem ([BMO10])
Let G be a Strzebonski torus. Then πm(G ) = 0 for all m > 1.

The proof for real Lie tori does not apply because it depends on factorization into
one-dimensional sugroups.

Proof.
The morphism pk : G → G , x 7→ kx , is a covering map, so it induces an
injective endomorphism of πm(G ) given by multiplication by k .
Since m > 1 this is actually an automorphism of πm(G ) [BO09, Cor.
4.11],[Hat02, Prop. 4.1].
Since this holds for all k , we deduce that πm(G ) is divisible.
Since it is also abelian and finitely generated, it must be zero.
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Homotopy type of a Strzebonski torus

Theorem ([BMO10])
Let G be a Strzebonski torus of dimension n. Then G is definably homotopy
equivalent to Tn (a product of n circles).

Proof.
By [EO04], π1(G ) ∼= Zn.
Consider the map f : Tn → G sending (t1, . . . , tn) ∈ [0, 1)n to
γ1(t1) + . . .+ γn(tn) where [γ1], . . . , [γn] are free generators of π1(G ).
Then clearly f∗ : π1(Tn) ∼= π1(G ).
Since πm(G ) = 0 for m > 1, f induces an isomorphism on all the πm’s.
By the o-minimal version of Whitehead’s theorem ([BO09]) f is a definable
homotopy equivalence.
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Topology of Strzebonski tori

Let G be a Strzebonski torus of dimension n. We have seen that G is definably
homotopy equivalent to Tn. The natural conjecture is that it is actually definably
homeomorphic to Tn.

Theorem ([Str94b])
Let G be a Strzebonski torus. Assume dim(G ) = 1. Then G , with the t-topology,
is definably homeomorphic to the circle S1.

We shall prove:

Theorem ([BB12])
Let G be a Strzebonski torus of dimension n 6= 4. Then G is definably
homemorphic (not isomorphic) to a product of n circles S1(M) in the given
o-minimal structure M.

A crucial ingredient of the proof is Shiota’s o-minimal Hauptvermutung.
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Homotopies are robust, homeomorphisms are not

Let M be an o-minimal expansion of a field and let K , L be finite simplicial
complexes. We want to compare their realizations in M with the realizations in R
(we can assume K , L have vertices in Q, say).

Theorem ([BO09, Thm. 3.1])
The following are equivalent:

1 |K |(R) and |L|(R) are homotopy equivalent;
2 |K |(R) and |L|(R) are semialgebraically homotopy equivalent;
3 |K |(M) and |L|(M) are definably (or semialgebraically) homotopy equivalent.

So when speaking of homotopy equivalence, it does not matter the category we
are working in. By contrast we shall see that |K |(R) and |L|(R) can be
homeomorphic without beeing definably homeomorphic in any o-minimal
structure. This is connected to the failure of the “Hauptvermutung”.
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Hauptvermutung

In the early 1900s the main conjecture of combinatorial topology was the
following:

Hauptvermutung
If two compact polyedra |K |(R) and |L|(R) are homeomorphic, then they are
PL-homeomorphic. Equivalently: the simplicial complexes K and L have
isomorphic subdivisions.

The bad news is that the Hauptvermutung is false (Milnor 1961).
The good news is that it is true in the o-minimal category:

Theorem (O-minimal Hauptvermutung: [Shi97, Shi13])
If two closed complexes |K |(M) and |L|(M) are definably homeomorphism in an
o-minimal structure, then they are PL-homeomorphic.
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PL-manifolds
If a polyhedron |K | has the link of each vertex homeomorphic to a sphere Sm−1,
then |K | is a topological manifold (see [Thu97, Prop. 3.2.5]).

The converse holds in dimension ≤ 3 but it is not
true in general. What is true is the following: if
|K | is a topological manifold, then |K | has simply
connected links (but they need not be
topological manifolds!).

Fact: |K | is a PL-manifold if and only if the link of each simplex is
PL-homeomorphic to the standard PL sphere of the appropriate dimension.

Theorem ([BB12, Fact. 3.3])
Let M be an o-minimal expansion of a field.

If |K |(M) is a definable manifold, then |K |(R) is a PL-manifold (and vice
versa).
A definable group in M (with the t-topology) has a triangulation which is a
PL-manifold.
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Digression: Poincaré dodecahedral space

We given an example of two subsets of Rn which which are definable in (R,+, ·)
and homeomorphic, but the homeomorphism cannot be defined in any o-minimal
structure (see [BO03],[BEO07]).

The Poincaré space is a 3-dimensional
topological manifold obtained by gluing the
opposite faces of the solid dodecahedron after a
clokwise rotation of 2π/10.

Its double suspension ΣΣP is a polyhedron |K |
homeomorphic to a 5-dimensional sphere S5, but
it is not a PL-manifold (see [Thu97, p. 192]).
Hence, under the standard triangulation of S5,
the homeomorphism ΣΣP ∼= S5 is not PL (so by
the o-minimal Hauptvermutung it is not
definable in any o-minimal structure).
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Semialgebraic Strebonski tori
Theorem ([BB12])
Let G be a semialgebraic Strzebonski torus of dimension n. Then G is
semialgebraically homeomorphic to Tn(M).

Proof.
1 Since G is semialgebraic, by model completness we can reduce to the case

when G is defined over the real algebraic numbers and consider its real points
G (R).

2 The t-topology and Hilbert’s 5th, give G (R) the structure of an abelian real
Lie group, so there is an analytic isomorphism of Lie groups
h : G (R)→ Tn(R).

3 Since G (R) is compact, h is definable in the o-minimal structure Ran.
4 By the o-minimal Hauptvermutung there is a semialgebraic homeomorphism

f : G (R)→ Tn(R).
5 By model completeness we can take another f defined over the real algebraic

numbers, so we get a semialgebraic homeomorphism f (M) : G (M)→ Tn(M).
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Next goal: from homotopy equivalence to homeomorphism

Let G be a Strzebonski torus of dimension n definable in some o-minimal
structure. We have seen that if G is semialgebraic, then G is definably
homeomorphic to Tn. In the general case we have only shown that G is definably
homotopy equivalent to Tn. Our next goal is to obtain a definable
homeomophism, but we will succeed only when dim(G ) 6= 4. Note that we can
always assume that the domain of G is semialgebraic (by the triangulation
theorem), however the difficulty is that group operation may not be semialgebraic.
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Around Borel’s conjecture
Let X be a closed PL-manifold homotopy equivalent to the n-torus Tn(R). Is X
homeomorphic to Tn(R)? This is connected to Borel’s conjecture, which is false
in general, but we have the following weaker statement:

Theorem ([BB12, 1.3])
Let X be a (closed) PL-manifold of dimension n 6= 4 homotopy equivalent to
Tn(R). Then there is a finite PL-covering f : Tn(R)→ X .

Proof.
For n ≥ 5, see [HW69]. The case n = 3 follows from results in [KS77] plus the
positive solution of Poincaré’s conjecture. For n ≤ 2 X is already
PL-homeomorphic to Tn(R).

Corollary ([BB12] )
If G is a Strzebonski torus, there is a semialgebraic finite cover

f : Tn(M)→ G (M)

(as spaces, not as groups).
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Reduction to the semialgebraic case
Theorem ([BB12])
Let G =(G , ·) be a Strzebonski torus with dim(G ) 6= 4 and semialgebraic domain
G . Then there is a new group operation ◦ making (G , ◦) into a semialgebraic
Strzebonski torus.

Proof.
As dim(G ) 6= 4, there is a semialgebraic finite cover f : Tn(M)→ G (M).
There is a group operation ∗ on Tn (possibly not semialgebraic) making f
into a group homeomorphism with finite kernel.
Let T := (Tn, ∗). Since T is abelian and connected, ker(f ) < T [m] for some
m and T/T [m] ∼= T .
So we get a definable group homomorphism G ∼= T/ker(f )→ T/T [m] ∼= T .
By the Hauptvermung and “good reduction” [EJP10] we can modify it to get
a semialgebraic finite cover h : G (M)→ Tn(M) (but only as spaces).
The standard semialgebraic group operation on Tn (addition mod 1) can now
be lifted to a semialgebraic group operation on G making it into a
semialgebraic Strzebonski torus.
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Topology of Strebonski tori: conclusion

From the above results we get:

Theorem ([BB12])
Let G be a Strzebonski torus of dimension n 6= 4. Then G is definably
homeomorphic to Tn(M).
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Cherlin-Zilber algebraicity conjecture

The Cherlin-Zilber conjecture says that if G is a simple group of finite Morley
rank, then G is isomorphic to an algebraic group over an algebraically closed field
K interpretable in G [Zil77, Che79].
The conjecture is true if G is interpretable in an o-minimal structure thanks to
part (1) of the following:

Theorem ([PPS00b, Thm. 1.1])
Let G = (G , ·) be an infinite definably simple (non-abelian) group. Then there is a
real closed field R such that one of the following holds:

1 (Stable case) G and the field R[
√
−1] are bi-interpretable and G is

G-definably isomorphic to a linear algebraic group defined over R[
√
−1].

2 (Unstable case) G and the field R are bi-interpretable and G is G-definably
isomorphic to the connected component of an algebraic group defined over R.
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Interpreting a field

Theorem ([PS00, Thm. 4.3])
Let G = (G , ·) be a group intepretable in an o-minimal structure M. Then G
interprets an infinite field if and only if G is not abelian-by-finite (i.e. has not
abelian subgroups of finite index).
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Example

Let M = (M,+, ·) be a real closed field. Consider the group (G , ◦) of affine
transformations (a, b) : x 7→ a + bx from M to M. The composition is given by
(a, b) ◦ (a′, b′) = (a + ba′, bb′). Clearly (G , ◦) is intepretable in (M,+, ·).

Proposition
(M,+, ·) is interpretable in (G , ◦).

Proof.
We have (a, 1) ◦ (a′, 1) = (a + a′, 1), so the subgroup AC G of all elements of the
form (a, 1) : x 7→ x + a is isomorphic to (M,+). Since A = CG (A), we have that
A is definable in (G , ◦) (definability of centralizers). The elements (0, b) : x 7→ bx
form a sugroup T < G isomorphic to K∗, which is definable since T = CG (T ).
We have (b, 1) = (1, 1)(0,b) and (1, 1)(0,b) ◦ (1, 1)(0,b′) = (1, 1)(0,bb′) = (bb′, 1), so
the operation (b, 1) ∗ (b′, 1) = (bb′, 1) is definable in (G , ◦) and makes
(M,+, ·) ∼= (A, ◦, ∗) interpretable in (G , ◦).
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Lie algebras

Theorem ([PPS00a])
Let G be a definably simple (non-abelian) group definable in an o-minimal
structure M expanding a field R = (R, <,+, ·). Then G is definably isomorphic to
a group definable in R.

Proof.
We can put a differential structure on G (as for the t-topology) and define the
notion of two definable curves in G being “tangent” at e ∈ G . An equivalence
class of curves modulo tangency is a tangent vector. The class of all tangent
vectors is the tangent space Te(G ) ∼= Rn, n = dim(G ). Conjugation by g ∈ G is
an automorphism of G and its differential at e is the adjoint map
Adg : Te(G )→ Te(G ). The differential at e of the map g 7→ Adg ∈ GL(Te(G )) is
a liner map ad : Te(G )→ End(Te(G )). For ξ, ζ ∈ Te(G ) let
[ξ, ζ] := ad(ξ)(ζ) ∈ Te(G ). Then [−,−] makes Te(G ) into a Lie algebra g and
g 7→ Adg is an isomorphism from G to the connected component H0 of the linear
algebraic group H = Aut(g) < GL(Te(G )) ∼= GL(n,R).
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Almost direct products

Definition
Given a group G and two subgroups A and B of G. We say that G is the almost
direct product of A and B if G = AB and the function µ : A× B → G sending
(a, b) to ab is a surjective group homomorphism with a finite kernel. This implies
ab = ba for all a ∈ A, b ∈ B and Γ := A ∩ B is a finite (hence central) subgroup
of G �. In this situation we write G = A×Γ B and note that
ker(µ) = {(c , c−1) : c ∈ Γ}.
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The derived subgroup [G,G]

In general the derived subgroup [G ,G ] of a definable group is not definable
[Con09, BJO12]. However in the definably compact case [G ,G ] is definable and
we have:

Theorem ([HPP11, Thm. 6.4])
If G is definably compact and definably connected, then [G ,G ] is definable (and
semisimple) and there is a morphism Z 0(G )× [G ,G ]→ G with finite kernel
Γ < Z (G ), namely we can write G as an almost direct product
G = Z 0(G )×Γ [G ,G ].

This reduces many questions on definably compact groups to the abelian and
semisimple cases.

Alessandro Berarducci (Dipartimento di Matematica Università di Pisa)Short course on definable groups: part I Leeds, 17-19 Jan 2015 106 / 134



Semisimple case

The study of semisimple definable groups can be reduced to the study of groups
defined in the real field (R,+, ·). This depends on the fact that any o-minimal
expansion of a field contains an isomorphic copy of the field Ralg of the real
algebraic numbers, and any definably connected semisimple definable group G is
definably isomorphic to a semialgebraic group defined over the real algebraic
numbers Ralg .

References
A definably simple group is isomorphic to a group defined over Ralg [PPS00a,
Thm. 4.1],[PPS02, Proof of Thm. 5.1]. A semisimple centreless definable group G
is a finite product of definably simple groups [PPS00a]. General semisimple groups
are also isomorphic to groups defined over Ralg by “very good reduction” [EJP10,
Cor. 1.3],[HPP11, thm. 4.4].
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Pillay’s conjectures: introduction

Let G be a definable group G in an o-minimal structure M. We have seen that G
has a natural topology, the t-topology, making it into a “Lie group over M”. If M
is sufficiently saturated, we shall prove:

There is a type-definable subgroup G 00 of G , called “infinitesimal subgroup”, such
that G/G 00, with the “logic topology”, is a real Lie group.

The intuition is the “moding out the infinitesimals” we are left with the reals, but
we need the appropriate notion of “infinitesimal relative to G ”. We introduce
below the necessary definitions.
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Bounded equivalence relations

Definition
An A-invariant equivalence relation E ⊆ X × X on a definable set X is bounded if
there is a cardinal κ such that, in any model, E has ≤ κ equivalence classes.

One can in fact take κ = |L|+ |A|. If E is a bounded and M is sufficiently
saturated, then given N � M every a ∈ X (N) is equivalent to some a′ ∈ X (M),
so the natural map X (M)/E (M)→ X (N)/E (N) is a bijection, namely X/E does
not depend on the model.
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Logic topology

Definition
Given a definable set X in a sufficiently saturated structure U and a type-definable
equivalence relation E on X of bounded index, the logic topology on X/E is
defined as follows. A subset C of X/E is closed if and only if its preimage in X is
type-definable. Equivalently, a subset O of X/E is open if and only if its preimage
is
∨
-definable.

Proposition ([Pil04, Lemma 2.5])

X/E , with the logic topology, is a compact (Hausdorff) topological space.�
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Example: the standard part map

Work in a real closed field M � R. Let X = [0, 1] and let
E (x , y) ⇐⇒ |x − y | < 1/n for all n ∈ N. Then:

Proposition
E is a type definable definable equivalence relation on X = [0, 1], and X/E , with
the logic topology, is homeomorphic to [0, 1](R), with the euclidean topology.

Proof.
The standard part map st : [0, 1]→ [0, 1](R) is such that for every closed
C ⊆ [0, 1](R) the preimage st−1(C ) is type-definable.
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The infinitesimal subgroup G 00

Definition
Let G be a definable group in a sufficienly saturated structure U. Given a small
model M (or a small set of parameters), we denote G 00

M the intersection of all
type-definable over M subgroups of bounded index. Note:

1 G 00
M is of bounded index and if M � N, G 00

N ⊆ G 00
M ;

2 if G 00
M does not depend on M, we call it G 00 and say that G 00 exists;

3 G 00 (when it exists) is the smallest type-definable subgroup of bounded index;
4 G 00 (when it exists) is definable without parameters: G 00 = G 00

∅ = G 00
M for

all M.

We want to study G/G 00
M as a compact group with the logic topology.

The logic topology does not coincide with the quotient topology. Indeed G 00
M is

open in the t-topology of G [Pil04], so with the quotient topology G/G 00
M is

discrete.
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NIP theories

Definition
A formula φ(x , y) shatters {ai : i ∈ I} if for every J ⊆ I there is bJ (in the monster
model) such that |= φ(ai , bJ) if and only if i ∈ J. A formula φ(x , y) is NIP if it
does not shatter an infinite set. A theory T is NIP if every formula in T is NIP.

NIP theories include the o-minimal and the stable theories. The reason we
mention NIP theories is that G 00 always exists in that context.
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Pillay’s conjectures

Let G be a definable group in a sufficently saturated structure U and let
T = Th(U).

Theorem
We have:

1 G/G 00
M , with the logic topology, is a compact topological group [Pil04].

2 If T is NIP, G 00 exists [She08].
3 If T is o-minimal G 00 exists and G/G 00 is a real Lie group [BOPP05].
4 If moreover G is definably compact, dim(G ) = dim(G/G 00) [HPP08].

3+4 are known as “Pillay’s conjectures” [Pil04] (now theorems).
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Circle group

We illustrate Pillay’s conjectures in the one-dimensional case [Pil04]. Work in a
sufficiently saturated o-minimal structure M.

Proposition ([Pil04, p. 156, Case II])
Let G be a definably compact definably connected abelian one-dimensional
definable group. Then:

1 the t-topology on G is induced by a circular ordering;
2 G 00 is the largest arc of the circle containing e ∈ G and not containing any

torsion element;
3 G/G 00 ∼= R/Z.

For instance G can be [0, 1) with addition modulo 1, or G = SO(2,M).
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Algebraic groups

Let U � R and let G (U) < GL(n,U) be an algebraic linear group defined over R.
There are two groups that we can associate to G :

G (R)← G (U)→ G/G 00.

A natural question is whether G (R) ∼= G/G 00. Since G/G 00 is compact, a
necessary condition is that G (R) is compact, which amounts to say that G is
definably compact.

Example
1 Let G (M) = SL(2,M). In this case G (R) is not compact, and

G/G 00 6∼= G (R) . In fact it can be shown that G/G 00 = {1}.
2 Let G (M) = SO(3,M). In this case G (R) is compact, and G/G 00 ∼= G (R).

When G (U) is not defined over R (for instance an elliptic curve with non-standard
parameters), G (R) is not defined, but we shall see that G/G 00 is nevertheless a
real Lie group.
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A stable example

When the structure is NIP but not o-minimal, G/G 00 is a compact group, but in
general not a Lie group. For instance let T = Th(Z,+) (a stable theory) and let
U � Z be a sufficiently saturated model of T . Then:

U00 =
⋂

n∈N nU �.

U/U00 ∼= Ẑ := lim←−n
(Z/nZ) �
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The abelian case

Our next goal is to prove Pillay’s conjectures in the abelian case, namely:

Theorem
Let G be a definably connected abelian group in an o-minimal structure. Then:

1 G 00 exists and G/G 00, with the logic topology, is Lie isomorphic to a real Lie
group, namely G/G 00 ∼= (R/Z)m for some m ≤ dim(G ) [BOPP05];

2 If G is definably compact, then m = dim(G ) [HPP08].
We need to prove some facts about G 00

M (lastly we show G 00 = G 00
M ).
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How do we prove that a group is a Lie group?

Fact
1 A compact connected locally connected separable abelian group is isomorphic

to a torus of possibly infinite dimension [HM98, Thm. 8.36].
2 Any compact group is the limit of a strict projective system (projective

system with surjective maps) of compact Lie groups [HM98, Cor. 2.36-2.43].
3 Cor: A compact group Γ is a Lie group iff it has the descending chain

condition on closed subgroups.

To prove Pillay’s conjectures we need to deal with connectedness and the DCC.

Proposition ([Pil04, Prop. 2.12])
If G has the DCC on type-definable subgroups of bounded index, then G 00 exists
and G/G 00 is a compact Lie group.

Proof.
Let Γ = G/G 00. Then Γ has the DCC on closed subgroups.
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G/G 00
M is connected

Proposition
Let π : G → G/G 00

M be the natural map and let V ⊆ G be a definably connected
set. Then π(V ) ⊆ G/G 00

M is connected. In particular G/G 00
M is connected.

Proof. For a contradiction there are two non-empty disjoint closed sets Z1,Z2
with π(V ) = Z1 ∪ Z2. The sets V1 = V ∩ π−1(Z1) and V2 = V ∩ π−1(Z2) are
type-definable and disjoint and since their union V = V1 ∪ V2 is definable, they
are definable. But they are also open in G (since G 00

M is open), hence they
disconnect V .

Proposition
Let X be a definable subset of G containing gG 00

M . Then π(g) is in the interior of
π(X ).

Proof: π sends definable sets to closed sets, so π(X {) is closed, and since it does
not contain π(g), its complement is an open nbd of π(g) contained in π(X ).
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G/G 00
M is locally connected

We say that a type-definable set is connected if it cannot be splitted in two
non-empty relatively definable open subsets.

Proposition ([BOPP05])
1 A type-definable set has at most 2|T | type-definable connected components.
2 G 00

M is connected.
3 G/G 00

M is locally connected.

Proof: (1) Left to the reader, see [BOPP05, Thm. 2.3]. �
(2) If not, the connected component of G 00

M contradicts the minimality of G 00
M .

(3) Let U be an open neighbourhood of π(g) ∈ G . It suffices to find a connected
neighbourhood C of π(g), not necessarily open, contained in U. Note that
π−1(U) is

∨
-definable and contains gG 00

M . By compactness there is a definable
subset X of π−1(U) containing gG 00

M , which can be taken to be connected since
G 00
M is connected. Then C := π(X ) is the desired connected nbd of π(g).
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G 00
M is divisible

Proposition
G 00
M is divisible (G abelian).

Proof.
Since G is abelian, G [n] is finite [Str94a], hence g 7→ ng has finite kernel and its
image nG has finite index in G . But G is connected, so nG = G and G is
divisible. Now nG 00

M has bounded index in nG = G , so G 00
M ⊆ nG 00

M . Hence
G 00
M = nG 00

M and G 00
M is divisible.

Corollary
The n-torsion of G/G 00

M is bounded by the n-torsion of G , hence it is finite.
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DCC on type-definable subgroups

Proposition ([BOPP05])
Let G be abelian, definably connected. Then G has the DCC on type-definable
subgroups of bounded index.

Proof.
If not we can find a counterexample (Hn : n ∈ N) to the DCC in a countable
sublanguage L0 with each Hi type-definable over a countable L0-substructure N.
Now G/G 00

N is compact connected separable abelian, therefore it is a possibly
infinite product of circle groups. Since G 00

N is divisible, the n-torsion of G/G 00
M is

bounded by the n-torsion of G , hence it is finite. Thus G/G 00
N is finite product of

circle groups. This is absurd since G/G 00
N contains the infinite descending chain of

closed subgroups Hi/G
00
N .
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G 00 exists and G/G 00 is a torus

Theorem ([BOPP05])
Let G be a definably connected abelian group in an o-minimal structure. Then
G 00 exists and G/G 00, with the logic topology, is Lie isomorphic to a real Lie
group, namely G/G 00 ∼= (R/Z)m for some m ≤ dim(G ).

Proof.
By the DCC on type definable subgroups of bounded index, G 00 exists and G/G 00

is a compact group with the DCC on closed subgroups, hence a real Lie group.
Being abelian and connected, it is a torus. Since G 00 is divisible, the n-torsion of
G/G 00 is bounded by that of G , so dim(G/G 00) ≤ dim(G ) (the former is the
dimension as a Lie group, the latter is the o-minimal dimension).
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Torsion free subgroups and G 00

Proposition
Let G be a definable abelian group and suppose H < G is a type-definable torsion
free subgroup of bounded index. Then H = G 00.

Proof.
If not H/G 00 is a non-trivial abelian Lie group (being a closed subgroup of
G/G 00) which is compact and torsion free (as H is torsion free and G 00 is
divisible), a contradiction.

The proof of the following result needs the theory of “generic sets” and is
postponed.

Theorem ([HPP08])
If G is abelian, G 00 is torsion free.
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Dimension of G/G 00. Abelian case

Theorem ([HPP08])
Let G be a definably connected abelian group in an o-minimal structure. Then
dim(G ) = dim(G/G 00).

Proof.
1 If G is abelian, G 00 is torsion free [HPP08];
2 since it is also divisible, G and G/G 00 have the same k-torsion;
3 Γ := G/G 00 is a torus, so Γ[k] ∼= (Z/kZ)dim(Γ);
4 By [EO04], G [k] ∼= π1(G )/kπ1(G ) ∼= (Z/kZ)dim(G);
5 Thus dim(G ) = dim(G/G 00).

Note that in the non-compact case G/G 00 could be the trivial group 0 (e.g. when
G = (M,+)).
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G (R) ∼= G/G 00 when G (R) is defined and compact
Proposition (See [Pil04, Prop. 3.6])

Let U � (R,+, ·, . . .) be an o-minimal saturated structure. Assume G (U) is
defined over R and G (R) is a compact Lie group. Then G/G 00 ∼= G (R) as
topological group, so Pillay’s conjecture holds.

Proof.
We claim G 00 = ker(st) where st : G (U)→ G (R) is the standard part map. This
yields an isomorphism G/G 00 ∼= G (R). It is an isomorphism of topological
groups, because a subset X of G (R) is closed (in the euclidean topology) iff
st−1(X ) is type-definable. For the claim, let T ⊆ G (R) be a maximal torus of
G (R) and let T ′ ⊇ T be the smallest definable subgroup of G (R) containing T .
Then T ′ is abelian ([Str94a, Lemma 4.2]) and connected. By maximality T = T ′,
so T is definable. Since ker(st) ∩ T is torsion free, it coincides with T 00. Let
H < G be a type definable subgroup of bounded index. It suffices to show
ker(st) < H. Now H ∩ T has bounded index in T , so T 00 < H ∩ T . But
T 00 = ker(st) ∩ T because the latter is torsion free. Thus ker(st) ∩ T < H. The
conjugates of T (R) cover G (R), so the conjugates of T cover G . It follows that
ker(st) < H.
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Pillay’s conjectures: semisimple case
A definable group G is definably simple if it is not abelian and has no definable
normal subgroups; G is semisimple if it has no infinite abelian normal subgroups
[PPS00a, Def. 2.33].

Theorem
Let G be a definably simple group in an o-minimal structure.

1 G interprets a field and it is definably isomorphic, via the adjoint
representation to a linear group G1 definable over the real algebraic numbers
[PPS00a, 4.1],[PPS02, Proof of Thm. 51].

2 In the definably compact case, G/G 00 ∼= G1/G
00
1
∼= G1(R), so

dim(G ) = dim(G/G 00).
3 If G is not definably compact, then it is abstractly simple [PPS02, 6.3], thus

G/G 00 = 1.

In particular Pillay’s conjectures holds in the simple case [Pil04]. A semisimple
centreless definable group G is a finite product of definably simple groups
[PPS00a, Thm. 4.1], so Pillay’s conjectures hold for G as well. The general
semisimple case can be handled by “very good reduction” [EJP10, Cor. 1.3],
[EJP07, Prop. 3.2], but it also follows by the arguments below.
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DCC on type definable subgroups. General case

Proposition ([BOPP05, Lemma 1.10])
If N C G and G/N have the DCC on type-definable subgroups of bounded index,
so does G .

Corollary ([BOPP05])
Given a definable group G in an o-minimal structure, G has the DCC on
type-definable subgroups of bounded index (so G 00 exists and G/G 00 is a
compact real Lie group).

Proof.
If G is not semisimple it has an infinite normal abelian subgroup N C G . Since N
is abelian the DCC holds for N. By induction on dimension it holds for G/N,
hence for G .
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Dimension of G/G 00. General case
Proposition
If G is a definably compact group and H is a definable subgroup of G , then
H00 = G 00 ∩ H [HPP08, Thm. 8.1],[Ber07, Thm. 4.4].

Corollary ([Ber07, Thm. 5.2])
The functor G 7→ G/G 00 preserves exact sequences.

In particular, if N C G and H = G/N, then
dim(G/G 00) = dim(H/H00) + dim(N/N00).

Corollary
If G is definably compact, dim(G/G 00) = dim(G ).

Proof.
The abelian and semisimple centreless case have already been proved. For the
general use the fact that if G not semisimple then it has an infinite abelian normal
subgroup N and by induction on dimension the result holds for G/N (alternatively
use the finite cover Z (G )0 × [G ,G ]→ G [HPP11, Thm. 6.4]).
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What’s next

We have proved Pillay’s conjectures, but we took for granted that G 00 is torsion
free. I am going to expand the slides to include a proof of this result and also of
“compact domination”. They are essentially ready, but I need to put them in order.
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