ANALISI II

-26.05.2004 -

Rispondere ai quesiti giustificando le risposte.

1. Si trovi la soluzione u_{λ} del seguente problema di Cauchy

$$\begin{cases} u' = 1 + \lambda \sin u, \\ u(0) = 0 \end{cases}$$

al variare del parametro $\lambda \in]0,1[$.

Si calcolino (per ogni $t \in \mathbb{R}$ fissato) i limiti

$$v_0(t) := \lim_{\lambda \to 0^+} u_\lambda(t),$$
 $v_1(t) := \lim_{\lambda \to 1^-} u_\lambda(t)$

e si verifichi che $v_0(t) = u_0(t)$ e $v_1(t) = u_1(t)$ per ogni $t \in \mathbb{R}$.

2. Si studi la funzione $f:]0,+\infty[\to\mathbbm{R}$ definita da

$$f(x) = \int_0^{+\infty} \arctan(t/x)e^{-t} dt \qquad (x > 0)$$

- (i) Provare che f è continua, monotona e convessa.
- (ii) Calcolare (qualora esistano) i seguenti valori:

$$\lim_{x\to 0} f(x), \quad \lim_{x\to +\infty} f(x), \quad \sup_{x>0} f(x), \quad \inf_{x>0} f(x).$$

(iii) Mostrare che f è derivabile e calcolare f'.