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In this talk we present a superfast algorithm for the solution of a linear system of equations

Tnx = b

with a nonsingular real n×n symmetric Toeplitz coefficient matrix Tn = [ a|i−j| ]n−1
i,j=0. The solution

is computed with computational complexity O(n log2 n). Algorithms with this complexity can be
found in the literature, in [10, 2, 3, 5, 1, 8, 14] and other papers (see [11]). The recent paper [12]
describes an algorithm to solve positive definite Toeplitz systems with a slightly higher complexity
O(n log3 n). All these algorithms are based on the Fast Fourier Transform. In contrast to this, the
new algorithm is based on real trigonometric transforms. Since the complexity for trigonometric
transforms is essentially less than that one for complex FFT, even less than real FFT (see [13]),
the new algorithm should be, if the implementation details are worked out properly, faster than
previous ones.

The problem that turns out is the numerical in-stability of the algorithm connected to the
Chebyshev basis and the Chebyshev nodes. To improve the stability we present two new techniques
refining the intermediate solutions of the rational interpolation problem associated to the original
matrix. The first one is based on the reinterpretation of the problem in terms of a tangential
interpolation problem associated with a coupled-Vandermonde matrix. The second one is a sort of
bootstrap method to refine the solution computed in each sub-tree of the divide-et-impera scheme.

The approach in this talk is based on the results from [7] and [4].
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