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Large and Sparse Linear Systems

Many algorithms in scientific computing require the solution of large

and sparse linear systems.
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Large and Sparse Linear Systems

Many algorithms in scientific computing require the solution of large

and sparse linear systems.

Sometimes sequences of large and sparse linear systems need
to be solved. If they share something, it would be nice to use the informa-
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Large and Sparse Linear Systems

Many algorithms in scientific computing require the solution of large

and sparse linear systems.

Sometimes sequences of large and sparse linear systems need
to be solved. If they share something, it would be nice to use the informa-
tion from the solution of one of them for the solution of the others. But
how?

In this setting we would like to update/downdate incomplete factoriza-
tions of the underlying matrices.
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The problem
The numerical solution of several problems in scientific computing re-

quires the solution of sequences of parametrized large and sparse linear
systems of the form

Ajxj = bj, Aj = A + αj Ej, j = 0, ..., s

where αj ∈ C are scalar quantities and E0,..., Es are (real or complex)
symmetric matrices. Here we will consider the case where Ej, j = 0, ..., s
are diagonal matrices.
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Let us solve the underlying linear systems by an iterative method. Assume
that an incomplete factorization P is initially computed for the seed matrix
A.
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The problem
The numerical solution of several problems in scientific computing re-

quires the solution of sequences of parametrized large and sparse linear
systems of the form

Ajxj = bj, Aj = A + αj Ej, j = 0, ..., s

where αj ∈ C are scalar quantities and E0,..., Es are (real or complex)
symmetric matrices. Here we will consider the case where Ej, j = 0, ..., s
are diagonal matrices.

Let us solve the underlying linear systems by an iterative method. Assume
that an incomplete factorization P is initially computed for the seed matrix
A.

How to compute a new incomplete factorization Pα,E for A+αE, α ∈ C

and E diagonal with complex entries (say) ?

We consider the seed matrixA SPD and incomplete factorizations (ILUT/ILDLT)
and sparse approximate inverses (AINV) for P (P−1).
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Preconditioning

For large and sparse problems, iterative methods are mandatory. Unfor-
tunately, in many interesting frameworks, convergence of iterative methods
can be very slow → preconditioning is the right way to go.
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Preconditioning

For large and sparse problems, iterative methods are mandatory. Unfor-
tunately, in many interesting frameworks, convergence of iterative methods
can be very slow → preconditioning is the right way to go.

Recall: preconditioning with P means replacing Ax = b by
P−1Ax = P−1b (left prec.)
or by
AP−1y = b, y = Px (right prec.)
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Preconditioning

For large and sparse problems, iterative methods are mandatory. Unfor-
tunately, in many interesting frameworks, convergence of iterative methods
can be very slow → preconditioning is the right way to go.

Recall: preconditioning with P means replacing Ax = b by
P−1Ax = P−1b (left prec.)
or by
AP−1y = b, y = Px (right prec.)
or by
L−1AL−T u = L−1 b, x = L−Tu (split prec., here P = LLT )

Preconditioning means solving a (matematically) equivalent linear
system.
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Motivations
Parametric linear systems arise in:

• Solution of time-dependent PDEs / ODEs / Helmholtz eq. / etc.;



Cortona 2004, September 19-24, 2004 Bertaccini @ Università di Roma “La Sapienza” 13
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• Levenberg-Marquardt methods for ill-posed quasi-Newton steps;

• Model trust region and globalized Newton algorithms;
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Motivations
Parametric linear systems arise in:

• Solution of time-dependent PDEs / ODEs / Helmholtz eq. / etc.;

• Levenberg-Marquardt methods for ill-posed quasi-Newton steps;

• Model trust region and globalized Newton algorithms;

• solution of ill-posed least squares problems by Tikhonov–like regulariza-
tion strategies;

• Iterative methods for Total least square problems (TLS);

• Shift-and-invert and Jacobi–Davidson algorithms for large-scale eigen-
value calculations;

• Control theory;

• ...and many others.
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Is preconditioning always necessary ?
Assume now that E = I and A has been normalized in such a a way

that the largest entry in A is equal to 1.
Indeed, denoting by λmin and λmax the extremal eigenvalues of A, we

have that

κ2(A + α I) =
λmax + α

λmin + α
≤ λmax

α
+ 1,

and in practice preconditioning is no longer necessary (or beneficial) as
soon as λmax/α is small enough.
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that the largest entry in A is equal to 1.
Indeed, denoting by λmin and λmax the extremal eigenvalues of A, we

have that

κ2(A + α I) =
λmax + α

λmin + α
≤ λmax

α
+ 1,

and in practice preconditioning is no longer necessary (or beneficial) as
soon as λmax/α is small enough.

At the other extreme, continuity suggests that there is a value of α under
which one might as well reuse the preconditioner computed for the original
A.



Cortona 2004, September 19-24, 2004 Bertaccini @ Università di Roma “La Sapienza” 20

Is preconditioning always necessary ?
Assume now that E = I and A has been normalized in such a a way

that the largest entry in A is equal to 1.
Indeed, denoting by λmin and λmax the extremal eigenvalues of A, we

have that

κ2(A + α I) =
λmax + α

λmin + α
≤ λmax

α
+ 1,

and in practice preconditioning is no longer necessary (or beneficial) as
soon as λmax/α is small enough.

At the other extreme, continuity suggests that there is a value of α under
which one might as well reuse the preconditioner computed for the original
A.

However, in our experiments we found cases where reusing a precon-
ditioner for A SPD, E = I and real α gives poor results already for α
as small as O(10−5) (entries of A normalized to 1 and 0 < λ(A) ≤ 1).
[Benzi,B., BIT’03]
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Is preconditioning always necessary ?
Assume now that E = I and A has been normalized in such a a way

that the largest entry in A is equal to 1.
Indeed, denoting by λmin and λmax the extremal eigenvalues of A, we

have that

κ2(A + α I) =
λmax + α

λmin + α
≤ λmax

α
+ 1,

and in practice preconditioning is no longer necessary (or beneficial) as
soon as λmax/α is small enough.

At the other extreme, continuity suggests that there is a value of α under
which one might as well reuse the preconditioner computed for the original
A.

However, in our experiments we found cases where reusing a precon-
ditioner for A SPD, E = I and real α gives poor results already for α
as small as O(10−5) (entries of A normalized to 1 and 0 < λ(A) ≤ 1).
[Benzi,B., BIT’03]
⇒there is a fairly broad range of values of α where modification strate-

gies are of potential benefit
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Example: Time-dependent partial differential equations

∂u

∂t
= ∇ · (a∇u) + f

simple linear diffusion problem on a plane region, Dirichlet boundary con-
ditions, initial condition u(x, 0) = u0(x). Discretization in space with
stepsize h and an implicit (e.g., backward Euler) time discretization with
time step τ results in a sequence of linear systems

(I +
τ

h2
A)um+1 = um + τfm+1, m = 0, 1, 2, . . . ,M

where A is SPD.
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Example: Time-dependent partial differential equations

∂u

∂t
= ∇ · (a∇u) + f

simple linear diffusion problem on a plane region, Dirichlet boundary con-
ditions, initial condition u(x, 0) = u0(x). Discretization in space with
stepsize h and an implicit (e.g., backward Euler) time discretization with
time step τm results in a sequence of linear systems

(I +
τm
h2
A)um+1 = um + τfm+1, m = 0, 1, 2, . . . ,M

where A is SPD.

Note that the time step τm will not be constant, but it will change
adaptively and it would be nice to avoid to compute new incomplete fac-
torizations of (I + τm

h2A) for each m.
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The update of incomplete factorizations is not easy
Note that

d

dα
(A + αE)−1

|α=0 = −A−2E,

showing that the inverse of A + αE can be very sensitive around α = 0
when A−2 has large entries, as it is to be expected if A is ill-conditioned
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Our incomplete updated factorizations
Let us write our incomplete factorization for A (ILDLT) as

P = L̃D̃L̃T ≃ A.

We update P based on ILDLT for Aα,E as follows:

Pα,E = L̃ (D̃ + αB) L̃T

where the correction matrix B is suitably chosen and depends on E and
on L−1.
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Our incomplete updated factorizations
Let us write our incomplete factorization for A (ILDLT) as

P = L̃D̃L̃T ≃ A.

We update P based on ILDLT for Aα,E as follows:

Pα,E = L̃ (D̃ + αB) L̃T

where the correction matrix B is suitably chosen and depends on E and
on L−1.

Let us consider an approximate factorization for A−1 (AINV1):

P−1 = Z̃ D̃−1 Z̃T
(

= (L̃D̃L̃T )−1
)

≈ A−1.

We update P−1 based on AINV for A−1
α,E as follows:

Qα,E = P−1
α,E = Z̃ (D̃ + αB)−1 Z̃T ;

1[Benzi, Meyer, Tuma, SISC96]
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How to get correction matrix B?
Assume that

P−1 = ZD−1ZT = A−1 (the exact inverse)

hence using for P our updated factorization gives

P−1
α,E = Z (D + αB)−1ZT .
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How to get correction matrix B?
Assume that

P−1 = ZD−1ZT = A−1 (the exact inverse)

hence using for P our updated factorization gives

P−1
α,E = Z (D + αB)−1ZT .

Consider now the difference

Pα,E − Aα,E = Z−T (D + αB)Z−1 − (A + αE) = α(LBLT − E).

Taking
B = L−1E L−T = ZT E Z

would result in the exact inverse

P−1
α,E = A−1

α,E
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How to get correction matrix B?
Assume that

P−1 = ZD−1ZT = A−1 (the exact inverse)

hence using for P our updated factorization gives

P−1
α,E = Z (D + αB)−1ZT .

Consider now the difference

Pα,E − Aα,E = Z−T (D + αB)Z−1 − (A + αE) = α(LBLT − E).

Taking
B = L−1E L−T = ZT E Z

would result in the exact inverse

P−1
α,E = A−1

α,E

→Not a practical choice:

i) we don’t know the exact Z in practice, but only Z̃;
ii) B = L−1E L−T = ZT E Z can be DENSE!
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How to get correction matrix B?
Solve (possibly inexactly)

min
B∈S

‖E − LBLT‖F
where S is a set of matrices B such that D + αB is “easy to invert”.
The minimization problem would have to be dealt with only once, since

there is no dependency on α.
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Our proposal: order k updates
Define the order k updates (using ILDLT ) as

Pα,E := L̃(D̃ + αBk)L̃
T (1)

where Bk is the band matrix given by

Bk = Z̃T
k E Z̃k, (2)

Z̃k is obtained by extracting the k − 1 upper diagonals from Z̃ if k > 1
or B1 = diag(Z̃TEZ̃) if k = 1 (note: we need Z̃ (= L̃−T) if k > 0)
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Our proposal: order k updates
Define the order k updates (using ILDLT ) as

Pα,E := L̃(D̃ + αBk)L̃
T (3)

where Bk is the band matrix given by

Bk = Z̃T
k E Z̃k, (4)

Z̃k is obtained by extracting the k − 1 upper diagonals from Z̃ if k > 1
or B1 = diag(Z̃TEZ̃) if k = 1 (note: we need Z̃ (= L̃−T) if k > 0)

Similarly, for order k inverse updates

Qα,E = P−1
α,E := Z̃(D̃ + αBk)

−1Z̃T (5)
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Hierarchy of order k updates

• B = B0 = I corresponds to order 0 update;

• B = B1 corresponds to the order 1 update;

• the symmetric tridiagonal band matrix B = B2 corresponds to the
order 2 update;

• ...;

• To complete the hierarchy of approximations, we define the order −1
update by letting B = B−1 = 0 (which corresponds to just using
P−1 = A−1 as an approximation of A−1

α,E).
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Are our updates Pα,E well defined?
Some sufficient conditions:

• A SPD, E diagonal and Re(E) with positive entries. Then, Re(Bk)
is symmetric positive definite since Re(E) SPD and Z̃k is a unit upper
triangular matrix and therefore nonsingular. ⇒the updates are guaran-
teed to be well defined.

• A and E SPD. Then, Bk is symmetric positive definite since Z̃k is a
unit upper triangular matrix and therefore nonsingular. ⇒the updates
are guaranteed to be well defined.

• ...
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Why this approach ?
This approach is motivated by the observation that, under suitable as-

sumptions, the entries along the rows of A−1 decay away from the main
diagonal [Demko, Moss, Smith: MathComp’84] ⇒ banded approximations
of Z tend to contain most of the large entries in Z (in L−1).
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Why this approach ?
This approach is motivated by the observation that, under suitable as-

sumptions, the entries along the rows of A−1 decay away from the main
diagonal [Demko, Moss, Smith: MathComp’84] ⇒ banded approximations
of Z tend to contain most of the large entries in Z (in L−1).

Example: if A is banded SPD ⇒
|(A−1)i,j| ≤ cρ|i−j|, i, j = 1, ..., n, 0 < ρ < 1

and c is a constant

However, the decay can be imperceptible... / very strong if A is strongly
diagonally dominant.
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Why this approach ?
This approach is motivated by the observation that, under suitable as-

sumptions, the entries along the rows of A−1 decay away from the main
diagonal [Demko, Moss, Smith: MathComp’84] ⇒ banded approximations
of Z tend to contain most of the large entries in Z (in L−1).

Example: if A is banded SPD ⇒
|(A−1)i,j| ≤ cρ|i−j|, i, j = 1, ..., n, 0 < ρ < 1

and c is a constant

However, the decay can be imperceptible... / very strong if A is strongly
diagonally dominant.

More on this and the analysis of the quality of updates/convergence of
iterations can be found in

• [B.,ETNA vol.18, 2004].
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Other approaches

• Preconditioners for SPD shifted linear systems by using an updated in-
complete Cholesky factorization [Meurant, SISC, 2001] (not guaranteed
if A is not an M -matrix and/or the shift is not positive real);

• non-preconditioned iterations reusing the approximation subspace be-
cause Km(A, v) = Km(A+αI, v) or “almost =”(not suitable when the
r.h.s. are not collinear/initial approximation changes with α or E 6= I ;
not suitable when preconditioning is essential; not suitable if we don’t
want CG/GMRES-style Krylov solver)

There are no alternatives to our approach in the general case (e.g., E 6=
I).
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Numerical experiments

• Matlab implementation of the proposed techniques;

• Updates of order 0, 1 and 2 here;

• updates are compared with the “full” preconditioners (i.e., the incom-
plete factorizations are recomputed from scratch for each different α
and E) and with the “order −1” ”update”, which is just the incomplete
factorization computed for α = 0.

• Example: Helmholtz equation with complex wave numbers.

• Another example: GLMs for time-dependent PDEs (a multiple-stages
solver);
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Helmholtz equation
An example of a problem whose discretization produces complex symmet-

ric linear systems is the Helmholtz equation with complex wave numbers

−∇ · (c∇u) + σ1(j)u+ iσ2(j)u = fj, j = 0, ..., s, (6)

where σ1(j), σ2(j) are real coefficient functions and c is the diffusion
coefficient.

We choose domain D = [0, 1]× [0, 1] with σ1 constant, σ2 a real coeffi-
cient function and c(x, y) = e−x−y.
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Helmholtz equation/2
As in [Freund, SISC92], we consider two cases.
→[Problem 1] Complex Helmholtz equation, u satisfies Dirichlet bound-

ary conditions in D. Discretizing the problem on a n × n grid, N = n2,
and mesh size h = 1/(n + 1) gives s + 1 linear systems (j = 0, ..., s):

Ajxj = bj, Aj = H + h2σ1(j)I + ih2Dj, Dj = diag(d1, ..., dN),

where H is the discretization of −∇ · (c∇u) by means of centered differ-
ences. The dr = dr(j), r = 1, ..., N , j = 0, ..., s, are the values of σ2(j)
at the grid points.

All test problems are based on a 31 × 31 mesh, the right hand sides are
vectors with random components in [−1, 1] + i[−1, 1] and the initial guess
is a random vector.
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Not prec ILDLH0 ILDLH1 ILDLH2 full ILDLH

σ1 it Mf it Mf it Mf it Mf it Mf

50 38 13.9 22 7.1 22 7.1 18 7.0 19 9.0
100 36 12.7 20 6.2 20 6.2 17 6.5 17 7.7
200 32 10.2 18 5.3 18 5.3 15 5.3 15 6.6
400 26 7.2 16 4.5 16 4.5 13 4.5 12 5.1
800 20 4.6 15 4.1 15 4.1 12 4.1 9 3.7

Order k, k = 0, 1, 2 modified and incomplete LDLH preconditioners.
Complex Helmholtz equation, Problem 1. Results for the complex

Helmholtz equation and Dirichlet boundary conditions as in Problem 1.
The diagonal entries of D are chosen randomly in [0, 1000].
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AINV0 AINV1 AINV2 full AINV
σ1 it Mf it Mf it Mf it Mf

50 26 8.8 26 8.8 20 7.8 15 1793
100 25 8.2 25 8.3 19 7.3 14 1793
200 22 6.7 22 6.8 17 6.3 13 1793
400 19 5.4 19 5.5 15 5.4 11 1792
800 17 4.6 17 4.7 13 4.5 8 1791

Order k, k = 0, 1, 2 inverse modified and AINV (i.e., recomputed at each
step) preconditioners. Results for the complex Helmholtz equation and

Dirichlet boundary conditions as in Problem 1. The diagonal entries of D
are chosen randomly in [0, 1000].
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Helmholtz equation/3
[Problem 2]→ Real Helmholtz equation with complex boundary condition

∂u

∂n
= iσ2(j)u, {(1, y) | 0 < y < 1}

discretized with forward differences and Dirichlet boundary conditions on
the remaining three sides gives again

Ajxj = bj, Aj = H + h2σ1(j)I + ih2Dj, Dj = diag(d1, ..., dN),

The diagonal entries of Dj are given by dr = dr(j) = 1000/h if r/m is
an integer, 0 otherwise.

All test problems are based on a 31 × 31 mesh, the right hand sides are
vectors with random components in [−1, 1] + i[−1, 1] and the initial guess
is a random vector.
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Not prec ILDLH0 ILDLH1 ILDLH2 full ILDLH

σ1 it Mf it Mf it Mf it Mf it Mf

.5 146 175 34 14.0 34 14.0 34 17.2 29 17.0
1 145 173 33 13.0 33 13.0 33 16.5 28 15.7
2 143 168 33 13.0 33 13.0 33 16.5 28 15.7
4 137 155 31 12.1 31 12.1 31 15.0 27 14.8
8 127 134 28 10.3 28 10.3 29 13.6 24 12.5

Order k, k = 0, 1, 2 modified and incomplete LDLH (i.e., recomputed at
each step) preconditioners. Results for the real Helmholtz equation and

complex boundary conditions as in Problem 2.
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AINV0 AINV1 AINV2 full AINV
σ1 it Mf it Mf it Mf it Mf

.5 47 23.4 47 23.5 47 27.8 46 1812
1 46 22.6 46 22.6 46 26.9 45 1811
2 46 22.6 45 21.8 45 26.0 45 1811
4 44 20.0 44 20.1 44 25.1 42 1809
8 41 18.5 40 17.9 40 21.6 40 1807

Order k, k = 0, 1, 2 inverse modified and AINV (i.e., recomputed at each
step) preconditioners. Results for the real Helmholtz equation and

complex boundary conditions as in Problem 2.
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Diffusion equation, variable coefficient, with GLMs
Let us consider the model problem















∂u

∂t
= ∇ · (c∇u), (x, y) ∈ R = [0, π] × [0, π],

u((x, y), t) = 0, (x, y) ∈ ∂R, t ∈ [0, 2π]
u((x, y), 0) = x y, (x, y) ∈ R,

c(x, y) = exp(−x− y). Discretizing in space and using LMF in boundary
value form to approximate u requires the solution of (block-quasi-Toeplitz)
linear systems which need to be preconditioned. But now the precondi-
tioner requires the solution of auxiliary shifted m2 ×m2 linear systems

(J + αjI)xj = bj,

where now the αjs are complex.
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The linear system

MY = b, Y =
(

yT0 , y
T
1 , ..., y

T
s

)T
,

M = A⊗ Im − hB ⊗ J,

b = e1 ⊗ η1 + es+1 ⊗ η2 + h(B ⊗ Im)g, g = (g(t0) · · · g(ts))T

where ei ∈ Rs+1, i = 1, ..., s+1, is the i–th column of the identity matrix
and A, B ∈ R

(s+1)×(s+1) are small rank perturbations of nonsymmetric
Toeplitz matrices.
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The matrices A and B

A =













































1 · · · 0

α
(1)
0 · · · α

(1)
k

... ... ...

α
(ν−1)
0 · · · α(ν−1)

k

α0 · · · αk
α0 · · · αk

. . . . . . . . .

α0 · · · αk
α

(s−k+ν+1)
0 · · · α(s−k+ν+1)

k
... ... ...

α
(s−1)
0 · · · α

(s−1)
k

0 · · · 1













































, (7)

α
(r)
j , j = 0, ..., k, coefficients of additional formulas; B is defined similarly

with the entries of the first and last rows set to zero.
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The Kronecker Product Preconditioner
In [B.,SISC00] we propose the use of Krylov subspace methods with

block-circulant preconditioners

P = Ă⊗ Im − hB̆ ⊗ J̃ (8)

where Ă, B̆ are “circulant-like”approximations of matrices A, B, respec-
tively, while J̃ is the approximation of J given by an incomplete factoriza-
tion.

To apply P , we block-diagonalize and rewrite P as

P = (F ∗ ⊗ Im)G(F ⊗ Im),

F Fourier’s matrix, Fj,r = e2π i j r/(s+1)/
√
s + 1, G = diag(G0, ..., Gs).
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Shifted matrices with complex shift
We need to solve s+1 auxiliary (shifted) linear systems when using these

block-preconditioners2 because of the block diagonal G in

P = (F ∗ ⊗ Im)G(F ⊗ Im),

F Fourier’s matrix, Fj,r = e2π i j r/(s+1)/
√
s + 1, G = diag(G0, ..., Gs)

The m×m matrix Gj:

Gj = φjIm − hψj J̃ = hψj

(

(−J̃) +
φj
hψj

Im

)

, j = 0, ..., s, (9)

To apply P we need to (i) use FFTs; (ii) solve a block diagonal linear
system whose blocks are parametric linear systems (in particular, complex
shifted matrices with shift φj/(hψj))

2see [B., SISC’00], [Chan,Jin,Ng, JNA’01], [B. SINUM 02],...
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GMRES +full AINV +AINV0 +AINV (J)
m s out avg Mf avg Mf avg Mf avg Mf

8 8 9 21.6 44 10.5 58 14.8 18 30.8 53
16 8 17.3 58 10.3 103 15.7 35 35.9 122
24 8 15.2 74 10.2 155 16.0 55 38.6 206
32 8 13.9 84 10.2 204 16.2 72 40.2 291

16 8 9 51.8 789 15.7 2845 19.3 105 36.9 288
16 9 40.2 1054 14.4 5663 19.2 210 45.0 815
24 9 35.3 1139 14.1 7633 19.6 292 50.8 1334
32 9 31.6 1276 13.7 10153 19.6 385 54.5 1997

24 8 9 84.3 4328 21.7 31282 24.1 330 40.8 754
16 9 65.9 5783 19.4 62453 23.3 635 47.8 2001
24 9 56.3 6698 19.1 93845 22.9 942 53.1 3629
32 8 51.2 6753 18.7 124899 23.1 1114 57.5 4896

32 8 10 117 15874 * * 28.8 868 43.9 1685
16 9 92.7 19445 * * 28.2 1512 51.2 3933
24 9 79.3 22500 * * 27.2 2187 55.7 6909
32 9 70.6 24709 * * 26.6 2785 59.0 10257
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Convergence Theory

Just few words...
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Theorem 1 3 Let us consider the sequence of algebraic linear systems.

Let A be Hermitian positive definite, α ∈ C, δ > 0 constant such that

the singular values of the matrix E − LBkL
H are

σ1 ≥ σ2 ≥ ... ≥ σt ≥ δ ≥ σt+1 ≥ ... ≥ σn ≥ 0,

and t≪ n. Then, if

max
α∈{α0,...,αs}

|α| · ||D−1ZH
k EZk||2 ≤ 1/2, (10)

there exist matrices F , ∆ and a constant cα such that
(

P
(k)
α,E

)−1

(A + αE) = I + F + ∆, (11)

||F ||2 ≤
2 maxα∈{α0,...,αs} |α|cαδ

λmin(A)

( ||Z||2
mini ||zi||2

)2

, Z = [z1 · · · zn], zi ∈ C
n,

rank(∆) ≤ t≪ n, the rank of ∆ does not depend on α, cα is a constant

such that lim|α|→0 cα = 1, cα of the order of unity.

3[B.,ETNA04].
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Conclusions.

• Updating incomplete factorizations for iterative methods is possible;
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Conclusions.

• Updating incomplete factorizations for iterative methods is possible;

• the cost of the updates is negligible with respect to computing a new
incomplete factorization;

• the updates are effective for important problems;

• generating incomplete factorizations directly from the complex symmet-
ric matrices Aj = A + αjEj requires complex arithmetic but not for
our updates;

• the proposed algorithms can be used with other (incomplete) factoriza-
tions in different settings;

• no parameter estimates is required;

• no alternative algorithms when Ej 6= I .


