Multigrid preconditioning for anisotropic positive semidefinite block Toeplitz systems

Rainer Fischer TU München 21.9.2004

Outline

- Multigrid for symmetric positive definite Toeplitz and multilevel Toeplitz systems
- Problems caused by anisotropic BTTB systems
- Anisotropy along coordinate axes
- Anisotropy in other directions

Toeplitz matrices and generating functions

The 2π -periodic generating function

$$f(x) = \sum_{k=-\infty}^{\infty} t_k e^{kix}$$

corresponds to a series of Toeplitz matrices $(T_n)_{n \in \mathbb{N}}$ with

$$T_{n} = \begin{pmatrix} t_{0} & t_{-1} & \cdots & t_{2-n} & t_{1-n} \\ t_{1} & t_{0} & t_{-1} & & t_{2-n} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ t_{n-2} & t_{1} & t_{0} & t_{-1} \\ t_{n-1} & t_{n-2} & \cdots & t_{1} & t_{0} \end{pmatrix} = (t_{i-j})_{i,j=1}^{n}$$

The coefficients are computed by

$$t_k = \frac{1}{2\pi} \int_{\pi}^{\pi} f(x) e^{-ikx} dx$$

BTTB matrices and generating functions

In two dimensions, the generating function

$$f(x,y) = \sum_{j,k=-\infty}^{\infty} t_{j,k} e^{ijx+iky}$$

corresponds to a series of BTTB matrices $(T_{mn})_{mn\in\mathbb{N}}$ with

$$T_{mn} = \begin{pmatrix} T_0 & T_{-1} & \cdots & T_{2-n} & T_{1-n} \\ T_1 & T_0 & T_{-1} & & T_{2-n} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ T_{n-2} & T_1 & T_0 & T_{-1} \\ T_{n-1} & T_{n-2} & \cdots & T_1 & T_0 \end{pmatrix}$$

where each matrix T_j is itself a Toeplitz matrix. The coefficients are computed by

$$t_{j,k} = \frac{1}{4\pi^2} \int_{\pi}^{\pi} \int_{\pi}^{\pi} f(x,y) e^{-ijx - iky} dx$$

Example

$$f(x,y) = 4 - 2\cos(x) - 2\cos(y)$$

= 4 - e^{ix} - e^{-ix} - e^{iy} - e^{-iy}

$$T_{mn} = \begin{pmatrix} T_0 & -I & 0 & \cdots & 0 \\ -I & T_0 & -I & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 \\ \vdots & \cdots & -I & T_0 & -I \\ 0 & \cdots & 0 & -I & T_0 \end{pmatrix}$$

with the identity matrix I and $T_0 = tridiag(-1, 4, -1)$

Multigrid for the BTTB matrix T_{mn}

Let T_{mn} be an spd and ill-conditioned BTTB matrix, corresponding to a generating function $f(x,y) \ge 0$ with $f(x_0, y_0) = 0$.

The prolongation is defined by $P = B \cdot E$

- B: defined to deal with the zero (x_0, y_0) of f
- E: elementary projection matrix $E_{mn} = E_m \otimes E_n$

with $E_n = I(:, 2:2:n)$

The coarse grid matrix T_C is computed with the Galerkin approach:

$$T_C = P^T T P = E^T (BTB) E$$

Multigrid for the generating function f

• Product $\hat{T} = B \cdot T \cdot B$ translated into functions

$$\widehat{f}(x,y) = f(x,y) \cdot b(x,y)^2$$

• Elementary projection E: picks every second row/column and every second block row / block column. Then, $T_C = E^T \cdot \hat{T} \cdot E$ corresponds to

$$f_2(x,y) = \frac{1}{4} \cdot \left[\hat{f}(\frac{x}{2}, \frac{y}{2}) + \hat{f}(\frac{x}{2} + \pi, \frac{y}{2}) + \hat{f}(\frac{x}{2}, \frac{y}{2} + \pi) + \hat{f}(\frac{x}{2} + \pi, \frac{y}{2} + \pi) \right]$$

 f_2 is obtained by picking every second coefficient in \boldsymbol{x} and every second coefficient in \boldsymbol{y} .

• Possible choices for B, i.e. b(x,y):

$$b(x,y) = (1 + \cos(x - x_0)) \cdot (1 + \cos(y - y_0))$$

$$b(x,y) = f(x,y + \pi) \cdot f(x + \pi, y) \cdot f(x + \pi, y + \pi)$$

Convergence of multigrid for BTTB

• If b(x, y) is spd and if it has three zeros at $(x_0 + \pi, y_0), (x_0, y_0 + \pi), (x_0 + \pi, y_0 + \pi),$ then $f_2(x, y) \ge 0$ with $f_2(2x_0, 2y_0) = 0$.

- Convergence proofs by S. Serra-Capizzano and R. Chan
- Multigrid fails if f(x, y) has another zero at $(x_0 + \pi, y_0)$, $(x_0, y_0 + \pi)$, or $(x_0 + \pi, y_0 + \pi)$. Even if f is close to zero at one of these points, convergence is extremely slow.

Anisotropic problems: Examples

Anisotropic model PDE:

$$-\alpha \cdot u_{xx} - u_{yy} = r \quad (\alpha \ll 1)$$

Discretization leads to an anisotropic BTTB system with generating function

$$f(x,y) = \alpha \cdot (1 - \cos(x)) + (1 - \cos(y)) \quad (\alpha \ll 1)$$

The following function belongs to a denser matrix:

$$f(x,y) = \alpha \cdot x^2 + y^2 \, .$$

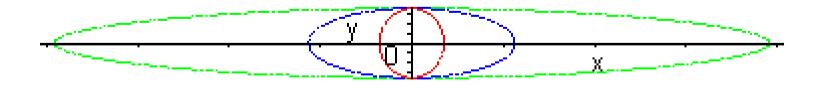
Its Fourier expansion is

$$f(x,y) = (1+\alpha)\frac{\pi^2}{3} + 4 \cdot \sum_{j=1}^{\infty} \frac{(-1)^j}{j^2} (\alpha \cos(jx) + \cos(jy))$$

Problems with multigrid methods

- If the anisotropy is strong, i.e. if α ≪ 1,
 f(x,0) becomes close to zero for all x ∈ [0,2π]
 ⇒ standard multigrid fails
- Weak coupling in x-direction, i.e. level curves are extremely flat.

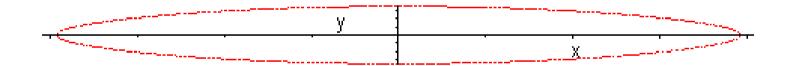
Example: f(x,y)=0.01 for $\alpha = 1, 0.1, 0.01$



Anisotropic problems and solution methods

- o Different types of anisotropies:
 - along coordinate axes, e.g.
 f(x,y)=α·(1-cos(x))+(1-cos(y))
 - along other directions, e.g.
 f(x,y)=α·(1-cos(x+y))+(1-cos(x-y))
- o Strategies for solving anisotropic systems:
 - Semicoarsening
 - Use of line smoothers, e.g. block-GS

Anisotropy along coordinate axes



Semicoarsening, a two-level method

 T_{mn} : spd, ill-cond., anisotropic along x, e.g.

$$f(x,y) = \alpha \cdot (1 - \cos(x)) + (1 - \cos(y))$$

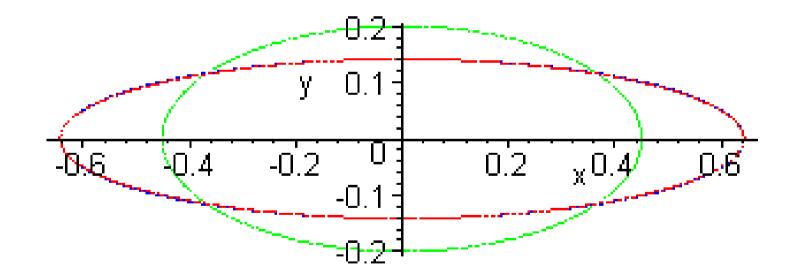
Functions for prolongation and coarse grid representation:

$$\begin{split} b(x,y) &= 1 + \cos(y) \quad or \\ b(x,y) &= f(x,y + \pi) \\ \widehat{f}(x,y) &= f(x,y) \cdot b(x,y)^2 \\ f_2(x,y) &= \frac{1}{2} \left(\widehat{f}(x,\frac{y}{2}) + \widehat{f}(x,\frac{y}{2} + \pi) \right) \\ T_C \text{, which belongs to } f_2 \text{, has } n/2 \text{ blocks} \\ \text{size } n \text{.} \end{split}$$

of

Semicoarsening and level curves

 $f(x,y)=0.05(1-\cos(x))+(1-\cos(y))$



A two-level convergence result

Theorem:

Let T_{mn} be a spd BTTB matrix whose generating function is real-valued even and satisfies

$$\min_{(x,y)\in [-\pi,\pi]^2} \frac{f(x,y)}{1-\cos(y)} = C > 0$$

Furthermore, let the prolongation matrix correspond to the generating function

$$b(x,y) = 1 + \cos(y) \, .$$

Then the two-level method converges.

Semicoarsening, a multilevel method

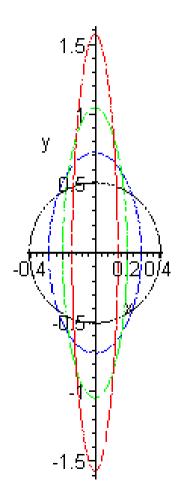
Heuristic:

Apply semicoarsening steps until the system is not anisotropic anymore, i.e. until level curves are circles. Then switch to full coarsening.

Example:

 $f(x,y)=(1-cos(x))+0.01\cdot(1-cos(y))$ b(x,y)=1+cos(x) three times

Level curves: f(x,y)=0.01 $f_2(x,y)=0.01$ $f_3(x,y)=0.01$ $f_4(x,y)=0.01$



Numerical Results

Iteration numbers for the matrix T_{nn} corresponding to the generating functions

$$f(x,y) = (1 - \cos(x)) + 0.01 \cdot (1 - \cos(y))$$

٠

coarsening	$n=2^{6}-1$	$n=2^{7}-1$	$n=2^{8}-1$
X,XY,XY	63	65	66
×,×,×,×y	16	17	17
X,X,X,X,X	20	20	19

 $f(x,y) = (1 - \cos(x)) + 0.001 \cdot (1 - \cos(y))$.

coarsening	$n=2^{6}-1$	$n=2^{7}-1$	$n=2^{8}-1$
X,XY,XY	125	181	> 200
Х,Х,Х,ХУ	32	45	50
$\times, \times, \times, \times, \times, \times$	15	15	15

Size of T_C on the coarsest level: $\frac{n^2}{32}$ -by- $\frac{n^2}{32}$

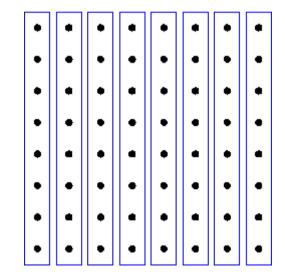
The use of line smoothers

Multigrid for moderately anisotropic problems: Standard coarsening, e.g.

 $b(x,y)=(1+\cos(x))\cdot(1+\cos(y))$

and line smoother such as the block-Jacobi or the block-Gauss-Seidel method (all blocks have size n)

٠	٠	٠	٠	٠	٠	٠	٠
•	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠
•	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠



Numerical Results

Iteration numbers for T_{nn} corresponding to

$$f(x,y) = (1 - \cos(x)) + 0.005 \cdot (1 - \cos(y))$$

$$b(x, y) = (1 + \cos(x)) \cdot (1 + \cos(y))$$

Smoothing: block-Jacobi with blocks of size n

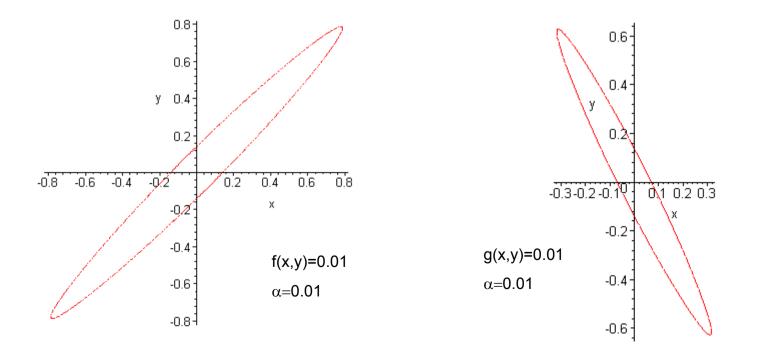
levels	$n=2^{5}-1$	$n=2^{6}-1$	$n=2^{7}-1$	$n=2^8-1$
2	12	14	14	14
3	15	16	17	17
4	18	19	19	19

Anisotropy in other directions

Examples

$$f(x,y) = \alpha \cdot (1 - \cos(x+y)) + (1 - \cos(x-y))$$

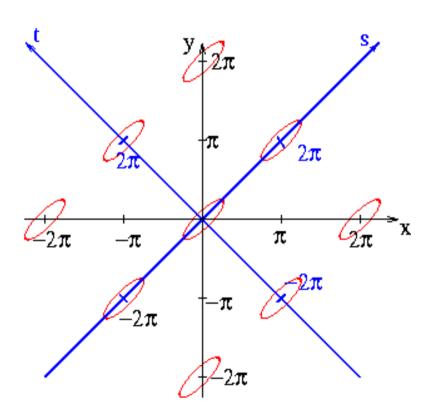
$$g(x,y) = (1 - \cos(2 \cdot x+y)) + \alpha \cdot (1 - \cos(x-2 \cdot y))$$



Coarsening in other directions

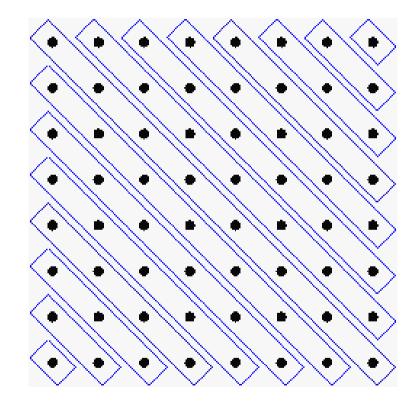
New coordinate system:

s=x+y t=x-y $f(s,t)=\alpha \cdot (1-\cos(s))+(1-\cos(t))$ Semicoarsening with $b(s,t)=1+\cos(t)$ Full coarsening with $b(s,t)=(1+\cos(s))\cdot(1+\cos(t))$



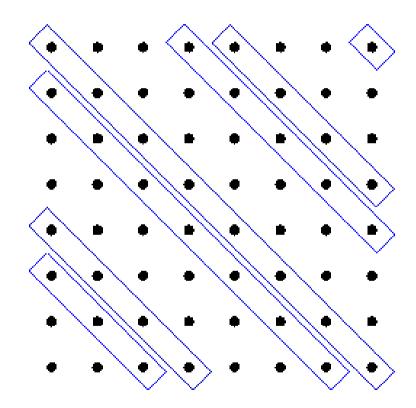
Semicoarsening in matrix notation

- Permutation of T_{nn} and partitioning into blocks, one block for each diagonal
- B_S=diag(B₁,...,B_n,...,B₁) with B₁=2, B_k=tridiag(1,2,1)
- Coarse grid matrix computed by B_S·T_{nn}·B_S and then by eliminating every second row/column within each block



Full coarsening in matrix notation

- $B_F = B_S + B_T$, where B_T has blocks $BI_k = tridiag_k(0.5, 1, 0.5)$ in the second lower block diagonal
- Coarse grid matrix computed by B_F·T_{nn}·B_F and then by eliminating every second row/column within each block and every second block row/column
- Multilevel method: Apply semicoarsening until the level curves are circles, then proceed with full coarsening



Numerical results

Iteration numbers for the matrices T_{nn} corresponding to the generating functions

$$f(x,y) = 0.01 \cdot (1 - \cos(x + y)) + (1 - \cos(x - y))$$

coarsening	$n=2^{6}-1$	$n=2^{7}-1$	$n=2^{8}-1$
t,st,st	43	45	45
t,t,t,st	17	18	18
t,t,t,t,t	21	21	21

 $f(x,y) = 0.001 \cdot (1 - \cos(x + y)) + (1 - \cos(x - y))$

coarsening	$n=2^{6}-1$	$n=2^{7}-1$	$n=2^{8}-1$
t,st,st	82	97	104
t,t,t,st	28	32	34
t,t,t,t,t	17	17	17

Standard coarsening and line smoothing

Coarsening: b(x,y)=(1+cos(x))(1+cos(y))Smoothing: Block-Jacobi or block-GS with blocks of variable size (one for each diagonal) Problem: f(x,y) has zeros at (0,0) and (π,π) Solution: For computation of the coarse grid matrix consider T_{nn} as a block-BTTB matrix with blocks of size 2 Example: $f(x,y)=0.05\cdot(1-cos(x))+(1-cos(y))$

levels	$n=2^{5}-1$	$n=2^{6}-1$	$n=2^{7}-1$	$n=2^{8}-1$
2	13	14	14	13
3	21	25	26	25