Istituzioni di Geometria Superiore

Note sul numero di Lefschetz

Notazioni e convenzioni: Sfrutteremo estensivamente le notazioni proprie del libro "Differential forms in algebraic topology" di R. Bott e L. W. Tu. Per esempio, confonderemo stabilmente una forma differenziale chiusa con la classe di coomologia che essa definisce. Naturalmente, tutte le varietà e le mappe considerate saranno lisce, ovvero di classe C^{∞} . Se M è una n-varietà compatta e orientata e $\alpha \in \Lambda^k(M)$ con $k \neq n$, porremo per convenzione $\int_M \alpha = 0$.

Forma "duale" di una sottovarietà. D'ora in poi, indicheremo con M una n-varietà compatta e orientata.

Sia $S \subseteq M$ una k-sottovarietà embedded di M chiusa (dunque compatta) e orientata. Se $\omega \in \Lambda^k(M)$, indicheremo semplicemente con $\int_S \omega$ il valore

$$\int_{S} \omega = \int_{S} i^* \omega,$$

dove $i \colon S \hookrightarrow M$ è l'inclusione. Una semplice applicazione del Teorema di Stokes mostra che la mappa

$$\Lambda^k(M) \to \mathbb{R}, \qquad \omega \mapsto \int_S \omega$$

induce un ben definito funzionale lineare

$$H^k(M) \to \mathbb{R}$$
.

Per il Teorema di dualità di Poincaré, tale funzionale è rappresentato da una (n-k)-forma su M. In altre parole, esiste $\eta_S \in H^{n-k}(M)$ tale che

$$\int_{S} \omega = \int_{M} \omega \wedge \eta_{S} \qquad \forall \omega \in H^{k}(M).$$

La classe η_S prende il nome di classe "duale di Poincaré" della sottovarietà S.

Lemma 1. Sia $j: M \setminus S \to M$ l'inclusione. Allora $j^*\eta_S$ è esatta (su $M \setminus S$, ovviamente).

Dim.: Per il Teorema di dualità di Poincaré, è sufficiente mostrare che η_S rappresenta il funzionale nullo su $H^k_c(M\setminus S)$. Sia dunque $\alpha\in\Lambda^k(M\setminus S)$ una forma chiusa a supporto compatto. Poiché S è chiusa in M, è immediato verificare che esiste un intorno aperto V di S in M tale che il supporto di α sia contenuto in $M\setminus V$. È dunque ben definita (ovvero univocamente definita e C^∞) la forma $\widetilde{\alpha}\in\Lambda^k(M)$ che coincide con α su $M\setminus S$ e che è costantemente nulla su V. Si ha allora

$$\int_{M \setminus S} \alpha \wedge j^* \eta_S = \int_M \widetilde{\alpha} \wedge \eta_S = \int_S \widetilde{\alpha} = 0,$$

dove la prima e la seconda uguaglianza sono dovute rispettivamente al fatto che $\widetilde{\alpha}$ è nulla su S e alla definizione di duale di Poincaré. Dunque η_S rappresenta il funzionale nullo su $H_c^k(M \setminus S)$, come voluto.

Corollario 2. Siano S, S' sottovarietà compatte orientate di M disgiunte tali che dim $S + \dim S' = \dim M$. Allora $\int_S \eta_{S'} = 0$.

Dim.: Per il lemma precedente, esiste una forma α definita su $M \setminus S'$ tale che $\eta_{S'} = d\alpha$ su $M \setminus S'$. Poiché $S \subseteq M \setminus S'$, dal Teorema di Stokes si deduce allora $\int_S \eta_{S'} = \int_S d\alpha = 0$.

Il numero di Lefschetz. Sia ora $f: M \to M$, e si indichi con $f_i^*: H^i(M) \to H^i(M)$, $i = 0, \ldots, n$, l'applicazione lineare indotta da f.

Definizione 3. Il numero di Lefschetz di f, che sarà d'ora in poi denotato con L(f), è definito da

$$L(f) = \sum_{i=0}^{n} (-1)^{i} \operatorname{tr} f_{i}^{*}.$$

Scopo di queste note è dimostrare il celebre

Teorema 4 (Lefschetz). Se f non ha punti fissi, allora L(f) = 0.

Cominciamo con il fissare alcune notazioni. Sia $\{\omega^i\}_{i\in I}$ una base di $H^*(M)$, e ne sia $\{\tau^i\}_{i\in I}$ la base duale, ovvero sia $\{\tau_i\}_{i\in I}$ la base di $H^*(M)$ tale che

$$\int_{M} \omega^{i} \wedge \tau^{j} = \delta^{ij} \qquad \forall i, j \in I$$

(una tale base esiste, ed è in effetti univocamente determinata da $\{\omega^i\}_{i\in I}$, in virtù del Teorema di dualità di Poincaré).

Lemma 5. Si ha

$$L(f) = \sum_{i \in I} (-1)^{\deg \omega^i} \int_M f^* \omega^i \wedge \tau^i.$$

Dim.: Sia $I_k \subseteq I$ l'insieme degli indici per cui $\{\omega^i\}_{i \in I_k}$ sia una base di $H^k(M)$. Allora per ogni $i \in I^k$ esistono coefficienti reali H^i_j tali che $f^*_k \omega^i = \sum_{j \in I_k} H^i_j \omega^j$, e si ha chiaramente tr $f^*_k = \sum_{i \in I_k} H^i_i$. D'altronde per ogni $i \in I_k$ si ha anche

$$\int_M f^* \omega^i \wedge \tau^i = \sum_{j \in I_k} \left(H^i_j \int_M \omega^j \wedge \tau^i \right) = \sum_{j \in I_k} H^i_j \delta^{ij} = H^i_i,$$

per cui $(-1)^k$ tr $f_k^* = \sum_{i \in I_k} \left((-1)^{\deg \omega^i} \int_M f^* \omega^i \wedge \tau^i \right)$. Dunque

$$\begin{array}{rcl} L(f) & = & \sum_{k=0}^n (-1)^k \mathrm{tr} \, f_k^* = \sum_{k=0}^n \sum_{i \in I_k} \left((-1)^{\deg \omega^i} \int_M f^* \omega^i \wedge \tau^i \right) \\ & = & \sum_{i \in I} (-1)^{\deg \omega^i} \int_M f^* \omega^i \wedge \tau^i \end{array}$$

come voluto. \Box

Siano $\pi_1, \pi_2 \colon M \times M \to M$ le proiezioni definite da $\pi_1(p,q) = p, \pi_1(p,q) = q$. Siano inoltre $i_1, i_2 \colon M \to M \times M$ le inclusioni date da $i_1(p) = (p, p), i_2(p) = (p, f(p))$. Poniamo infine $\Delta = i_1(M), \Gamma = i_2(M)$. È immediato verificare che i_1, i_2 sono embedding C^{∞} (le cui inverse sono semplicemente date da π_1), per cui Δ e Γ sono *n*-sottovarietà embedded compatte e orientate di $M \times M$. Per ovvie ragioni, Δ viene detta diagonale di $M \times M$, mentre Γ prende il nome di grafico di f.

Naturalmente, i punti fissi di f sono in naturale bigezione con i punti di $\Delta \cap \Gamma$. Dal Corollario 2 si deduce dunque la seguente

Proposizione 6. Se f non ha punti fissi, allora

$$\int_{\Lambda} \eta_{\Gamma} = 0.$$

Premettiamo alla dimostrazione del Teorema di Lefschetz il seguente semplice

Lemma 7. Siano $\omega, \omega' \in \Lambda^n(M)$. Allora

$$\int_{M\times M} \pi_1^* \omega \wedge \pi_2^* \omega' = \left(\int_M \omega\right) \left(\int_M \omega'\right).$$

Dim.: In coordinate locali, se

$$\omega = g(x_1, \dots, x_n)dx^1 \wedge \dots \wedge dx^n, \quad \omega' = g'(y_1, \dots, y_n)dy^1 \wedge \dots \wedge dy^n,$$

allora

$$\pi_1^* \omega \wedge \pi_2^* \omega' = g(x_1, \dots, x_n) g'(y_1, \dots, y_n) dx^1 \wedge \dots \wedge dx^n \wedge dy^1 \wedge \dots \wedge dy^n,$$

per cui la tesi è una facile conseguenza del Teorema di Fubini-Tonelli.

Cerchiamo ora di studiare la forma η_{Γ} . Per ogni $i, j \in I$ poniamo

$$\epsilon^{lij} = (-1)^{\deg \omega^l (\deg \tau^i + \deg \omega^j)}, \quad A_{ij} = \epsilon^{iij} \int_M \tau^i \wedge f^* \omega^j.$$

Lemma 8. Si ha

$$\eta_{\Gamma} = \sum_{i,j \in I} A_{ij} \pi_1^* \omega^i \wedge \pi_2^* \tau^j.$$

Dim.: Per il Teorema di Künneth si ha $\eta_{\Gamma} = \sum_{i,j \in I} C_{ij} \pi_1^* \omega^i \wedge \pi_2^* \tau^j$ per qualche $C_{ij} \in \mathbb{R}$ (con $C_{ij} = 0$ ogni qual volta $\deg \omega^i + \deg \tau^j \neq n$). Vogliamo mostrare che $C_{ij} = A_{ij}$. Per ogni i, j si ha innanzi tutto

(1)
$$\int_{\Gamma} \pi_1^* \tau^i \wedge \pi_2^* \omega^j = \int_{M} i_2^* \pi_1^* \tau^i \wedge i_2^* \pi_2^* \omega^j = \int_{M} \tau^i \wedge f^* \omega^j.$$

D'altronde per definizione di forma duale di Poincaré si ha anche

(2)
$$\int_{\Gamma} \pi_{1}^{*} \tau^{i} \wedge \pi_{2}^{*} \omega^{j} = \int_{M \times M} \pi_{1}^{*} \tau^{i} \wedge \pi_{2}^{*} \omega^{j} \wedge \left(\sum_{l,m \in I} C_{lm} \pi_{1}^{*} \omega^{l} \wedge \pi_{2}^{*} \tau^{m} \right) \\
= \sum_{l,m \in I} \epsilon^{lij} C_{lm} \int_{M \times M} \pi_{1}^{*} (\omega^{l} \wedge \tau^{i}) \wedge \pi_{2}^{*} (\omega^{j} \wedge \tau^{m}) \\
= \sum_{l,m \in I} \epsilon^{lij} C_{lm} \left(\int_{M} \omega^{l} \wedge \tau^{i} \right) \left(\int_{M} \omega^{j} \wedge \tau^{m} \right) \\
= \sum_{l,m \in I} \epsilon^{lij} C_{lm} \delta^{li} \delta^{jm} \\
= \epsilon^{iij} C_{ij},$$

dove la terza uguaglianza è dovuta al Lemma 7. Confrontando le uguaglianze (1) e (2) si ottiene infine $\epsilon^{iij}C_{ij}=\int_M \tau^i \wedge f^*\omega^j$, da cui $C_{ij}=A_{ij}$, come voluto.

Siamo ora pronti per concludere. Il Teorema di Lefschetz discende immediatamente dalla Proposizione 6 e dalla seguente:

Proposizione 9. Si ha

$$L(f) = \int_{\Delta} \eta_{\Gamma}.$$

Dim.: Per quanto visto nel Lemma 8 si ha

$$\int_{\Delta} \eta_{\Gamma} = \int_{M} i_{1}^{*} \eta_{\Gamma} = \sum_{i,j \in I} A_{ij} \int_{M} i_{1}^{*} \pi_{1}^{*} \omega^{i} \wedge i_{1}^{*} \pi_{2}^{*} \tau^{j} \\
= \sum_{i,j \in I} A_{ij} \int_{M} \omega^{i} \wedge \tau^{j} = \sum_{i,j \in I} A_{ij} \delta^{ij} = \sum_{i \in I} A_{ii}.$$

Notiamo ora che $\epsilon^{iii}+\deg \tau^i+\deg \omega^i=(\deg \omega^i)^2$ ha la stessa parità di deg ω^i , per cui

$$A_{ii} = \epsilon^{iii} \int_{M} \tau^{i} \wedge f^{*}\omega^{i} = (-1)^{\deg \omega^{i}} \int_{M} f^{*}\omega^{i} \wedge \tau^{i}$$

e

$$\int_{\Delta} \eta_{\Gamma} = \sum_{i \in I} (-1)^{\deg \omega^{i}} \int_{M} f^{*} \omega^{i} \wedge \tau^{i} = L(f),$$

dove l'ultima uguaglianza è dovuta al Lemma 5.

Un'applicazione. Sfruttiamo ora il Teorema di Lefschetz per dimostrare il seguente:

Teorema 10 (Poincaré - Hopf). Sia M una varietà connessa, compatta e orientata. Se M ammette un campo vettoriale mai nullo, allora $\chi(M) = 0$.

Dim.: Si supponga $\chi(M) \neq 0$ e sia X un campo vettoriale su M. Vogliamo mostrare che X ha necessariamente uno zero. Sia $\Theta \colon \mathbb{R} \times M \to M$ il flusso associato a X (si noti che Θ è definito su tutto $\mathbb{R} \times M$ perché M è compatta). Se $\theta_t \colon M \to M$ è data da $\theta_t = \Theta(t, \cdot)$, allora θ_t è ovviamente omotopa all'identità di M. Ne segue che $\theta_t^* \colon H^*(M) \to H^*(M)$ è l'identità, per cui $L(\theta_t) = \sum_{k=0}^n \dim H^k(M) = \chi(M) \neq 0$. Pertanto, per il Teorema di Lefschetz l'insieme F_t dei punti fissi di θ_t è non vuoto. Per ogni $n \in \mathbb{N}$ si ponga $C_n = F_{2^{-n}}$. Poiché $\theta_{2^{-n}}$ è continua, è immediato verificare che C_n è chiuso, dunque compatto. Poiché $\theta_{2^{-n-1}} \circ \theta_{2^{-n-1}} = \theta_{2^{-n}}$ si ha inoltre $C_{n+1} \subseteq C_n$ per ogni $n \in \mathbb{N}$. L'insieme $\{C_n\}_{n \in \mathbb{N}}$ è allora costituito da un insieme discendente di compatti non vuoti, per cui un noto teorema di topologia implica che l'intersezione $C_\infty = \bigcap_{n \in \mathbb{N}} C_n$ è non vuota.

Sia ora $p \in C_{\infty}$ e sia $\theta^p \colon \mathbb{R} \to M$ la curva integrale di X passante per p, ovvero la curva (ovviamente differenziabile) definita da $\theta^p(t) = \Theta(t, p)$. Per costruzione si ha $\theta^p(2^{-n}) = p$ per ogni $n \in \mathbb{N}$, per cui

$$X(p) = (\theta^p)'(0) = 0,$$

come voluto. \Box

Il Teorema di Poincaré-Hopf afferma in realtà che l'annullarsi della caratteristica è condizione non solo necessaria, ma anche sufficiente per l'esistenza di un campo vettoriale mai nullo su varietà compatte e connesse. Inoltre, l'ipotesi di

orientabilità è inessenziale. Ciò può essere visto considerando il rivestimento doppio orientabile \widetilde{M} di M: se M ammette un campo mai nullo, allora anche \widetilde{M} lo ammette, per cui $\chi(\widetilde{M})=0$. D'altronde, sfruttando la descrizione "alla Cech" della caratteristica di Eulero-Poincaré non è difficile dimostrare che $\chi(\widetilde{M})=2\chi(M)$, per cui $\chi(M)=0$.