ANNO ACCADEMICO 2008/2009 Geometria Superiore II Esercizi IV

Esercizio 1.

Sia X uno spazio geodetico iperbolico proprio con punto base $w \in X$, e siano $c_n \colon [0,\infty) \to X$, $n \in \mathbb{N}$, $c \colon [0,\infty) \to X$ raggi geodetici con $c_n(0) = c(0) = w$. Si mostri che $\lim_{n\to\infty} c_n(\infty) = c(\infty)$ se e solo se da ogni sottosuccessione di $\{c_n\}$ si può estrarre una sottosuccessione $\{c_{n_i}\}$ tale che $\lim_{i\to\infty} c_{n_i} = c'$ nella topologia della convergenza uniforme sui compatti, dove c' è un raggio geodetico con $c'(\infty) = c(\infty)$.

Esercizio 2.

Sia X uno spazio geodetico δ -iperbolico proprio, e sia $\Delta \subseteq X$ un triangolo di vertici w, x, y. Siano u_1, u_2, u_3 i punti interni di Δ opposti a y, x, w rispettivamente (ricordo che, se T è il tripode associato a Δ , i punti interni di Δ sono dati dalla preiimmagine del centro rispetto alla mappa di confronto $\Delta \to T$).

• Si mostri che esiste $A = A(M, \delta)$ tale che se $a_1 \in [w, x], a_2 \in [w, y],$ $a_3 \in [x, y]$ sono tali che diam $(\{a_1, a_2, a_3\}) \leq M$, allora $d(a_i, u_i) \leq A$ per ogni i = 1, 2, 3.

Sia ora Y uno spazio geodetico δ -iperbolico proprio, e sia $f\colon X\to Y$ una (λ,c) -quasi-isometria.

- Si mostri che, se Δ' è un triangolo in Y di vertici f(w), f(x), f(y) e punti interni $v_1 \in [f(w), f(x)], v_2 \in [f(w), f(y)], v_3 \in [f(x), f(y)],$ allora esiste $B = B(\delta, \lambda, c)$ tale che $d(f(u_i), v_i) \leq B$ per i = 1, 2, 3 (Suggerimento: si usino il Lemma di Morse ed il punto precedente).
- Si mostri che esiste una costante $C=C(\lambda,c,\delta)$ tale che per ogni quaterna di punti $x,y,z,w\in X$ si ha

$$\frac{|(x,y)_w - (y,z)_w|}{\lambda} - C \leq |(f(x), f(y))_{f(w)} - (f(y), f(z))_{f(w)}| \leq \lambda |(x,y)_w - (y,z)_w| + C.$$

Esercizio 3.

Sia $g \colon A \to B$ un omeomorfismo tra spazi metrici, e per ogni $a \in A$ sia

$$K(a) = \limsup_{r \to 0^+} \frac{\sup\{d(g(a),g(a')) \, | \, d(a,a') = r\}}{\inf\{d(g(a),g(a')) \, | \, d(a,a') = r\}} \in [1,+\infty].$$

Allora, g è detto K-quasi-conforme se per ogni $a \in A$ si ha $K(a) \leq K$.

- (1) Si mostri che, se X è uno spazio geodetico iperbolico proprio, allora le metriche costruite a lezione su ∂X sono a dua a due quasiconformemente equivalenti (ovvero, se d, d' sono due tali metriche, allora l'identità definisce un omeomorfismo quasi-conforme di $(\partial X, d)$ su $(\partial X, d')$.
- (2) Sia $f: X \to Y$ una quasi-isometria tra due spazi geodetici iperbolici propri. Si mostri che l'omeomorfismo indotto $\partial f: \partial X \to \partial Y$ è quasi-conforme (tale affermazione ha senso per il punto precedente). (Suggerimento: si usi l'Esercizio precedente).

Esercizio 4.

Sia Γ un gruppo iperbolico, e sia T un cono asintotico di (un grafo di Cayley di) Γ (che, per quanto visto a lezione, è un albero reale). Si mostri che per ogni p in T la cardinalità delle componenti connesse di $T \setminus \{p\}$ è maggiore o uguale a quella di ∂X (per esempio, se Γ è il gruppo fondamentale di una superficie di genere almeno 2, allora $\partial \Gamma \cong S^1$, per cui T è sconnesso da ogni suo punto in una quantità più che numerabile di componenti!).