Test di Calcolo Numerico

Ingegneria Informatica 15/01/2010

COGNOME NOME		
Μ	ATRICOLA	
RISPOSTE		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate ed i dati dello studente devono essere scritti a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica

15/01/2010

1) Calcolare il raggio spettrale della matrice

$$A = \left(\begin{array}{cccc} 2 & 0 & 1 & -7 \\ 1 & -3 & 11 & 13 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 1 & 5 \end{array}\right) .$$

2) Calcolare i punti fissi a cui può convergere lo schema iterativo

$$x_{n+1} = \frac{x_n^3 - 2x_n + 4}{3x_n}, \quad n = 0, 1, \dots$$

3) Determinare i valori dei parametri reali α e β per i quali risulta di grado minimo il polinomio di interpolazione relativo alla tabella di valori

- 4) Quanti sono i numeri di macchina che compongono l'insieme $\mathcal{F}(4,4,-2,2)$?
- 5) Qual è il grado di precisione della formula di quadratura

$$J_1(f) = \frac{8}{7} f\left(-\frac{1}{2}\right) + \frac{6}{7} f\left(\frac{2}{3}\right)$$

che approssima l'integrale $\int_{-1}^{1} f(x)dx$?

SOLUZIONE

- 1) La matrice è partizionabile a blocchi in forma triangolare superiore con due blocchi diagonali di ordine 2 a loro volta triangolari inferiori. Segue quindi che gli autovalori sono $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = -3$, $\lambda_4 = 5$ e che $\rho(A) = 5$.
- 2) I punti fissi sono le soluzioni dell'equazione $x = \frac{x^3 2x + 4}{3x}$ ed esattamente $\alpha_1 = 1$ e $\alpha_{2,3} = 1 \pm \sqrt{5}$.
- 3) Dal quadro delle differenze divise si ricava che il polinomio di interpolazione di grado minimo è $P_4(x) = x^2 3x 2$ se si sceglie $\alpha_1 = 4$ o $\alpha_2 = -1$ e $\beta = -2$.
- 4) La cardinalità dell'insieme dei numeri di macchina $\mathcal{F}(4,4,-2,2)$ è 1921.
- 5) Si verifica $E_1(1) = 0$, $E_1(x) = 0$, $E_1(x^2) = 0$ e $E_1(x^3) \neq 0$ per cui il grado di precisione della formula proposta è m = 2.