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1. INTRODUCTION 

Let X be a Banach space. We consider the Cauchy problem 

u’ =Au +f(t, u) (tEz,u(t) EX) 

u(O) = un; (1.1) 

where I := [O, a], and A is the infinitesimal generator of a C”-semigroup. 
It is well known that if f is only continuous (even if A = 0) the problem (1.1) does not 

always have solutions [l]. Like in the finite dimensional case, under the Lipschitz condition we 
have existence and uniqueness of mild solution of problem (1.1) (for the definition of mild 
solution see definition 2.3). If f is compact we have at least a mild solution (we can 
alternatively assume the compactness of the semigroup generated by A, see [2-51. Also if we 
assume that f is weakly compact and weakly continuous we have at least a mild solution 161. 

Many authors have considered the Cauchy problem (1.11, in particular in the case A = 0, 
under hypotheses based on noncompactness measures (see definition 2.1 and [7-9]), which 
include Lipschitz and compactness conditions. 

CASE A=O 

u’ =f(t, u> (tEz,U(t) EX): 

u(0) = uo. (1.2) 

The first result has been obtained by [lo]. They supposed f continuous and f=f, +f?. 
where f, is a Lipschitz continuous operator and fZ is a compact one (for a generalization see 
[ll]). Later on [12] supposed that S is uniformly continuous in (t, u) and a-Lipschitz 
continuous, that is for every bounded subset W of X. and for t E I 

a(f({t) x W>) lKcx(W) 

1193 



1194 M. GHISI 

where (Y is the Hausdorff noncompactness measure (see definition 2.1). Ambrosetti [12l uses 
in his proof the Darbo fixed point theorem [13]. Szufla [14] generalized this result by supposing 
f continuous and such that: 

(i) there exists a constant K such that, for every bounded subset W of X, c~(f(Z X IV)) I 
Ka(W). 

A stronger formulation of this result is due to [15]. They supposed f(t, x) := F(t, x, x); 
where F(., . , y) is compact, F(t, x, . ) is Lipschitz continuous, and F(., . , * ) is continuous. Later 
on, [16] treated the case when f is a Caratheodory operator (that is continuous in u and 
measurable in t). Later on, [17] assumed that f(t, x) := F(t, x, x), with F uniformly continuous 
in (t, x, y) and a(F(t} x I/X WI I h(t)cr(V), for V, W bounded subsets of X, t E I, and h(t) 
integrable real function. 

We remark that many other authors [7,16,18-311 weakened hypothesis (i). by assuming a 
hypothesis of this type; 

(ii) there exists a function g: R x R + [0, +a[ such that, for every bounded subset W of 
X, and for every t E I, a(f({t} X IV)) ig(t. a(W)), where g is a Kamke function (that is the 
Cauchy problem y ’ = g(t, y), y(O) = 0 has only the solution y = 0) (see 1321). 

Furthermore [32] showed that when f is uniformly continuous in (t, U) the properties of 
type (ii) used by above considered authors are equivalent. We can not treat this case by our 
technique. 

Some other authors considered the weak noncompactness measure (see definition 2.2) 
instead of noncompactness measures. Mitchen and Smith [33] supposed that f is weakly 
continuous and satisfies a hypothesis of type (i) with respect to weak noncompactness measure 
(see also [34]). Cramer et al. [35] generalized this result by weakening hypothesis of type (i) of 
[331. Later on [36] showed that the Cauchy problem (2) has a solution by supposing that f is a 
Caratheodory operator (for the weak topology) and satisfies (i) for the weak noncompactness 
measure. 

CASE A+O 

Reference [44] showed that the Cauchy problem (1) has at least a mild solution when f is 
continuous and f =f, +f2, where f, is a Lipschitz continuous operator and f2 is a compact 
one. Later on, [37] treated problem (1.1) under cY-Lipschitz hypotheses. They supposed that f 
is continuous and satisfies hypothesis (i), and that A is the generator of a contraction 
semigroup (theorem 3.3 and theorem 3.6). Their proof seems to be uncompleted (see 
Mathematical Reviews, MR 91h: 34099). Later on [38] showed the problem U’ E -Au + 
f(t, u), u(0) = z+, E closure (D(A)) has an integral solution if A is m-accretive linear operator 
(i.e. for x,zED(A), y~Ax,w~Az) one has [x-x,y-~I-20 and the range of (I+ti) is 
the whole X (for each t > 0)) which generates an equicontinuous semigroup and f is a locally 
uniformly continuous, locally bounded operator and a-Lipschitz continuous operator with 
constant K < 1/2a. 

In fact, the Cauchy problem (1.1) has at least a mild solution under two sets of hypotheses: 
(a) f is a Caratheodory operator and satisfies property i) (theorem 3.1); 
(b) f is a Caratheodory operator with respect to weak topology, in particular f(t, . ) is weakly 
sequentially continuous, and satisfies property i) for the weak noncompactness measure. 
Furthermore the semigroup generated by A is sequentially weakly continuous in (t, U) on the 
bounded subsets (theorem 3.2). 
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Our technique is based on the approximating delayed problems introduced by Tonelli [39] 
already used by Pianigiani [16], Cramer et al. [35] and Song [26]. 

This paper is organized as follows: 
in Section 2 we give some definitions; 
in Section 3 we state some lemmata, the main result and remarks; 
in Section 4 we give the proofs. 

2. PRELIMINARIES 

Let us recall the following definitions. 

Definition 2.1. Let B be a bounded subset of X. The Hausdorff noncompactness measure of 
B is defined as 

(Y(B) := inf{ E > 0: B can be covered by a finite number of balls of radius E} 

Definition 2.2. Let B be a bounded subset of X. The weak noncompactness measure of B is 
defined as 

crw (B) := inf{ E > 0: there exists a weakly compact set KC X such that B c K + EB], 

where B is the ball of center 0 and radius 1 in X. 
Given a subset A of X, we denote by cl(A) its closure, co(A) its convex hull. 
Let us recall some properties of (Y (for the proofs see [7-91). Let A and B be bounded 

subsets of X, then 
(1) &o(B)) = a(B); 
(2) &cl(B)) = a(B); 
(3) dA U B) 5 maxIa( a(B)}; 
(4) (y(A) = 0 if and only if A is relatively compact; 
(5) a(hB) = IAla for every h E R; 
(6) cubI + B) _< a(A) + a(B); 
(7) a!(B) I a(A) if B ~4. 
The same properties hold true, with respect to weak topology, for (Y,+, (see [40]); we denote 

them by cl,)-(7,). 
We recall that a C”-semigroup on X is an operator S: [0, + m[ X X + X such that: 
(1) for every t 2 0, S(t) is a linear and continuous operator on X; 
(2) for every t 2 0, s 2 0, St + s) = S(t) S(s); 
(3) S(O) = Identity; 
(4) for every x in X, S(t)x +x for t--j Of. 
We recall that A is the infinitesimal generator of a C”-semigroup if 

x: there exists finite ,fm,h-‘(S(hlx -xl> 
+ 

and 

Ax = lim h-‘(S(h)x -x>. 
h-0 
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If S is a Co-semigroup and A is its infinitesimal generator, we set 

e -‘A := S(t). 

We recall that, if ePtA is a C”-semigroup, then there exist two constants A4 r 1 and o L 0 
such that 

lleptAll 2 Me”’ (2.1) 

(see for example [41]). 

Definition 2.3. Let A be the generator of a Co-semigroup. We call u mild solution of the 
Cauchy problem (1.1) on [0, a] if 

/ 

I 
u(t) = emlAuO + e-‘rmS’Af(s, u(s>)ds (0 It I a>. 

0 

3. THE MAIN RESULT 

Let f:[O,a]xX+X, and let emrA be a C”-semigroup. Our technique is based on the 
delayed problems 

I 

uo if t 50, 

u,(t) = 

/ 

I 
e -‘AUo + e-(‘-S)Af(s, u,(s - a/n>) ds ifOIt<a. 

0 

(3.1.1) 

(P,> 

(3.1.2) 

Let us set 

R:= u (u,(t):nEN}* (3.2) 

We need these lemmata: 

LEMMA 3.1. We have 

(3.3) 

and 

LEMMA 3.2. Let D be a bounded subset of X. Let M, w  be the constants introduced in (2.1). 
Then for every a > 0 we have 

(3.9 
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Furthermore, if the semigroup is sequentially weakly continuous on bounded subsets we 
have 

(YW 
( 

Ue p’A(D> 4Me”“a,(D). (3.6) 
0stsa 1 

Let B be the ball of center u,, and radius R in X and let Z := [O, ~1. Let emrA be a 
Co-semigroup. Let f : I x B +X be an operator that satisfies these properties: 

(a) in the case of the strong topology 

(3.7) there exists a constant K such that, for every bounded subset W of X 

a(f(Z x WI) I Ka(W); 

(3.8) f(., u) is strongly measurable for u in a dense subset of B; 
(3.9) f(t, *) is continuous for almost every t in [O, a,]; 

(b) in the case of the weak topology 

(3.7,) there exists a constant K such that, for every bounded subset W of X 

aw(f(Z x W)) I Kaw(W). 

(3.8,) for every continuous function u : I -B, the function e PC )Af(., u(m)) is weakly (or Pettis) 
integrable; 
(3.9,) f(t, * ) is weakly sequentially continuous for almost every t in [O, a”]. 

Now we state the results, 

THEOREM 3.1. (case a) Let D be a bounded subset of X, B the ball of center u,, and radius 
R, and I := [O, ao]. 

Let A be the infinitesimal generator of a Co-semigroup. Let f : I x B + D be an operator 
satisfying (3.7)~(3.9). 

Then the Cauchy problem (1) has at least a mild solution u E C’([O, a,]; X), with 

a, := max {b I a, : Ile-hAu, - uOll + h Me”“IIDIl I R Osh 161, 

where M and w  are the constants introduced in (2.1) and lIDI := supd E ulldll (and Z = [O, a,,]). 

THEOREM 3.2. (case b) Let D be a bounded subset of X, B the ball of center u0 and radius 
R, and Z := [O, uo]. 

Let A be the infinitesimal generator of a C”-semigroup. Let us suppose that this semigroup 
is sequentially weakly continuous in (t, U) on the bounded subsets of Z X X. Let f : Z X B + D 
be an operator satisfying (3.7,)~(3.9,). 

Then the Cauchy problem (1) has at least a mild solution u E C”([O, a,]; X), with 

a, := maxi6 I a, : lleehAu,, - uoll + h Me”“IIDll~ R Osh 161. 

where M and o are the constants introduced in (2.1) and lIDI/ := supdE Jldll. 
Now we give some examples of applications of theorem 3.1. 
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PROPOSITION 3.1. Hypothesis (3.7) is verified if: 
(1) f is compact (that is the image of the bounded subsets of B is relatively compact); 
(2) f is uniformly continuous in (t, u) and Lipschitz continuous in U; 
(3) f is sum of an operator of type (1) and one of type (2) (see [lo]); 
(4) f(u)=F(u,u),with F:BxB --f X, F(-, w) Lipschitz continuous uniformly with respect 

to w  (with constant I L), and F( U, * ) compact for every u in B (see [15]>. 

COROLLARY 3.1. Let m E C(R+; R). Then the problem 

U,f - 4, =u.m( ~‘~u,~‘dxj (t>0,01~_<1) 

u(O) = u. E H; 

u,(O) = u, E L2 

(3.10) 

has at least a mild solution. 
Finally, we give some applications of theorem 3.2. 

PROPOSITION 3.2. Let us assume for simplicity that f is autonomous. Then the hypothesis 
(3.7,) is verified if: 

(1,) f is weakly compact; 
(2,) f is Lipschitz and weakly continuous; 
(3,) f is sum of a operator of type (1,) and of one of type (2,); 
(4,) f(u) = F( U, u), with F : B x B -+X, F(., w) Lipschitz continuous uniformly with re- 

spect to w  (with constant I L), weakly continuous (uniformly with respect to w), and F(u, * ) 
weakly compact for every c’ in B. 

Remark 3.1. We reobtain [6], that is: 
Let X be a reflexive space, let D be a bounded subset of X, B the ball of center u0 and 

radius R, and I := [0, a,,]. Let A be the infinitesimal generator of a C”-semigroup. Let 
f : I X B + D be an operator that satisfies (3.8,,)]](3.9,). 

Then the Cauchy problem (1) has at least a mild solution. 

Remark 3.2. The hypotheses of theorem 3.1 can be weakened. We can prove the existence of a 
mild solution of problem (1.1) also if we substitute (3.8) with (3.8,), and (3.9) with: 
(3.9’) f(t, *> is demicontinuous for almost every t (i.e. f(t, .) is continuous from X with the 
strong topology to X with the weak topology). 

4.PROOFS 

Proof of lemma 3.1. Let us observe that 

fl c {eprAuO : 0 2 t 2 a} 

+ IJ U t cl(co((e-(f-S)Af(~,~n(S - a/n)):0 5s I[})) 
osrsa nEN 
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~{e-'Auo:Olf~a) 

+ U t cl(co({e-c’-“‘Af([O, al X 0) : 0 i s I tl)). 
05t50 

From this we have 

Cl c {estAuo : 0 s t 5 a) + [O, a] cl(co({eP(‘~“Af([O, al X Cn) :O < s 5 a))). 

Therefore, thanks to properties (l)-(2) and (4H6) of cx 

(~(R)~(~([O,a]cl(co({e~“~~‘~f([O,ulX~):O_<s_<u~))) 

5 acr((e -‘-‘y([0, a] x n) : 0 I s I a)>. 

The proof of (3.4) is similar, by using Cl,,,)-(2,) and (4,)-(6,). H 

Proof of lemma 3.2. 

Proof of (3.5). Let rj > (Y(D), let ui,. . . , u, be the centers of balls of radius 77 which cover D. 
Let us fix E > 0. Let 6 > 0 be such that 

[OIsst~a,lt-sls6]- [Ile-‘Au,-emsAuillse (i= 1 ,...,d]. 

Let f,,..., t, be the centers of balls of radius 6 which cover 10, a]. We will show that 
(e-‘!“u,),,, jt[ are the centers of balls of radius TMe u” + E which cover (U 0 ~ C c ,e-‘A(D)>. 
Indeed, let 2; ED. Let i, j be integers such that Jt - t,l< 8, IIu - uilJ I 77. Then 

lle-‘Au - em’~Au,lI 2 Ile-‘A(u - u,)ll + Ilep’Au, - emt~Auill 

IMe”“((u - u,II + E 2 7pWe”” + E. 

Therefore 

(y Ue ( 
p’A(D) 5 +4e”” + E, 

05t<a i 

and, since 77 and E are arbitrary 

(y Ue i 
p’A(D) sMe”“tx(D). 

Octet i 

Proofof (3.6). Let q> a(D), and let K be a weakly compact subset of X, such that 

DcK+vB; 

then 

and therefore 

e-‘A(D) G eetA(K) + vMe”‘“B; 

n 

U eprA (D)c IJ e -‘A(K) + vMe”“B. 
o<t<a Ostsa 

Since [O, a] X K is weakly compact (= sequentially weakly compact) and the semigroup is 
sequentially weakly continuous in (t, U) on the bounded subsets of I XX, lJ a it ~ .emtA(K) is 
weakly compact. From this we have (3.6). 
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Proof theorem 3.1. 

Step 1 

Let a be a constant such that 

aMe”aK < 1; 
0 <a <a,. 

Let us consider for II E N the problems (P,,). Let us show that these problems have 
solutions u, E C“(] - cc, a]; B). It is easy show that if f : I +X is strongly measurable, then 
em(‘)Af(*) is strongly measurable. Let us set t, = ka/n (k = O,l,. . . , n), and let us show by 
finite induction that the problems (P,) have solutions on ] - ~0, tk]. If k = 0 it is trivial. Now 
let us suppose that u, is a solution of (P,,) defined on ] - 21, t,_ ]I. Since u, is a continuous 
function on ] - x, t,-, 1, it follows that f(., u,(. - a/n)> is strongly measurable on I - ~0, tkl 
(see [42]). Furthermore the function e -(‘+M (. u (. - a/n)) is bounded, and therefore inte- f , n 
grable. Using (3.1.2) we can therefore continue u, to a solution of (P,,) defined on I - x, tk]. 
Furthermore u, is continuous and, since a I a,, u, takes its values in B. 

Step 2 

Now let us show that 

.n:= u (u,(t):nEN} 
O~f~U 

is relatively compact. 
Thanks to property (4) of (Y it is enough to show that 

cl(n) = 0. 

By applying (3.3) to the functions u,,, we have 

From (3.5) and (3.7) we obtain 

(y ue i -fAf([O, a] x fl) s Me”‘“a(f([O, al X Cl)) 
O<fSO 

Therefore 

(1 -aMe”“K) cy(fl) I 0. 

Since aMe”“K < 1, this implies that 

cl(n) = 0. 
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Now let us show that the functions u,, are equicontinuous. Let 0 I r I t I a. 

lIzi, - u,(r>ll I IleC’Au, - e-‘Auoll + ep(‘m”‘“f(s, u,(s - a/n)) ds 

III 

i- 
+ (epctmrJA -Z)e~“~“‘.“f(s,u,(s - l/n))ds 

0 I/ 

2 IleetAu, - em~‘AuoIl + It - 1-1 lIDlIMe”” 

+ (e-(f-r)A -1) 
II / re m(rma)Af(~, K,(S - a/n))ds . 

0 /I 

Let us set 

Since 

r 

e-(‘~“‘Af(s,K,iS--a/n))ds:OIr~a,nEN . 
i 

1201 

is relatively compact, then 

lim sup Il(emfrA - I)x]J = 0. 
q-0 .UEQ 

Since the other two terms are small, independently from II, then step 3 is proved. 

Step 4 

Thanks to step 2, step 3, and to the Ascoli theorem for sequences (see Appendix 1) there 
exists a subsequence of (u,) that converges uniformly to a continuous function U. This 
function, thanks to the Lebesgue theorem for the dominate convergence, is a mild solution of 
(1.1). 

We have thus showed that problem (1.1) has a mild solution on [O, a]. If a = a, the proof is 
complete. If this is not the case, since u(a) E B, we can repeat the previous argument on 
[a, a’], where a’ = min{2a, a,]. We remark that in this case (a’ - a)KMe”‘“‘~“’ < 1. We obtain 
in such a way a mild solution of the Cauchy problem (1.1) on [O, a’]. If a’ < a, we can repeat 
previous argument; at the end we obtain a mild solution of problem (1.1) defined on [O, al]. n 

Proof of theorem 3.2. We can follow the outline of the proof of theorem 3.1, but it is 
necessary to specify some technical details. 

The integrals in problems (P,> are Pettis integrals. Thanks to (3.8,) it is easy to show the 
existence of solutions of these problems. 

We can show that KI(fi is the set in (3.2)) is relatively weakly compact like in step 2 of proof 
of theorem 3.1, by using (3.4) and (3.6) in place of (3.3) and (3.5). 
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We can prove that the functions u, are weakly equicontinuous by using an argument similar 
to step 3 of proof of theorem 3.1. 

The last part of the proof is almost as in theorem 3.1, by applying the Lebesgue theorem for 
the dominant convergence to 

(V,em’,4u,,+ 
/ 

‘e~“~“~“f(s,u,,(s -u/n))ds) 
II 

for each 9 in X’(= dual space of X). n 

Proof of proposition 3.1. Let us observe that (l)-(3) imply directly (3.7). 
We show that (4) +. (3.7). 
Let I/, W be bounded subsets of B, and let 77 > n(V). Let L’,, . . , L;, be the centers of balls 

of radius n which cover V. Let E > 0, and let u;,~ f j = 1,. . m,; k = 1. . . II) be the centers of 
balls of radius E which cover F( L’~, W). Let us fix (L!, w) in V x W. Let L’~, MI,, be such that 

II 2’ - L’k II I 7. IIF(c,,w) -F(Q,H.,I)III E. 

Then we have 

Since n, E are arbitrary, we have 

a(F(V. W)) JLLy(V), 

and therefore 

a(f(V>) = a(F(V,V)) <La(V). w 

Proof of corollary 3.1. Let us set 1’ := u,, and U := (u, L’). U,, := (u,,, ~1,). The equation (3.10) is 
equivalent to 

U’ + A,U’ = F,(U) 

U(O) = q, 

where / 0 \ 

F,(U) := 
u(k2 +m) 

\ 

where Au = -u,, + k’u. -A, is the generator of a C”-semigroup (for a proof see [431). 
Furthermore, if we suppose that F, is defined on a bounded subset of XC := Hd X L2), F, 
satisfies 4) of remark 3.1 because F,(U) = F(U, U) where, for I/= (L.,, ~‘~1 and W= (w,, w,> 
F(V, W) = (0, q(k* + m(j,;lw, 12>NT, F(., W) is Lipschitz continuous, uniformly with respect 
to W( W lies in a bounded subset of X) and F(V, . ) is compact since k’ + m( /d I w, 1 12) lies in a 
bounded subset of R and ~1, is fixed), and F, is continuous. Therefore we can use theorem 
3.1. w 
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Proof ofproposition 3.2. It is obvious that Cl,.), (2,1, (3,V1a (4,,). 
Let us show that (4,) =P (3.7,). 
Let I’, W be bounded subsets of B. Let n > (Y,(V). Let K be a weakly compact subset of 

X such that 

Then 

FCV, W> G u P(K,w) +LqB 
WEU’ 

=F(K,W) +LqB. 

Let us show that F(K, W) is relatively weakly compact. Let us show equivalently that it is 
relatively sequentially weakly compact. Let us set x,, := f(k, w,), where k, E K, w, E W. There 
exists a subsequence (knh)Rh of (k,), that weakly converge to some k. Let y,, := F(k, We,,). This 
sequence has a subsequence yn6 that weakly converge to some y. Then for each 9 EX’ (the 
dual space of X1, and for nh, -+’ m, we have 

(*. XTlhl -Y) = (‘W+‘G,/+,,,,, ) -+ky,,,,,)) + WJ(k,w,,,,,) -Y> 40. 

Therefore cuw(f(W,> SLCU,(W). n 

Proof of remark 3.1. Since X is a reflexive space and f is bounded then it follows that f is 
weakly compact, and therefore verifies (3.7,). Furthermore the adjoint semigroup is a 
C”-semigroup (see proposition 2, Appendix 21, and then the semigroup is sequentially weakly 
continuous in (t, U) on the bounded subsets of I XX (see proposition 1, Appendix 2). 
Therefore we can use theorem 3.2. 

Proof of remark 3.2. The proof is similar to the proof of theorem 3.2. The only difference is 
that we prove that fi (0 is the set in (3.2)) is relatively compact and (14,) are equicontinuous 
as in theorem 3.1. n 
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APPENDICES 

Appendix I 

The following theorem is a variant of the classical Ascoli theorem. The proof can be performed by a technique very 
similar to the technique used by [h] in lemma 5.12. 

THEOREM (Ascoli theorem for sequences) 
Let X be a compact metric space, Y a Hausdorff topological vector space. Let C := C( X, Y 1 be endowed with the 

compact open topology. Let F s C be such that: 
(1) F(x) := If(x): fe F) is relatively sequentially compact for each x t X; 
(21 F is equicontinuous at each x E X. 
Then F is relatively sequentially compact. 

Appendix 2 

Let X be a Banach space, and let A be the inlinitesimal generator of a Co-semigroup. One can easily show the 
following results. 

PROPOSITION; 1. If the adjoint semigroup is a C”-semigroup, then the semigroup is sequentially weakly continuous on 
the bounded subsets in Ct. u). 

PROPOSITION 2. If X is a reflexive Banach space. then the adjoint semigroup is a C”-semigroup. 


