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Abstract

The aim of this paper is to extend to some classes of systems the global
existence of analytic solutions to scalar equations of Kirchhoff type.

1 Introduction

The quasilinear integro-differential equations

utt − ϕ
(∫

Ω
|∇u|2 dx

)
4u = 0 (1)

where ϕ(r) is a continuous function ≥ 0 on {r ≥ 0} and Ω an open domain of
Rn, are currently called Kirchhoff equations; in the case when ϕ(r) = 1 + r and
n = 1, Equation (1) was proposed in [10], as a mathematical model for the small,
transversal oscillations of an elastic string.

The first mathematical results for these equations were obtained by S. Bern-
stein [4], who considered the Cauchy problem for (1) with n = 1, Ω = [0, 2π] and
looked for 2π-periodic solutions u(t, ·): assuming that ϕ(r) is a C1 function with
ϕ(r) ≥ ν > 0, he proved the local well-posedness in suitable Sobolev spaces, as
well as the global existence with real analytic data. After Bernstein, Kirchhoff type
equations have been considered by several authors; we refer to [1] and [13] for a
survey on the scalar case; for the vector case we mention [5] and [11] where a class
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of Kirchhoff type systems has been considered for which there is global existence
for small, compact supported data.

In the non-coercive case, i.e. when the function ϕ(r) is merely continuous and
non negative, the global solvability for (1) with analytic initial data was firstly
proved in [2] under the following additional assumption on ϕ(r):

either ϕ(r) is bounded or
∫ ∞

0
ϕ(r) dr =∞.

This assumption was later removed in [6], where the same conclusion was obtained
under the only condition that ϕ(r) ≥ 0.

Such a result is based on the following facts:

• the global well-posedness in the analytic class (more exactly, the a priori
estimate for the analytic solutions) of the linear equation

utt − a(t)∆u = 0, as soon as a(t) ≥ 0, a(t) ∈ L1;

• the variational character of Eq.(1), which ensures that, if Φ′(r) = ϕ(r),
Φ(0) = 0, the positive functional

E(u, t) =
∫

Ω
|ut|2 dx+ Φ

(∫
Ω
|∇u|2 dx

)
,

keeps constant in time for any solution u(t, x).

The purpose of this paper is to extend this global existence result to some Kirchhoff
type systems. In particular we shall prove the global well-posedness in the class of
analytic, 2π-periodic functions, for the Cauchy problem to the system

vt = ψ

(∫ 2π

0
v2 dx,

∫ 2π

0
w2 dx

)
vx + α

(∫ 2π

0
w2 dx

)
wx

wt = β

(∫ 2π

0
v2 dx

)
vx + ψ

(∫ 2π

0
v2 dx,

∫ 2π

0
w2 dx

)
wx

where ψ(r, s), α(s), β(r) are continuous functions and

α(s) ≥ 0, β(r) ≥ 0,
∫ ∞

0
α(s) ds+

∫ ∞
0

β(r) dr =∞.

Another system to which our global existence results apply, is
vt =

(
C1 +

∫ 2π

0
v2 dx

)
wx,

wt =
(
C2 +

∫ 2π

0
w2 dx

)
vx

where Ci are constants ≥ 0.
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2 Statements of the results

Let us consider the N ×N systems of the general form

ut −
n∑
j=1

Aj

(∫
Ω
u2

1 dx, · · · ,
∫

Ω
u2
N dx

)
uxj = 0, (2)

where u = (u1(t, x), · · · , uN (t, x)) ∈ RN and Aj(r1, · · · , rn) are real valued
N × N matrices, continuous on RN

+ . This system is weakly hyperbolic when the
matrix

n∑
j=1

ξjAj(r1, · · · , rn) (3)

has real eigenvalues for all ξj ∈ R and all ri ≥ 0.
For simplicity, we shall consider here only the periodic boundary condition

in x (however, see Remark 4 below), i.e., we take Ω = [0, 2π]n and look for a
solution u(t, x), 2π-periodic in each space variable xi. In this context, we denote
by [A2π(Rn)]N the class of RN valued, 2π-periodic, analytic functions on Rn.

We then prove:

Theorem 1 The Cauchy-periodic problem for (2), with Ω = [0, 2π]n, is globally
well posed in the analytic class [A2π(Rn)]N whenever (2) is weakly hyperbolic and
the coefficients Aj(r1, · · · , rn) are continuous and bounded on RN

+ .

Remark 1 If (2) is a symmetric hyperbolic system, i.e. all the matrices Aj are
symmetric, the global well posedness in [A2π(R)]2 is obvious. Indeed in this case
one has immediately:

d

dt

∥∥∥∥∥∂ku∂xkj

∥∥∥∥∥
2

L2(Ω)

= 0 ∀j = 1, . . . , n, k ∈ N.

In order to obtain some results without any boundedness assumption on the
coefficients, we shall restrict ourselves to the 2× 2 systems in one space dimension
of the form{

vt = ψ1
(
‖v(t)‖2, ‖w(t)‖2

)
vx + ϕ1

(
‖v(t)‖2, ‖w(t)‖2

)
wx

wt = ϕ2
(
‖v(t)‖2, ‖w(t)‖2

)
vx + ψ2

(
‖v(t)‖2, ‖w(t)‖2

)
wx

(4)

where ϕ1(r, s), ϕ2(r, s), ψ1(r, s), ψ2(r, s) are real, continuous functions on R2
+ and

‖v(t)‖2 =
∫ 2π

0
|v(t, x)|2 dx, ‖w(t)‖2 =

∫ 2π

0
|w(t, x)|2 dx.

The hyperbolicity condition for (4) is

(ψ1 − ψ2)2 + 4ϕ1ϕ2 ≥ 0,

but in the following we shall always make the stronger assumption

ϕ1 · ϕ2 ≥ 0. (5)



248 Marina Ghisi and Sergio Spagnolo NoDEA

If we take

ψ1 = ψ2 ≡ 0, ϕ1 ≡ ϕ(s), ϕ2 ≡ 1, and v = ux, w = ut,

we see that the class of systems of type {(4),(5)} includes the scalar equations
of type (1). However, due to the lack of a conserved energy functional, there are
systems of this type for which the Cauchy problem is not globally well-posed
in [A2π(R)]2. In the following example, the system is strictly hyperbolic, i.e. the
eigenvalues of the matrix (3) are real and simple, and satisfies (5).

Example 1 There exists a pair of initial data v0, w0 in [A2π(R)]2 for which the
problem  vt =

(
1 +

∫ 2π

0
v2 dx

)
wx, wt = wx

v(0, x) = v0(x), w(0, x) = w0(x)
(6)

has no global solution.

To obtain the global existence for a system of type (4), we are forced to make,
besides (5), some additional assumption on the coefficients ϕ1(r, s), ϕ2(r, s):

Theorem 2 Let ϕ1, ϕ2, ψ1, ψ2 be real and continuous functions on R2
+ and as-

sume that ϕ1 · ϕ2 ≥ 0. Then, the Cauchy-periodic problem for (4) is globally well-
posed in [A2π(R)]2 in each of the following cases.

• If ϕ1(r, s) and ϕ2(r, s) are bounded on R2
+.

• If there is a C1 function L(r, s) defined on R2
+, with

∂L

∂r
· ϕ1 =

∂L

∂s
· ϕ2, (7)

such that, either

L(r, s)→ +∞ as r + s→ +∞, (8)

or
inf
s≥0

L(r, s)→ +∞ as r → +∞,

|ϕ1(r, s)|+ |ϕ2(r, s)| ≤ Λ(r)
(9)

for some continuous function Λ.

Of course, (9) can be replaced by the symmetric conditions in (r,s).
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The most common case to which Theorem 2 applies, is for

ϕ1 = α(r, s) · ϕ(r, s), ϕ2 = β(r, s) · ϕ(r, s)

where α, β are functions ≥ 0 satisfying

∂α

∂r
=
∂β

∂s
. (10)

In such a case (7) is fulfilled by the function

L(r, s) =
∫ r

0
β(ρ, s) dρ +

∫ s

0
α(0, σ) dσ ≡

∫ r

0
β(ρ, 0) dρ +

∫ s

0
α(r, σ) dσ.

Hence (8), is equivalent to∫ ∞
0

α(0, s) ds =
∫ ∞

0
β(r, 0) dr = +∞,

and (9) to∫ ∞
0

β(r, 0) dr = +∞, |α(r, s)| + |β(r, s)|+ |ϕ(r, s)| ≤ Λ(r).

In particular, (10) is trivially fulfilled when α = C1 + r, β = C2 + s, or when
α = α(s), β = β(r). Thus we get:

Corollary 1

1. The Cauchy-periodic problem for the system{
vt = ψ1

(
‖v‖2, ‖w‖2

)
vx +

(
C1 + ‖v‖2

)
· ϕ
(
‖v‖2, ‖w‖2

)
wx

wt =
(
C2 + ‖w‖2

)
· ϕ
(
‖v‖2, ‖w‖2

)
vx + ψ2

(
‖v‖2, ‖w‖2

)
wx

(11)

where Ci are constants ≥ 0 and ψ1, ψ2, ϕ real continuous functions, is globally
well-posed in [A2π(R)]2.

2. The same conclusion holds true for the system{
vt = ψ1

(
‖v‖2, ‖w‖2

)
vx + α

(
‖w‖2

)
· ϕ
(
‖v‖2, ‖w‖2

)
wx

wt = β
(
‖v‖2

)
· ϕ
(
‖v‖2, ‖w‖2

)
vx + ψ2

(
‖v‖2, ‖w‖2

)
wx

(12)

where α, β, ψ1, ψ2, ϕ are real continuous functions, with α ≥ 0, β ≥ 0 and,
either ∫ ∞

0
α(s) ds =

∫ ∞
0

β(r) dr =∞

or

α(s) is bounded,
∫ +∞

0
β(r) dr = +∞, |ϕ(r, s)| ≤ Λ(r).
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Finally, we prove the following result which is an extension of the quoted
result for the scalar Kirchhoff equations ([6]) and improves the second part of
Corollary 1 for bounded ϕ and ψ1 = ψ2.

Theorem 3 The Cauchy-periodic problem for (4), where ϕ1, ψ1, ϕ2, ψ2, are real
continuous functions, and ϕi ≥ 0, is well- posed in [A2π(R)]2 as soon as the
following conditions are both fulfilled:

(i) there is a C1 function L(r, s), with

∂L

∂r
· ϕ1 =

∂L

∂s
· ϕ2,

such that
inf
s≥0

L(r, s)→ +∞ as r → +∞, (13)

and
|ϕ2(r, s)| ≤ Λ(r) <∞. (14)

(ii) there is a constant C such that

|ψ2(r, s)− ψ1(r, s)|2 ≤ Cϕ1(r, s). (15)

Of course, (13)–(15) can be replaced by the symmetric conditions in (r, s).

By this we obtain

Corollary 2 The periodic-Cauchy problem for system (12), where α(s), β(r),
ϕ(r, s), ψ1(r, s), ψ2(r, s) are real continuous functions, and α,ϕ, β ≥ 0, is well-
posed in [A2π(R)]2 as soon as:∫ ∞

0
β(r) dr = +∞,

|ϕ(r, s)| ≤ Λ(r),
|ψ2(r, s)− ψ1(r, s)|2 ≤ Cα(s)ϕ(r, s).

Of course, the same conclusion holds under the symmetric assumptions∫ ∞
0

α(s) ds =∞, |ϕ(r, s)| ≤ Λ(s) <∞

and
|ψ2(r, s)− ψ1(r, s)|2 ≤ Cβ(r)ϕ(r, s).

More generally, we have the following
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Corollary 3 The Cauchy-periodic problem for the system{
vt = ψ1

(
‖v‖2, ‖w‖2

)
vx + α1(‖v‖2) · α2(‖w‖2) · ϕ(‖v‖2, ‖w‖2)wx

wt = β1(‖v‖2) · β2(‖w‖2) · ϕ(‖v‖2, ‖w‖2)vx + ψ2
(
‖v‖2, ‖w‖2

)
wx

(16)

is globally well-posed in [A2π(R)]2 as soon as: α1, β2 > 0, α2, β1, ϕ ≥ 0,∫ ∞
0

β1(r)
α1(r)

dr = +∞,

and at least one of the following properties is verified:
either

• α1(r)β2(s)ϕ(r, s) ≤ Λ(r), and

|ψ1(r, s)− ψ2(r, s)|2 ≤ Cα1(r)α2(s)ϕ(r, s),

or
• ∫ ∞

0

α2(s)
β2(s)

ds = +∞.

Remark 2 For ψi ≡ 0 and ϕ ≡ β ≡ 1, Corollary 2 give the result of [6] for
Equation (1).

Remark 3 By effecting the Fourier transform we can obtain similar results to
them of Theorems 2 and 3 for a pseudo- differential 2× 2 system like

Ut = A (r(t), s(t),D) |D|U.

This makes it possible, in particular, to deal with second order scalar equations in
several space variables.

Remark 4 The same results of Theorems 1, 2 and 3 hold true if we consider,
instead of the Cauchy-periodic problem, the Cauchy problem on the whole Rn. In
this case the analytic class A2π(Rn) must be replaced by

AL2(Rn) =
{
w : Rn → RN : ‖Dαw‖L2(Rn) ≤ MΛ|α|α!, ∀α ∈ Nn

}
.

Remark 5 Similar conclusions to those of Theorems 1, 2, 3 hold true for the
more general systems{

vt = ψ1vx + ϕ1wx + ρ1v + ρ2w
wt = ϕ2vx + ψ2wx + µ1v + µ2w

(17)

under suitable conditions on the lower order terms ρ1, ρ2, µ1, µ2 (which, of course,
are depending on ‖v‖2, ‖w‖2).
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3 Proofs

Let us firstly recall that, if

ϕ(x) =
∑
h∈Zn

ϕ̂he
i(x,h)

is the Fourier expansion of the 2π-periodic vector valued function ϕ(x), then ϕ ∈
[A2π(Rn)]N if and only if ∑

h∈Zn
eδ|h||ϕ̂h|2 < +∞ (18)

for some δ > 0.
Using this characterization we can easily prove (see [2], Section 2) the local

well-posedness in [A2π(Rn)]N for any system like (2), with Ω = [0, 2π]n.
As to the global existence results in Theorems 1, 2, 3, they rely on two

Lemmata concerning the global solvability in [A2π(Rn)]N for weakly hyperbolic
linear systems.

Lemma 1 Let u ∈ C1([0, T [, [A2π(Rn)]N ) be a solution to the linear system

ut −
n∑
j=1

Aj(t)uxj = 0 (19)

where Aj(t) are N ×N matrix valued, measurable functions on [0, T [ such that

A(t, ξ) =
n∑
j=1

ξjAj(t) (20)

has real eigenvalues for all ξ ∈ Rn.
Moreover suppose that∫ T

0
|Aj(t)| dt < +∞ (1 ≤ j ≤ n).

Then u(t, ·) has a limit in [A2π(Rn)]N for t→ T−.

When N = 2, the sommability of the diagonal coefficients can be dropped in
several important cases (cf. [14]):

Lemma 2 Let (v,w) ∈ C1([0, T [, [A2π(R)]2) be a solution to the linear system:{
vt = ψ1(t)vx + λ(t)wx,
wt = µ(t)vx + ψ2(t)wx,

(21)
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where λ, µ, ψi are real valued measurable functions, on [0, T [ and

λ(t) · µ(t) ≥ 0 a.e. on [0, T [. (22)

Suppose that ∫ T

0
|λ(t)| dt < +∞,

∫ T

0
|µ(t)| dt < +∞.

Then v(t, ·) and w(t, ·) have a limit in A2π(R) for t→ T−.

Proof of Lemma 1. This Lemma was proved by E. Jannelli in [9], under an
integrability assumption on the eigenvalues of A(t, ξ). We give here a proof for the
sake of completeness.

The proof is based on the existence of a smooth quasi-symmetrizer for any
weakly hyperbolic matrix A(t, ξ) on [0, T [×Rn such that A is homogeneous in ξ
of order one and

|A(t, ξ)| ≤ Λ(t)|ξ|
for some Λ ∈ L1(0, T ). This quasi-symmetrizer is constructed in Appendix A.

For a quasi-symmetrizer we mean here a family {Qε(t, ξ)}, ε > 0, of N ×N
matrices such that one has on [0, T [×Rn :

νεI ≤ Qε(t, ξ) = Q∗ε(t, ξ) ≤ I,

A(t, ξ)Qε(t, ξ)−Qε(t, ξ)A∗(t, ξ) ≤ ε|ξ|Λε(t)Qε(t, ξ)
with ∫ T

0
Λε(t) dt ≤ C,

and
|Q′ε(t, ξ)| ≤ Cε,

for some positive constants νε, Cε, C independent on (t, ξ). Here Q′ denotes the
time derivative of Q, and for two N ×N matrices, A ≤ B means (Av, v) ≤ (Bv, v)
for all v ∈ CN .

The conclusion of Lemma 1 then follows by a standard argument.
If {ûh(t)}, are the Fourier coefficients of the solution u(t, ·), we have:

û′h = iA(t, h)ûh (h ∈ Zn).

Thus, defining the energy functions

Eh,ε(t) = (Qε(t, h)ûh(t), ûh(t))

we find

E′h,ε = (Q′εûh, ûh) + 2Re[i(QεAûh, ûh)]

≤ Cε|ûh|2 +Cε|h|Λε(t)Eh,ε

≤
(
Cε
νε

+ Cε|h|Λε(t)
)
Eh,ε
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and hence, for 0 ≤ t < T ,

Eh,ε(t) ≤ Eh,ε(0) exp

(
Cε
νε
T + Cε|h|

∫ T

0
Λε(t) dt

)
.

In conclusion we have proved the inequality

|ûh(t)|2 ≤M(ε, T )|ûh(0)|2eCε|h|,

which, recalling the characterization (18) of the analytic functions, gives the con-
clusion of Lemma 1. �
Proof of Lemma 2. The proof is based on the following fact:
For any pair of functions λ, µ ∈ L1(0, T ) satisfying (22), and for all 0 < ε < 1, it
is possible to find two Lipschitz continuous functions λε, µε > 0 on [0, T ], in such
a way that ∫ T

0

|µελ− λεµ|√
λε
√
µε

dt ≤ Cε
(
‖λ‖L1(0,T ) + ‖µ‖L1(0,T )

)
(23)

with C independent on ε, λ, µ, and

ε2 ≤ λε(t)
µε(t)

≤ 1
ε2 . (24)

Let us suppose for the moment to have constructed λε, µε as above.
Denoting by v̂h, ŵh the Fourier coefficients of v(t, ·), w(t, ·), we have by (21){

v̂′h = ihψ1(t)v̂h + ih λ(t)ŵh,
ŵ′h = ih µ(t)v̂h + ihψ2(t)ŵh.

(25)

Therefore, if we define

Eε,h(t) = λε|ŵh|2 + µε|v̂h|2,

we find a.e. on [0, T ]:

E′ε,h =
λ′ε
λε
λε|ŵh|2 +

µ′ε
µε

µε|v̂h|2

+2(λεRe(ŵ′hŵh) + µεRe(v̂′hv̂h))

≤
(
|λ′ε|
λε

+
|µ′ε|
µε

)
Eε,h + 2|h|(µελ− λεµ)Im(v̂hŵh)

≤
(
|λ′ε|
λε

+
|µ′ε|
µε

)
Eε,h + |h| |µελ− λεµ|√

λε
√
µε

Eε,h.

Hence, by (23), there exist some constants C, Cε such that

Eε,h(t) ≤ CεEε,h(0)eC|h|ε. (26)
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Now if r0 > 0 is such that
+∞∑
−∞

e2r0|h|(|v̂0,h|2 + |ŵ0,h|2) < +∞,

we have
er0|h|Eε,h(t) ≤ CεEε,h(0)e2r0|h|e−|h|(r0−Cε);

and hence for ε ≤ r0

C
+∞∑
−∞

er0|h|Eε,h(t) ≤ Cε, on [0, T [.

Therefore v and w can be extended to the closed interval [0, T ] as analytic
functions of x.

Now we prove the fact stated at the beginning.
Let us firstly assume that λ, µ are strictly positive, Lipschitz continuous

functions on [0, T ].
Given ε ∈]0, 1[, we define the intervals

Iε = {t : λ(t) ≥ 1
ε2µ(t)} Jε = {t : µ(t) ≥ 1

ε2λ(t)},

and the positive, Lipschitz continuous functions

λε(t) =

{
µ(t)
ε2 on Iε

λ(t) otherwise
µε(t) =

{
λ(t)
ε2 on Jε

µ(t) otherwise.

Therefore, the function

Λε(t) ≡ Λε(λ, µ, t) =
|µε(t)λ(t)− λε(t)µ(t)|√

λε(t)µε(t)
(27)

satisfies:

Λε(t) =
∣∣∣∣µ(t)
ε
− ελ(t)

∣∣∣∣ ≤ 2ελ(t) on Iε,

Λεt) =
∣∣∣∣λ(t)
ε
− εµ(t)

∣∣∣∣ ≤ 2εµ(t) on Jε,

Λε(t) ≡ 0 otherwise.

Hence, taking into account that Iε and Jε are disjoint, we get (23) with C = 2.
In the general case, when λ, µ are only integrable functions with λ · µ ≥ 0 ,

we approximate |λ| and |µ| by Lipschitz continuous, strictly positive functions
λ̃, µ̃ such that

‖ |λ| − λ̃ ‖L1(0,T ) ≤ δ ‖ |µ| − µ̃ ‖L1(0,T ) ≤ δ.

Therefore we can find λ̃ε, µ̃ε Lipschitz continuous and strictly positive, which
satisfy (23) for C = 2, (with respect to λ̃, µ̃ ) and (24).
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But (22) implies ∣∣∣λ̃ε|µ| − µ̃ε|λ|∣∣∣ =
∣∣∣λ̃εµ− µ̃ελ∣∣∣ ,

hence, recalling (27), we get

‖Λε(λ, µ, t)‖L1 = ‖Λε(|λ|, |µ|, t)‖L1

≤ ‖Λε(λ̃, µ̃, t)‖L1 +
2δ
ε

≤ 2ε(‖λ̃‖L1 + ‖µ̃‖L1) +
2δ
ε

≤ 2ε(‖λ‖L1 + ‖µ‖L1) + 4εδ +
2δ
ε
.

For δ = ε2(‖λ‖L1 + ‖µ‖L1) we find (23) with C = 8.
This completes the proof of Lemma 2. �

Now we can prove our principal results.

Proof of Theorem 1. Let u(t, x) a (local) analytic solution of (2) defined on
some strip [0, T [×Rn, and let Aj(t) = Aj(‖u1(t)‖22, . . . , ‖uN(t)‖22), j = 1, . . . , n.
Since the Aj ’s are bounded, we can apply Lemma 1 to extend u on the closed strip
[0, T ]×Rn as an analytic periodic function. Thus we obtain the global existence
of u. �

Proof of Theorem 2. Let T be such that Problem (4) has a local solution defined
on [0, T [×R2.
If ϕ1, ϕ2 are bounded functions we can conclude the proof as in Theorem 1, by
using Lemma 2.

In the other case, there exists a conserved energy for our Problem (4). Indeed
if we define:

E(t) = L(‖v(t)‖2, ‖w(t)‖2)

we have:

E′(t) = 2
∂L

∂r
·
∫ 2π

0
vvt dx+ 2

∂L

∂s
·
∫ 2π

0
wwt dx

= 2
∂L

∂r
· ϕ1

∫ 2π

0
vwx dx+ 2

∂L

∂s
· ϕ2

∫ 2π

0
vxw dx = 0.

Hence:

• if holds (8) there exists a constant K = K(v0, w0) such that

‖v(t)‖2 + ‖w(t)‖2 ≤ K on [0, T [;
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• if holds (9), there exists a constant K = K(v0, w0) such that

‖v(t)‖2 ≤ K, on [0, T [,

so that Λ(‖v(t)‖2) is bounded.

But therefore (9) implies that ϕ1, ϕ2 are bounded, and we can conclude the
proof as above. �

Proof of Theorem 3. We shall follow an argument similar to [6].
We recall that ‖φ‖2, 〈φ, ψ〉 denote the L2-norm and the L2-inner product in

L2(0, 2π).
Let (v,w) an analytic periodic solution of (4) on [0, T [×R2. It is not restrictive

to suppose that for all 0 ≤ t < T∫ 2π

0
v(t, x) dx =

∫ 2π

0
w(t, x) dx = 0.

Indeed the average

µ(t) =
∫ 2π

0
v(t, x) dx

satisfies

µ′(t) =
∫ 2π

0
vt(t, x) dx

= ψ1(‖v‖2, ‖w‖2)
∫ 2π

0
vx(t, x) dx+ ϕ1(‖v‖2, ‖w‖2)

∫ 2π

0
wx(t, x)

= 0,

and the same is true for

ν(t) =
∫ 2π

0
w(t, x) dx.

Hence the functions

v = v −
∫ 2π

0
v0(t, x) dx, w = w −

∫ 2π

0
w0(t, x) dx

are solutions to system (4) with null average.
Now we have

E(t) ≡ L(‖v(t)‖2, ‖w(t)‖2) = constant,

thus by (13), (14), there exist two constants C1, C2 such that:

‖v(t)‖2 ≤ C1, ϕ2(‖v(t)‖2, ‖w(t)‖2) ≤ C2 on [0, T [.
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On the other hand, if z(t, x) denotes the unique periodic function with null
average in x, such that

zx = w

(we recall that w has null average in x) we have

ztx = ϕ2(‖v‖2, ‖w‖2)vx + ψ2(‖v‖2, ‖w‖2)wx,

hence also
zt = ϕ2(‖v‖2, ‖w‖2)v + ψ2(‖v‖2, ‖w‖2)w.

Observing that
〈w, z〉 = 〈zx, z〉 = 0,

we then find

(‖z‖2)′ = ϕ2(‖v‖2, ‖w‖2)

≤
√
C1C2‖z‖,

and hence
‖z(t)‖ ≤ C3 on [0,T[.

Moreover we have:

〈vt, z〉 = ψ1(‖v‖2, ‖w‖2)〈vx, z〉+ ϕ1(‖v‖2, ‖w‖2)〈wx, z〉
= −ψ1(‖v‖2, ‖w‖2)〈v,w〉 − ϕ1(‖v‖2, ‖w‖2)‖w‖2,

and

〈v, zt〉 = ϕ2(‖v‖2, ‖w‖2)‖v‖2 + ψ2(‖v‖2, ‖w‖2)〈v,w〉.

From this, recalling (15), we obtain

ϕ1(‖v‖2, ‖w‖2)‖w‖2 = −〈v, z〉′ + 〈v, zt〉 − ψ1(‖v‖2, ‖w‖2)〈v,w〉
≤ −〈v, z〉′ + C1C2 +

+
∣∣ψ1(‖v‖2, ‖w‖2)− ψ2(‖v‖2, ‖w‖2)

∣∣ · |〈v,w〉|
≤ C1C2 − 〈v, z〉′ +

√
C
√
ϕ1(‖v‖2, ‖w‖2)

√
C1‖w‖

and hence
ϕ1(‖v‖2, ‖w‖2)‖w‖2 ≤ C4 − 〈v, z〉′.

for some constant C4. Integrating on [0, t] we find∫ t

0
ϕ1(‖v(s)‖2, ‖w(s)‖2)‖w(s)‖2 ds ≤ C4T + 〈v0, z0〉 − 〈v(t), z(t)〉

≤ C4T + |〈v0, z0〉|+
√
C1C3,
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in particular
ϕ1(‖v‖2, ‖w‖2)‖w‖2 ∈ L1(0, T ).

Hence:∫ T

0
ϕ1(‖v(s)‖2, ‖w(s)‖2) ds =

∫
0≤t<T, ‖w‖≤1

ϕ1(‖v‖2, ‖w‖2) ds+

+
∫

0≤t<T, ‖w‖>1
ϕ1(‖v‖2, ‖w‖2) ds

≤ MT +
∫ T

0
ϕ1(‖v‖2, ‖w‖2)‖w‖2 ds < +∞,

where we have put

M := sup{ϕ1(r, s) : r ≤ C1, s ≤ 1}.

In conclusion we have proved that

λ(t) ≡ ϕ1(‖v(t)‖2, ‖w(t)‖2) ∈ L1(0, T )

and
µ(t) ≡ ϕ2(‖v(t)‖2, ‖w(t)‖2) ∈ L∞(0, T ),

and therefore we can apply Lemma 2 to conclude that the solution v(t, x), w(t, x)
can be continued behind t = T . �

Proof of Corollary 2. We have only to remark that all the hypotheses of Theorem
3 are satisfied with:

L(r, s) =
∫ r

0
β(ρ)dρ+

∫ s

0
α(ρ)dρ. �

Proof of Corollary 3. We rewrite system (16) in the form{
vt = ψ1(‖v‖22, ‖w‖22)vx + α(‖w‖22)θ(‖v‖22, ‖w‖22)wx
wt = β(‖v‖22)θ(‖v‖22, ‖w‖22)vx + ψ1(‖v‖22, ‖w‖22)wx

where
θ(r, s) = α1(r)β2(s)ϕ(r, s),

and

α(s) =
α2(s)
β2(s)

, β(r) =
β1(r)
α1(r)

.

Then we are reduced to the cases of Theorems 2, 3. �
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Proof of Remark 4. The proofs are similar to those of Theorems 1, 2, 3. We
only remark two facts.

• One can easy prove the existence of a local solution by using a version of the
abstract Cauchy-Kowalewsky Theorem (see [8]).

• For all g ∈ AL2(Rn) there exists some r0 > 0 such that∫
Rn

er0|ξ||ĝ(ξ)|2dξ < +∞. �

Proof of Example 1. We have:

(‖w‖2)′ = 0,

(‖v‖2)′ = −2(‖v‖2 + 1)
+∞∑
−∞

h Im(v̂h ŵh),

(v̂h ŵh)′ = ih v̂h ŵh − ih(‖v‖2 + 1)|ŵh|2,

and hence

v̂h ŵh = eiht v̂0,h ŵ0,h − ih
∫ t

0
eih(t−s)(‖v‖2 + 1)|ŵh|2 ds.

By this, if the initial data satisfy v̂0,hŵ0,h = 0 for every h, we get:

(‖v‖2)′ = 2(‖v‖2 + 1)
+∞∑
−∞

h2
∫ t

0
cos ((t− s)h)|ŵ0,h|2(‖v(s)‖2 + 1) ds.

Let us now suppose that ŵ0,h 6= 0 only for a finite number of h. For τ sufficiently
small with respect to w0, say τ ≤ τ0, we have:

+∞∑
−∞

h2 cos (τh)|ŵ0,h|2 ≥
1
2

+∞∑
−∞

h2|ŵ0,h|2

so that for t ≤ τ0:

(‖v‖2)′ ≥ (‖v‖2 + 1)‖(w0)x‖2
∫ t

0
(‖v(s)‖2 + 1) ds.

In conclusion, if ‖(w0)x‖2 6= 0, we can find some v0 in such a way that ‖v(t)‖2
blows-up in a time T ≤ τ0. �
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A Appendix

Denoting by MN the linear space of N ×N matrices, we have the following

Proposition 1 Let A : [0, T ]×Rn →MN such that:

• A(t, ξ) is integrable in t and continuous in ξ,

• A(t, ξ) has real eigenvalues for all (t, ξ),

• A is homogeneous in ξ of order one and

|A(t, ξ)| ≤ Λ(t)|ξ|;

for some Λ ∈ L1(0, T ).

Then there exists a family {Qε(t, ξ)}, ε > 0 of N × N matrix valued smooth
functions such that one has on [0, T [×Rn :

νεI ≤ Qε(t, ξ) = Q∗ε(t, ξ) ≤ I, (28)

A(t, ξ)Qε(t, ξ)−Qε(t, ξ)A∗(t, ξ) ≤ ε|ξ|Λε(t)Qε(t, ξ) (29)

with ∫ T

0
Λε(t) dt ≤ C,

and
|Q′ε(t, ξ)| ≤ Cε, (30)

for some positive constants νε, Cε, C independent on (t, ξ).

Proof. We shall use the following lemma of real Analysis (cf. [12])

Lemma Let S be a compact subset of Rn and f(t, ξ) : [0, T [×S → R a Carathéo-
dory function, i.e. integrable in t and continuous in ξ, such that:

|f(t, ξ)| ≤ Λ(t)

with Λ ∈ L1(0, T ).
Then for all δ > 0 there exist Iδ ⊆ [0, T ], Λδ ∈ L1(0, T ), and fδ(t, ξ) contin-

uous on [0, T ]× S in such a way that:

• f(t, ξ) = fδ(t, ξ) for t /∈ Iδ,

• |fδ(t, ξ)| ≤ Λδ(t) for t ∈ Iδ,

•
∫
Iδ

(Λ(t) + Λδ(t)) dt ≤ δ.
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Now, let σ = σ(δ) > 0 be such that

|fδ(y)− fδ(y′)| ≤ δ for |y − y′| ≤ σ

and let us consider a finite covering {B1, . . . , Bm} of [0, T ]×S by open sets with
diameter ≤ σ. We can assume that for some m′ ≤ m one has

Bk ⊆ Iδ × S ⇐⇒ k = m′ + 1, . . . ,m.

Thus, taking a partition of the unity {χk} with supp(χk) ⊆ Bk, we obtain the
following

Corollary There exist some nonnegative, smooth functions χ1(t, ξ), . . . , χm(t, ξ)
on D = [0, T ]× S such that, for some m′ ≤ m and some (tk, ξk) ∈ supp(χk), one
has

•
m∑
1

χk(t, ξ) ≡ 1 on D;

•
m′∑
1

χk(t, ξ)|f(t, ξ)− f(tk, ξk)| ≤ ϕδ(t)

•
m∑

m′+1

χk(t, ξ)|f(t, ξ)| ≤ ϕδ(t)

where
∫ T

0
ϕδ(t) dt ≤ δ.

Now we can prove Proposition 1.
For any constant matrix A with real eigenvalues, it is easy to construct (see

[9] and [7]) a family of matrices Qε = Qε(A), ε > 0, with the following properties:

νεI ≤ Qε = Q∗ε ≤ I,

AQε −QεA∗ ≤ C0|A|εQε.
Now let us set S1 = {ξ ∈ Rn : |ξ| = 1}, and for δ > 0 (δ will be chosen

suitably small with respect to ε) let us consider a smooth partition of the unity
{χk(t, ξ)}1≤k≤m of D = [0, T [×S1, as in the previous Corollary. Then we define

Ak = A(tk, ξk), Qk,ε = Qε(Ak) for k = 1, . . . ,m′

and

Qδ,ε(t, ξ) =
m′∑
k=1

χk(t, ξ)Qk,ε +
m∑

m′+1

χk(t, ξ)I.

Clearly, the family Qδ,ε satisfies conditions (28) and (30) on D, as soon as νε ≤ 1.
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As to (29), we have the equality:

A(t, ξ)Qδ,ε(t, ξ) = A(t, ξ)
m′∑
k=1

χk(t, ξ)Qk,ε +A(t, ξ)
m∑

k=m′+1

χk(t, ξ)I

=
m′∑
k=1

χk(t, ξ)(A(t, ξ) −Ak)Qk,ε +

+
m′∑
k=1

χk(t, ξ)AkQk,ε +A(t, ξ)
m∑

k=m′+1

χk(t, ξ)I

and a similar equality holds for Qδ,εA∗.
On the other hand, by the Corollary we have:

m′∑
k=1

χk(t, ξ)(AkQk,ε −Qk,εA∗k) ≤ C0ε
m′∑
k=1

χk(t, ξ)Qk,ε|Ak|

≤ C0ε
m′∑
k=1

χk(t, ξ)|Ak −A(t, ξ)|I +

+C0ε
m′∑
k=1

χk(t, ξ)Qk,ε|A(t, ξ)|

≤ C0ε

(
ϕδ(t)
νε

+ Λ(t)
)
Qδ,ε(t, ξ).

Hence using again the Corollary, we get

A(t, ξ)Qδ,ε(t, ξ)−Qδ,ε(t, ξ)A∗(t, ξ) ≤

≤ C0ε

(
ϕδ(t)
νε

+ Λ(t)
)
Qδ,ε(t, ξ) + 2ϕδ(t)I,

which gives (29) for

Λε(t) = C0

(
ϕδ(t)
νε

+ Λδ(t)
)

+ 2
ϕδ(t)
νε

.

But
∫ T

0
ϕδ(t) dt ≤ δ ; thus if we take δ small enough with respect to ε we see

that ∫ T

0
Λε(t) dt ≤ C < +∞.

Finally we extend Qε(t, ξ) ≡ Qδ(ε),ε(t, ξ) on [0, T ]×Rn as a homogeneous function
in ξ of degree zero. �
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