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We investigate the evolution problem
u + du' + m(IAl/zulf,,)Au =0,

u(0) =ug,  w(0) =uy,

where H is a Hilbert space, A is a self-adjoint non-negative operator on H with
domain D(A), 6 > 0 is a parameter, and m(r) = r” with p < 1. We prove that
this problem has a unique global solution for positive times, provided that the
initial data (ug,u;) € D(A%/?) x D(A©“~Y/2) satisfy a suitable smallness as-
sumption and the non-degeneracy condition m(]A"/2ul3) > 0 (where p > 27"
and «; = 2% + 1). Moreover, we prove for this solution decay with a polynomial
rate as t — +o. These results apply to degenerate hyperbolic PDEs with non-local
non-linearities.  © 2000 Academic Press
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1. INTRODUCTION

Let H be a real Hilbert space, with norm |-|; and scalar product
(-, >u. Let A be a self-adjoint linear non-negative operator on H with
dense domain D(A) (i.e., { Au, u)y > 0 for all u € D(A)). Let us consider
the Cauchy problem

u'(t) + du'(t) + m(|A1/2u(t)|i{)Au(t) =0, =0,
u(0) = u,, u'(0) = uy,

(1.1)

where & > 0 and m: [0, + [ — [0, +<9 is a continuous function.
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Problem (1.1) is an abstract setting of the initial-boundary value problem
for the equation

u, + ou, + m(jQIVuI2 dx) Au=0, inQXx][0,+x[, (1.2)

where ) € R” is a (not necessarily bounded) open set. This last equation
was introduced in the case n = 1 by Kirchhoff [9] as a model for the small
transversal vibrations of an elastic string with fixed endpoints.

The equations (1.1)-(1.2) have long been studied under various condi-
tions on the function m and on the regularity of the initial data: the
interested reader can find appropriate references in the surveys of Arosio
[1], Spagnolo [15], and Medeiros et al. [10].

In this context we will recall only some results on the existence of global
solutions.

When the initial data are A-analytic, Arosio and Spagnolo [2] and later
D’Ancona and Spagnolo [3] proved that (1.1) has a global solution if
m, 6> 0.

In the case of regular small initial data, but not analytic, D’Ancona and
Spagnolo [4] showed that (1.2) has a unique global solution if Q = R”, m
is locally Lipschitz continuous, § > 0, and m(r) > v > 0, Vr > 0. (See also
Greenberg and Hu [8] for the one-dimensional case and Yamazaki [16].)

Now let us consider (1.1) with 8 > 0 and (u,,u;) € D(A) X D(A'/?)
small initial data; and let us assume m to be locally Lipschitz continuous.

In the non-degenerate case (i.e., m(r) > v > 0 for all r > 0), when A is
a coercive operator, De Brito, Yamada, and Nishihara [5, 6, 11, 14] proved
that there exists a unique global solution such that (u, u') decays with an
exponential rate as t > 4+ in € D(AY?) X H. The same result, with a
polynomial decay of the solution, was afterwards obtained by Nishihara
and Yamada [12] if m(r) =r” (y > 1) and u, # 0. When A is only a
non-negative operator in [7] it was proved that if m(r) > 0 for all r > 0
and m(|A"%u,|3;) > 0 then there exists a global solution and such a
solution has a limit ., in D(A) as t = + such that m(| A"/ ?u_|%) = 0.

At this point it seems natural to wonder what would happen if m were
only a continuous function (and not Lipschitz continuous) on the points s
such that m(s) = 0, always assuming that m(|.A4"/2uy|7) > 0.

The purpose of this paper is to provide a partial answer to this question
in the case when m(r) =r? (0 <p < 1) and A'?u, + 0.

Let us give at this point some notation. Let us set for i, n € N,

B=AY? a;=2+1,a,=2-2"""y =27 - 1.
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Moreover, let us define

|By"u1|H |Bai_1u1|H

Ci= Mmax ——5—— E, _(0) =
%—lp+a"/27 a; 1( ) |BM0|%-IP

+ |B%u,|
0<n<i |Bul ot

and let us consider the sequences R,, L,, defined by

R, =5R,_, +28c, R, =q/5{/E, (0) +2éc,

2 2
L,=c+ =R, L0=c+g\/Eal,1(O).

We shall prove the following result:

THEOREM 1.1.  Let us assume 8 > 0 and m(r) = r? (0 < p < 1), and let
i € N such thatp > 27", Let us assume that (u,u,) € D(B*) X D(B*™1),
with Bu, # 0 and

—i

p—2 5
R, L, <

12

2
|u1|H

2
|Buo|%_1p + |Bu0|H

. 1.3
2p +1 (1.3)

Then there exists a unique global solution u of (1.1) such that |Bu(t)|g > 0
forallt > 0 and

ue C([0, +=[; D(B2)) 0 C}([0,%[; D(B*"))
N C°([0,=[; D(B*)).

Remark 1.2. Since R, depends with continuity on R, and ¢, and since
R, =0if R, =c =0, then if R, and c are small this is also true for R,
(and hence for L,). Hence there exist initial data verifying (1.3).

Remark 1.3. Theorem 1.1 can be restated also as follows.

Let us assume that m(r) =r? (0 <p <1) and let i €N such that
p = 27" Let us assume that (u,,u,) € D(B*) X D(B*™"), with Bu, # 0.
Then there exists 8, > 0, such that for all & > 8, (1.1) has a unique global
solution u, with |Bu(t)ly > 0 for all t = 0 and

u € C*([0, +[; D(B*"2)) N C'([0,=[; D(B*"))
N C°([0,[; D(B%)).
Indeed, it is enough to observe that

5+ V25 + 8oc
R; < max{R;, ——————| = §;.

hence R;/8 - 0 when 8 - +o, and L; < c + (2/8)S;.
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Moreover, we are able to obtain the following result on the asymptotic
behavior of the solutions of (1.1).

THEOREM 1.4. Let us assume that all of the conditions of Theorem 1.1
are satisfied. Then,

Cc

il + 1Bl < 7% (1.4)
| B % o Chs
| Bul + [B%uly < (Lt 0y /o Ve > 0, (1.5)

for some constants c, , depending only on p, &, and the initial data.

This last result can be improved in the case in which A is a coercive
operator (i.e., (B*u,u)y > clul? for some constant ¢ > 0) as follows.

THEOREM 1.5. Let us assume that all the conditions of Theorem 1.1 are
satisfied, and let us suppose that A is a coercive operator. Then,

| Bu' |

C,o 2 Cp &
'y + |Bulfp ™2 < ——2—— |B*uly < ——7-—
(1+t)(p+1)/1’ |Bu|%_iﬂ (1+t)1/P &
Ve > 0,

for some constants c, , depending only on p, &, and the initial data.

Remark 1.6. By using Theorems 1.4 and 1.5 and Lemma 2.2 it is
possible to obtain also some estimate on the asymptotic decay of |B*u/|y
and |B*"uly for 0 <k < o; — 1.

2. PROOFS

Let us enunciate, first of all, a result of the existence of local solutions
for (1.1); the proof of this theorem can be obtained by a simple adaptation
of the proof of Theorem 2.1 in [7].

THEOREM 2.1 (Local Existence). Let us assume 8 > 0, m(r) =r? (0 <
p < 1), and (uy,u,) € D(B*) X D(B“~") with |Buy|if > 0

Then there exists T > 0 such that the problem (1.1) has a unique solution u
with |Bu(t)lg > 0 in [0, T[ and

u e C*([0,T[; D(B*2)) n C'([0,T[; D(B*"))
N C*([0,T[; D(B)).
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Moreover, u can be uniquely continued to a maximal solution defined in an
interval [0, T [, and at least one of the following statements is valid:

(i T, =+
(i) limsup, , ;- [Bu/ (D + |Bzu(t)|2 = 4o
(i) liminf, |Bu(t)|2” =

Now we can prove Theorem 1.1.

Step 1. Let [0,T,.[ be the maximal interval where the solution exists.
Let us set

c(t) =|Bu(t)|if

and

c'(1)
c(1)

Let us now consider for ¢ € [0, T[ the functions

po

1,c(t) >0Vte[0,7];.

T:= sup{r e [0,T,[:

, 2
E (1) = lBkCu(—f)t)b’ +| B fu(t) [y, k=0,...,a — 1.
Since
! ( o B (1) |1
E (1) = 0 26 + (—)|Bk TOIE ST
hence
E.(t) < E.(0) te[0,T[,k=0,...,0, — 1. (2.1)
Moreover, for ¢t € [0, T[ we have
0 <c(0)e™®/? < c(t) <c(0)e®/?. (2.2)

Our purpose is to prove that T = T, = +. Indeed, in this case we have
a global solution, and by (2.2) |Bu(t)|y > 0 for all ¢ > 0, hence this
solution is also unique.

Now let us assume that 7 = T, < +; then by (2.2) and (2.1), State-
ments ii and iii of Theorem 2.1, respectively, are false, and this contradicts
Theorem 2.1.

Then we must only prove that T =T .
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Step 2 (Proof of T = T,.). Let us assume by contradiction that 7 < T,.
Hence by (2.2) and by the maximality of T we have that necessarily

d(T) 3 pé
o(T)| 2p+1°

(2.3)

Before continuing, let us introduce some notation. For n > 0 we define

8Ly + /E,_1(0) n=0

R, + 5L, n> 1.

h,=v+2  H,=

n n

We can now enunciate a lemma, the proof of which we put off for later.

LEMMA 2.2. For 0 <t < T we have

B’y/xu/ t
(1), l—()lf/zﬁ . for 0 <n <i;
c(t)Bu(1) [
B (t
(2)n l—()laH/zSHn for 0 <n <i;
c(t)| Bu(t)[5
Bt
(3)n %SR,, forl<n<i.
| Bu(1) [

Since y; = 0 and h; = 2, by Lemma 2.2 we deduce for 0 <t < T}

|u’(t)|H|Bzu(t)|H _ [/ (1) | |Bzu(t)|H LR
|Bu(t) 772 [Bu(r) [ | Bu(n) [ T

Therefore, as p > 27%, we obtain

¢(T) ) (u(T), B*u(T))y
c(T) | Bu(T) |3

< 2p|Bu(T)*"*"'L,R,

op

< 2pE,(0)" "' L,R, < Tl

This last inequality contradicts (2.3).
After all that we provide a proof of Lemma 2.2.

Step 3 (Proof of Lemma 2.2). We shall proceed by finite induction on
n. First of all, we show that (1),, (2),, and (3), are true.
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(1), Let us consider the function G, (¢) = |BYu (Dl7;/c¥(t). We
have

(1)

’ 2 Yoy, Yot2
G)’o(t) = -2|6+ W)G%(Z) + m(B M(t),B M(t)>H

< =8G, (1) +2y/G, (1) \/E, (1) -
Hence, by (2.1), using a classical ODE lemma,
| BYu' () |y | BYu, |, 2
— < —_— —‘/E _4(0 <L,.
C(t) ax C(O) B a; 1( ) 0
(2), By the equation in (1.1), (2.1), and (1),, we obtain
| BYt (1) |BY (1)

c(1) oy = VEarr(0) + oLy = Hy.

(3), Taking the scalar product of the equation in (1.1) with
B*"M=2u(t) /c(t)| Bu(t)|3}, we get

(B3 (1), Bu(t))y |Bhw<z)|2+ (B3 (1), Bu(t))y
c(t)| Bu(1) 5 | Bu(t) [ c(t)| Bu(t) [

Moreover, 2h; — 3 = vy, and a, = 1, hence using (1), and (2), we have

<|B"*2u(t)|y + 6

| B (o) |
W < HO + 5L0 =26c + 5]/Ea.—1(0) = Rlz.
u(t) |y '

Let us now assume that (1), (2),, and (3),, ; are verified, and
e if n + 2 < i let us prove that (1), ,, 2),,,, and (3),,, are true;

e if n + 1 = let us prove that (1), , and (2),, are true.
(1,,,; Letus set
f 2
| BV (1) |y
> (0)|Bu(t) 7"

G7n+1(t) =

Then we have

p | B (1) |y
G, (1)< —26(1 - )G t) +24/G ) ———————
7n+l( ) 2p + 1 7/x+1( ) 7n+1( ) |Bu(t) t};+1/2
(B2u(1),u'(1)y
—ay41 7n+1( )

| Bu(1) [}y
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Since

(Bu(t),u'(1)y (1)

|Bu(t)[,  2pe(t)’
using (3),,, ; we deduce
2p Ayt

G, (t)<-6|2— - G, (t)+2y/G, ()R
(s —of2m T e (0426 (O,

< —-48G, (1) + 2\/Gyn+](t)Rn+1'
Hence

| BY i (1) |y |BY gy 2

api1/2 = X a4,,1/2° Q ‘n+1 <L,
c(t)|Bu(t) [y c(0)|Buyly; /= 8

(2),,, By the equation in (1.1), using (1), , , and (3),,, we get
| B (1) | | Bh (1) |y | B (1) |y

<
a,11/2 = a,41/2 a,41/2
()| Bu()) 5~ 1Bu(t) [ e() Bu(o) [
SIenJrl + 5Ln+1 =Hn+l'

93

+1

(3),,, Ifn+2=i+ 1we stop; otherwise, taking the scalar product

of the equation in (1.1) with B**»+>=2u(¢t) /c(¢)| Bu(t)|3+2, we get

<BZh,,+2*3u"(l‘), Bu(t)>H |Bh"*2u(t) |i]

C(l‘)llel(l‘)lir;f2 |Bu(t)|‘;;+z
(B22u/ (1), Bu(t)y

c(1)| Bu(t)

Ap+2
H

Since a,,, —a,,.,/2=1and 2h,,, —3 = v,,,, using (1),,, and (2),, ,

we obtain

| Bhv2u(r) [y

— <H,,, +8L,,, =28c+5R,. =R
|Bu(t) I.TZ +1 +1 +1

n+2°
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Now we prove Theorem 1.4.

We use the same notation as in Theorem 1.1.

It is enough to prove the theorem for ¢t > ¢, :=4/6 — 1.
For the inequality (1.4) we have to show that

| Bu(t) [
+

1 (I+t)y<¢, Vi=t. (24)

E(1) = (lu’(f)le +

To show this let us first recall that, by taking the scalar product of the
equation (1.1) and u, we obtain

6 !
((u’,u>H + Elulz) — |5 + |Bul**?? =0,
hence
’ 72 ’ 5 2l
E'(t) < =8luly(1+1) — (' (t),u(t))y + 5|M(f)| :

Therefore, for all ¢ > ¢,,

13} 5 u i—]
E(t) < E(t) + (), u(t)y + 5 |u(e) [ + %

1
<H + gE(t),

where, by (2.1), H, depends only on the initial data. We have then the
required inequality by taking ¢, = 8H, /7.

Now we have to prove the inequality (1.5).

By taking the scalar product of the equation (1.1) and (1 + ¢)#B?u /c(¢),
we get

!

(1+1)°

{Bu', Bu) b
L | Bul? 2
c(t) 2-2p

|Bu'|% c'(t) {(Bu', Bu)y

c(t) c(t) c(t)

{Bu', Bu) E)
"y |Buly 2| = 0.
c(t) 2-2p

(1+0)° + 1Bl (1 +1)°

- B(1 +t)B_1(
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Then, integrating over (¢,, ¢) and taking into account ¢'(¢){Bu', Bu)y > 0,
we obtain

/I|B2u(s)|i{(1 +5)F ds
4

| Bu' (1) |yl Bu(1) |
<
c(t)

¢ |Bu’(s)|i,
] e

(1+1)°

(1+s)" ds

|Bu(t) |5 7 (1 +1)"

1
_2—2p(6_ (1+1)

oy [/ o) ds + v
< +%(1+06
+8( < _SB —l)lB (D "1+ 1)
Bu(s) [y 7 d
/tIB (s )|H(1+s),;ds (25)

ty

where, by (2.1), ¢ depends only on the initial data.
If we now choose B8 = (1 — p)/(1 + p)) — & with & > 0, by (2.4) we get

ff’(l —p)/(1+p)

[/ 9" Bl ds = S
&
hence

ft:|Bzu(s)|i{(1 +5)Pds < %(1 +1)°

ftt | Bu (s )IH(1 )P ds +x, (2.6)

c(s)

where y depends only on p, &, and on the initial data.
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We are at this point able to estimate, for £ > 0 and ¢ > ¢,,

2/(p+1)— |Bu,(t)|2H 2
F(t) = (1+ )P0 ——2 = 4| B2u(t) |y

c(1)
Indeed, using |c'(¢)/c(H)] < p6/Qp + 1) and ¢ > ¢,, we easy get

2
Bu'(t
F'(t) < —8—| ( )lH(l 4 )/ D

c(t)
+—2 (1 + Y012 g2y [2,.
p+1 H

Then by (2.6)—(2.1), we have for some y; depending only on p, &, and the
initial data,

F(t) < x, +5F(t) Vtx>t,

which gives immediately the inequality (1.5).

Now we prove Theorem 1.5.

For the first inequality we only remark that, since A is coercive, we can
use exactly the same proceeding as was used in [13].

To prove the second one we can proceed as in proof of (1.5) in Theorem
1.4, choosing ¢, == 2/pdé — 1: the only difference is that in this case we can
now take B = (1 —p)/p — e.
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