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Abstract

We investigate the evolution problem

{
u′′ + δu′ + m

(∣∣A1/2u
∣∣2
H

)
Au = 0,

u(0) = u0, u′(0) = u1,

where H is a Hilbert space, A is a self-adjoint nonnegative operator on H with domain D(A), δ > 0 is
a parameter, and m(r) is a nonnegative function such that m(0) = 0 and m is nonnecessarily Lipschitz
continuous in a neighborhood of 0.

We prove that this problem has a unique global solution for positive times, provided that the initial
data (u0, u1) ∈ D(A) × D(A1/2) satisfy a suitable smallness assumption and the nondegeneracy condition
m(|A1/2u0|2

H
) > 0. Moreover, we study the decay of the solution as t → +∞.

These results apply to degenerate hyperbolic PDEs with nonlocal nonlinearities.
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1. Introduction

Let H be a real Hilbert space, with norm | · |H and scalar product 〈·,·〉H . Let A be a self-
adjoint linear nonnegative operator on H with dense domain D(A) (i.e., 〈Au,u〉H � 0 for all
u ∈ D(A)). Let us consider the Cauchy problem

{
u′′(t) + δu′(t) + m

(∣∣A1/2u(t)
∣∣2
H

)
Au(t) = 0, t � 0,

u(0) = u0, u′(0) = u1,
(1.1)

where δ is a nonnegative constant, and m : [0,+∞[ → [0,+∞[ is a continuous function.
Problem (1.1) is an abstract setting of the initial-boundary value problem for the equation

utt + δut + m

(∫
Ω

|∇u|2 dx

)
�u = 0, in Ω × [0,+∞[, (1.2)

where Ω ⊆ R
n is a (nonnecessarily bounded) open set. This last equation was introduced in the

case n = 1 by G. Kirchhoff [10] as a model for the small transversal vibrations of an elastic string
with fixed endpoints.

Equations (1.1)–(1.2) have long been studied under various conditions on the function m and
on the regularity of the initial data: the interested reader can find appropriate references in the
surveys of A. Arosio [1], S. Spagnolo [17] and L.A. Medeiros, J.L. Ferrel and S.-B. de Mene-
zes [13].

In this context we will recall only some results on the existence of global solutions.
When the initial data are A-analytic, A. Arosio and S. Spagnolo [2] and later P. D’Ancona

and S. Spagnolo [3] proved that (1.1) has a global solution. Various authors, beginning from the
works of J.M. Greenberg and S.C. Hu [9] and P. D’Ancona and S. Spagnolo [4], proved the ex-
istence of global solutions of (1.2) for regular, nonanalytic, small initial data, when Ω = R

n,
and m ∈ C1([0,+∞[), with m(r) � ν > 0, ∀r � 0 (see also T. Yamazaki [19,20], T. Mat-
suyama [12] when Ω are exterior domains). Moreover, some authors showed that, if Ω = R

n

or Ω is a bounded set, m ∈ C1([0,+∞[) and m(r) � ν > 0 for all r � 0, then there are global
solutions for special classes of nonnecessarily regular or small initial data (see, for example,
R. Manfrin [11]).

In the following let us consider (1.1) with (u0, u1) ∈ D(A) × D(A1/2) small initial data and
δ > 0 (i.e., we limit ourself to treat the dissipative case).

In the nondegenerate case (i.e., m(r) � ν > 0 for all r � 0), when A is a coercive op-
erator, and m is a C1 function, E.H. de Brito, Y. Yamada, K. Nishihara [5,6,14,18] proved
that there exists a unique global solution such that (u,u′) decay with an exponential rate as
t → +∞ in D(A1/2) × H . The same result, with a polynomial decay of the solution, was af-
terwards obtained by K. Nishihara and Y. Yamada [15] if m(r) = rγ (γ � 1), and u0 �= 0 (see
also K. Ono [16]). When A is only a nonnegative operator, in [8] it was proved that, if m is
a nonnegative C1 function and m(|A1/2u0|2H ) > 0, then there exists a global solution u(t) and
(u(t), u′(t), u′′(t)) → (u∞,0,0) in D(A)×D(A1/2)×H as t → +∞, with m(|A1/2u∞|2H ) = 0.

In [7] it was then considered the case m(r) = rp (0 < p < 1) and A1/2u0 �= 0, and proved the
existence of global solutions for small regular (nonanalytic) initial data, where the regularity of
the data depends on p. Moreover, in [7] it was proved that the solutions decay with a polynomial
rate.
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The purpose of this paper is to extend the result in [7] for the unique global existence of
a solution to a more general class of functions m(r) nonnecessarily Lipschitz continuous near the
origin. Moreover, we only assume that the initial data are in D(A)×D(A1/2) (see Theorem 2.1).
Then we study the asymptotic behaviour of the solutions when m(x) → 0 (as x → 0+) slowly
(see Theorem 2.2).

2. Preliminaries and statements

To begin with, let us state the conditions on the function m we need in the following:

(1) m ∈ C1(]0, a]) ∩ C0([0, a]) for some a > 0;
(2) m is a nonnegative function, nonidentically zero;
(3) there exists a constant C such that

∣∣xm′(x)
∣∣ � C, 0 < x � a; (2.1)

(4) m(x) �= 0 for x �= 0 and for all α > 0 we have

lim
x→0+ xαm(x)−1 = 0.

Let us discuss shortly the assumptions on the function m.

• The condition (3) is verified by large classes of functions: for example, m(r) can be any
C1 function or can behave near the origin as rp (p > 0) or as | log(r)|−α (α > 0).

• A sufficient condition in order that m verifies (4) is that m satisfies (1)–(2) and

lim
x→0+

|m′(x)x|
m(x)

= 0.

Now let us set for |A1/2u0|H > 0 and m(|A1/2u0|2H ) > 0:

E(0) = |u1|2H
m(|A1/2u0|2H )

+ ∣∣A1/2u0
∣∣2
H

, G(0) = |u1|2H
|A1/2u0|2H m2(|A1/2u0|2H )

,

F (0) = |A1/2u1|2H
m(|A1/2u0|2H )|A1/2u0|2H

+ |Au0|2H
|A1/2u0|2H

− 〈Au0, u1〉2
H

|A1/2u0|4H m(|A1/2u0|2H )
.

Moreover, for 0 < b � a let us define

γb := sup
0�x�b

m(x) + sup
0<x�b

x
∣∣m′(x)

∣∣.

Let us observe that, if m verifies (1)–(3), then the quantity γb is always well defined.
We shall prove the following result:

Theorem 2.1. Let us assume δ > 0, and that m verifies (1)–(3). Let us suppose that (u0, u1) ∈
D(A) × D(A1/2), with |A1/2u0|2 �= 0, m(|A1/2u0|2 ) �= 0 and
H H
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E(0) < a1 � a, γa1

|〈Au0, u1〉H |
m(|A1/2u0|2H )|A1/2u0|2H

<
δ

4
, (2.2)

γa1

√
F(0)max

{√
G(0),

4

δ

√
F(0)

}
<

δ

4
. (2.3)

Then there exists a unique global solution u of (1.1) such that |A1/2u(t)|2H > 0 and
m(|A1/2u(t)|2H ) > 0 for all t � 0 and

u ∈ C2([0,+∞[;H ) ∩ C1([0,∞[;D(
A1/2)) ∩ C0([0,∞[;D(A)

)
.

Let us remark that:

• Theorem 2.1 can be enunciated also as: let us fix (u0, u1) ∈ D(A) × D(A1/2), with
|A1/2u0|2H �= 0, m(|A1/2u0|2H ) �= 0 and E(0) < a, then, if δ is sufficiently big, (1.1) has a
unique global solution;

• if m(0) = 0 and xm′(x) → 0 as x → 0, then, of course, we can find a1 > 0 and initial
data such that inequalities in (2.2)–(2.3) are verified, otherwise it could be necessary take δ

sufficiently big (note that, if A is a coercive operator, we get F(0) � c0 > 0).

Since the asymptotic behaviour when m is a C1 function or m(r) = rp has been considered in
the previous works, we limit ourself to study the asymptotic behaviour of the solutions of (1.1)
when m(x) → 0 (as x → 0+) slowly (i.e., m satisfies (4)).

Theorem 2.2. Let us assume that all the conditions of Theorem 2.1 are satisfied, that A is a co-
ercive operator and that m verifies also (4). Let u be the solution of (1.1).

Then, for all k > 0 and for all 0 < α < 1, there exists Ck,α > 0 such that for all t � 0,

(1 + t)k
( |A1/2u′(t)|2H

|A1/2u(t)|2α
H

+ m(|A1/2u(t)|2H )|Au(t)|2H
|A1/2u(t)|2α

H

)
� Ck,α. (2.4)

Since the operator A is coercive, (2.4) imply that the same estimates hold true for |u′|H ,
|A1/2u|H , |u|H . Moreover, let us remark that, thanks to (4), the estimate (2.4) implies that
(1 + t)k|Au(t)|2H is bounded for every k.

3. Proofs

Let us enunciate, first of all, a result of existence of local solutions for (1.1). The proof of this
theorem can be obtained by a simple adaptation of the one of [8, Theorem 2.1], then it is omitted.

Theorem 3.1 (Local existence). Let us assume δ � 0, that m verifies (1)–(3), and (u0, u1) ∈
D(A) × D(A1/2) with |A1/2u0|2H > 0 and m(|A1/2u0|2H ) > 0.

Then there exists T > 0 such that problem (1.1) has a unique solution u with |A1/2u(t)|2H > 0
and m(|A1/2u(t)|2H ) > 0 in [0, T [ and

u ∈ C2([0, T [;H ) ∩ C1([0, T [;D(
A1/2)) ∩ C0([0, T [;D(A)

)
.
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Moreover, u can be uniquely continued to a maximal solution defined in an interval [0, T∗[,
and at least one of the following statements is valid:

(i) T∗ = +∞;
(ii) lim supt→T −∗ |A1/2u(t)|2H = a;

(iii) lim supt→T −∗ |A1/2u′(t)|2 + |Au(t)|2 = +∞;

(iv) lim inft→T −∗ |A1/2u(t)|2H = 0;

(v) lim inft→T −∗ m(|A1/2u(t)|2H ) = 0.

Now we can prove Theorem 2.1.

Proof of Theorem 2.1. Let [0, T∗[ be the maximal interval where the solution exists.
Let us set

c(t) := m
(∣∣A1/2u(t)

∣∣2
H

)
, h(t) = 〈Au(t), u′(t)〉H

|A1/2u(t)|2H
,

T := sup

{
τ ∈ [0, T∗[: 0 <

∣∣A1/2u(t)
∣∣2
H

� a1, c(t) > 0, γa1

∣∣∣∣h(t)

c(t)

∣∣∣∣ � δ

4
, ∀t ∈ [0, τ ]

}
.

To begin with let us remark that T > 0 and that in [0, T [ we have 0 < c(t) < γa1 and

|(|A1/2u(t)|2H )′|
|A1/2u(t)|2H

= 2
∣∣h(t)

∣∣ � 2
δ

4γa1

c(t) � δ

2
, (3.1)

that implies for t ∈ [0, T [,

0 <
∣∣A1/2u0

∣∣2
H

e−δt/2 �
∣∣A1/2u(t)

∣∣2
H

�
∣∣A1/2u0

∣∣2
H

eδt/2. (3.2)

Moreover, in [0, T [ it holds true that c(t) > 0 and

∣∣∣∣c
′(t)

c(t)

∣∣∣∣ = 2
∣∣m′(∣∣A1/2u(t)

∣∣2
H

)∣∣ |h(t)|
c(t)

∣∣A1/2u(t)
∣∣2
H

� 2γa1

|h(t)|
c(t)

� δ

2
, (3.3)

that implies for t ∈ [0, T [,

0 < c(0)e−δt/2 � c(t) � c(0)eδt/2. (3.4)

Let us now consider for t ∈ [0, T [ the following function:

E(t) := |u′(t)|2H
c(t)

+ ∣∣A1/2u(t)
∣∣2
H

.

Since it holds true that

E′(t) = − 1
(

2δ + c′(t))∣∣u′(t)
∣∣2
H

� −δ |u′(t)|2H , (3.5)

c(t) c(t) c(t)
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hence we get

E(t) � E(0) < a1, ∀t ∈ [0, T [. (3.6)

In the same way we find

E1(t) := |A1/2u′(t)|2H
c(t)

+ ∣∣Au(t)
∣∣2
H

� E1(0). (3.7)

Our purpose is to prove that T = T∗ = +∞. Indeed in this case we have a global solution, and
by (3.2)–(3.4), we get |A1/2u(t)|2H > 0 and m(|A1/2u(t)|2H ) > 0 for all t � 0, hence this solution
is also unique.

Now let us assume that T = T∗ < +∞; then by (3.6), (3.7), (3.2) and (3.4) we obtain that (ii),
(iii), (iv) and (v), respectively, of Theorem 3.1 are false, and this contradicts Theorem 3.1.

Then we must only prove that T = T∗.
Let us assume by contradiction that T < T∗. Hence by (3.6), (3.2) and (3.4) and by the maxi-

mality of T we have that necessarily

γa1 |h(T )|
c(T )

= δ

4
. (3.8)

Let us consider for 0 � t � T ,

F(t) = |A1/2u′(t)|2H
c(t)|A1/2u(t)|2H

+ |Au(t)|2H
|A1/2u(t)|2H

− h2(t)

c(t)
.

We have

F ′(t) = −2δ
|A1/2u′(t)|2H

c(t)|A1/2u(t)|2H
− c′(t)

c(t)

|A1/2u′(t)|2H
c(t)|A1/2u(t)|2H

− 2
〈Au(t), u′(t)〉H

|A1/2u(t)|4H
|A1/2u′(t)|2H

c(t)
− 2

∣∣Au(t)
∣∣2
H

〈Au(t), u′(t)〉H
|A1/2u(t)|4H

− 2
h(t)

c(t)

〈Au(t),−c(t)Au(t) − δu′(t)〉H + |A1/2u′(t)|2H
|A1/2u(t)|2H

+ 4
h(t)

c(t)

〈Au(t), u′(t)〉2
H

|A1/2u(t)|4H
+ h2(t)c′(t)

c2(t)

= 2

[
− |A1/2u′(t)|2H

c(t)|A1/2u(t)|2H
+ h2(t)

c(t)

][
δ + 2h(t) + c′(t)

2c(t)

]
.

Since it holds true that

− |A1/2u′(t)|2H
c(t)|A1/2u(t)|2 + h2(t)

c(t)
= − |A1/2u′(t)|2H

c(t)|A1/2u(t)|2 + 〈Au(t), u′(t)〉2
H

c(t)|A1/2u(t)|4 � 0

H H H
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and (see (3.1), (3.3))

δ + 2h(t) + c′(t)
2c(t)

� δ − δ

2
− δ

4
> 0,

then we have F ′ � 0, hence we get F(t) � F(0) for all 0 � t � T and in particular

|Au(t)|2H
|A1/2u(t)|2H

� F(0), 0 � t � T . (3.9)

Let now us set

G(t) = |u′(t)|2H
c2(t)|A1/2u(t)|2H

.

Using (3.9) we get

G′(t) = 2
〈−c(t)Au(t) − δu′(t), u′(t)〉H

c2(t)|A1/2u(t)|2H
− 2

|u′(t)|2H
c2(t)|A1/2u(t)|4H

〈
Au(t), u′(t)

〉
H

− 2
c′(t)
c(t)

|u′(t)|2H
c2(t)|A1/2u(t)|2H

= −2G(t)

[
δ + h(t) + c′(t)

c(t)

]
− 2

〈Au(t), u′(t)〉H
c(t)|A1/2u(t)|2H

� − δ

2
G(t) + 2

√
G(t)

√
F(0).

Using standard techniques for differential inequalities, it is easy hence prove that, for all
0 � t � T ,

G(t) � max

{
G(0),

16

δ2
F(0)

}
:= G0. (3.10)

Therefore, using (3.9) and (3.10), by (2.3) we obtain

γa1 |h(T )|
c(T )

= γa1

∣∣∣∣ 〈Au(T ),u′(T )〉H
c(T )|A1/2u(T )|2H

∣∣∣∣ � γa1

√
F(0)

√
G0 <

δ

4
,

that contradicts (3.8). �
Now we show Theorem 2.2.

Proof of Theorem 2.2. We use the same notations as in Theorem 2.1.
First of all let us remark that the estimates (3.1)–(3.3)–(3.6) hold true for all t � 0, that is

2

∣∣∣∣ 〈Au(t), u′(t)〉H
|A1/2u(t)|2

∣∣∣∣ � δ

2
,

∣∣∣∣c
′(t)

c(t)

∣∣∣∣ � δ

2
,

∣∣A1/2u(t)
∣∣2
H

� E(0). (3.11)

H
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Now let us remark that to prove Theorem 2.2 it is enough to show that, for all 0 < α < 1 and
k � 0, the estimate (2.4) holds true for

t � tk,α := max

{
2k

δ(1 − α)
− 1,0

}
.

Let us set

Pk,α(t) := (1 + t)k
( |A1/2u′(t)|2H

|A1/2u(t)|2α
H

+ c(t)|Au(t)|2H
|A1/2u(t)|2α

H

)
+ δ(1 − α)

2

t∫
tk,α

(1 + s)k
|A1/2u′(s)|2H
|A1/2u(s)|2α

H

ds

and

Hk,α(t) :=
t∫

tk,α

c(s)
∣∣Au(s)

∣∣2
H

∣∣A1/2u(s)
∣∣−2α

H
(1 + s)k ds.

We have only to prove by induction that Pk,α and Hk,α are bounded functions for t � tk,α .
In the following we denote by c

j
k,α all constants (independent on t) we use in each step.

Let us consider k = 0. By (3.11) we get for t � 0,

P ′
0,α(t) = −2δ

|A1/2u′(t)|2H
|A1/2u(t)|2α

H

− 2α
〈Au(t), u′(t)〉H

|A1/2u(t)|2H
|A1/2u′(t)|2H
|A1/2u(t)|2α

H

+
[
c′(t)
c(t)

− 2α
〈Au(t), u′(t)〉H

|A1/2u(t)|2H

]
c(t)

|Au(t)|2H
|A1/2u(t)|2α

H

+ δ

2
(1 − α)

|A1/2u′(t)|2H
|A1/2u(t)|2α

H

� −|A1/2u′(t)|2H
|A1/2u(t)|2α

H

(
2δ − αδ

2
− δ

2
(1 − α)

)
+ δ

2
(1 + α)c(t)

|Au(t)|2H
|A1/2u(t)|2α

H

= −3δ

2

|A1/2u′(t)|2H
|A1/2u(t)|2α

H

+ δ

2
(1 + α)c(t)

|Au(t)|2H
|A1/2u(t)|2α

H

.

Now a straightforward computation gives

−
( 〈Au(t), u′(t)〉H

|A1/2u(t)|2α
H

)′
= −|A1/2u′(t)|2H

|A1/2u(t)|2α
H

+ 2α
〈Au(t), u′(t)〉2

H

|A1/2u(t)|2(α+1)
H

+ c(t)
|Au(t)|2H

|A1/2u(t)|2α
H

+ δ
〈Au(t), u′(t)〉H
|A1/2u(t)|2α

H

.

Hence we obtain

c(t)
|Au(t)|2H

|A1/2u(t)|2α
H

� −
[ 〈Au(t), u′(t)〉H

|A1/2u(t)|2α
H

+ δ

2

|A1/2u(t)|2(1−α)
H

1 − α

]′

+ |A1/2u′(t)|2H
|A1/2u(t)|2α

, (3.12)

H
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that implies

P ′
0,α(t) �

(
−3δ

2
+ δ

2
(1 + α)

) |A1/2u′(t)|2H
|A1/2u(t)|2α

H

− δ

2
(1 + α)

[ 〈Au(t), u′(t)〉H
|A1/2u(t)|2α

H

+ δ

2

|A1/2u(t)|2(1−α)
H

1 − α

]′
.

Therefore integrating this last inequality over [0, t] and using once more (3.11), we have:

P0,α(t) � P0,α(0) + δ

2
(1 + α)

[ 〈Au(0), u′(0)〉H
|A1/2u(0)|2α

H

+ δ

2

|A1/2u(0)|2(1−α)
H

1 − α

]

− δ

2
(1 + α)

[ 〈Au(t), u′(t)〉H
|A1/2u(t)|2α

H

+ δ

2

|A1/2u(t)|2(1−α)
H

1 − α

]

� c1
0,α + δ

2
(1 + α)

∣∣∣∣ 〈Au(t), u′(t)〉H
|A1/2u(t)|2H

∣∣∣∣∣∣A1/2u(t)
∣∣2(1−α)

H
� c2

0,α. (3.13)

Since P0,α is bounded, integrating (3.12) over [0, t] we get also, for all t � 0,

H0,α(t) � c3
0,α − 〈Au(t), u′(t)〉H

|A1/2u(t)|2α
H

+
t∫

0

|A1/2u′(s)|2H
|A1/2u(s)|2α

H

ds � c4
0,α. (3.14)

Now let us assume that Pk,α and Hk,α are bounded for all 0 < α < 1 and we prove that Pk+1,α

and Hk+1,α are bounded for all α. We have for t � tk+1,α , using once more (3.11),

P ′
k+1,α(t) = −(1 + t)k+1 |A1/2u′(t)|2H

|A1/2u(t)|2α
H

(
2δ + 2α

〈Au(t), u′(t)〉H
|A1/2u(t)|2H

− δ

2
(1 − α) − k + 1

1 + t

)

+ (1 + t)k+1c(t)
|Au(t)|2H

|A1/2u(t)|2α
H

(
c′(t)
c(t)

− 2α
〈Au(t), u′(t)〉H

|A1/2u(t)|2H
+ k + 1

1 + t

)

� −(1 + t)k+1 |A1/2u′(t)|2H
|A1/2u(t)|2α

H

(
2δ − αδ

2
− δ

2
(1 − α) − δ

2
(1 − α)

)

+ (1 + t)k+1c(t)
|Au(t)|2H

|A1/2u(t)|2α
H

(
δ

2
+ αδ

2
+ δ

2
(1 − α)

)

� −(1 + t)k+1δ

(
1 + α

2

) |A1/2u′(t)|2H
|A1/2u(t)|2α

H

+ δ(1 + t)k+1c(t)
|Au(t)|2H

|A1/2u(t)|2α
H

. (3.15)

Moreover, we easily see that
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−
(

(1 + t)k+1 〈Au(t), u′(t)〉H
|A1/2u(t)|2α

H

)′

= −(1 + t)k+1 |A1/2u′(t)|2H
|A1/2u(t)|2α

H

+ 2α(1 + t)k+1 〈Au(t), u′(t)〉2
H

|A1/2u(t)|2(α+1)
H

− (k + 1)(1 + t)k
〈Au(t), u′(t)〉H
|A1/2u(t)|2α

H

+ (1 + t)k+1c(t)
|Au(t)|2H

|A1/2u(t)|2α
H

+ δ(1 + t)k+1 〈Au(t), u′(t)〉H
|A1/2u(t)|2α

H

.

Hence we get

(1 + t)k+1c(t)
|Au(t)|2H

|A1/2u(t)|2α
H

(3.16)

� (1 + t)k+1 |A1/2u′(t)|2H
|A1/2u(t)|2α

H

−
[
(1 + t)k+1 〈Au(t), u′(t)〉H

|A1/2u(t)|2α
H

]′

+
[
(k + 1)(1 + t)k

|A1/2u(t)|2(1−α)
H

2(1 − α)

]′
− k(k + 1)(1 + t)k−1 |A1/2u(t)|2(1−α)

H

2(1 − α)

− δ

[
(1 + t)k+1 |A1/2u(t)|2(1−α)

H

2(1 − α)

]′
+ δ(k + 1)(1 + t)k

|A1/2u(t)|2(1−α)
H

2(1 − α)
. (3.17)

Putting this last inequality in (3.15) we have

P ′
k+1,α(t) � −α

2
(1 + t)k+1 |A1/2u′(t)|2H

|A1/2u(t)|2α
H

+ δ2

2
(k + 1)(1 + t)k

|A1/2u(t)|2(1−α)
H

(1 − α)

− δ

[
(1 + t)k+1 〈Au(t), u′(t)〉H

|A1/2u(t)|2α
H

+ δ(1 + t)k+1 |A1/2u(t)|2(1−α)
H

2(1 − α)

]′

+ δ

[
(k + 1)(1 + t)k

|A1/2u(t)|2(1−α)
H

2(1 − α)

]′
.

Integrating over [tk+1,α, t] we get, using also Holder inequality,

Pk+1,α(t) � c1
k+1,α + δ2(k + 1)

2(1 − α)

t∫
tk+1,α

(1 + s)k
∣∣A1/2u(s)

∣∣2(1−α)

H
ds

− δ(1 + t)k+1 〈Au(t), u′(t)〉H
|A1/2u(t)|2α

H

− δ2

(1 + t)k+1
∣∣A1/2u(t)

∣∣2(1−α)

H

(
1 − k + 1

)

2(1 − α) δ(1 + t)
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� c1
k+1,α + δ2(k + 1)

2(1 − α)

t∫
tk+1,α

(1 + s)k
∣∣A1/2u(s)

∣∣2(1−α)

H
ds

+ δ2

4

∣∣A1/2u(t)
∣∣2(1−α)

H

1 + α

1 − α
(1 + t)k+1 + 1 − α

1 + α
(1 + t)k+1 |A1/2u′(t)|2H

|A1/2u(t)|2α
H

− δ2

4

∣∣A1/2u(t)
∣∣2(1−α)

H

1 + α

1 − α
(1 + t)k+1.

Let us consider α < β < 1 such that tk,β � tk+1,α and let us remark that, since A is a coercive
operator and c(t) = m(|A1/2u(t)|2H ) verifies (4), then there exists a constant λα,β such that

∣∣A1/2u(t)
∣∣2(1−α)

H
= |A1/2u(t)|2H

|A1/2u(t)|2α
H

� λα,βc(t)
|Au(t)|2H

|A1/2u(t)|2β
H

. (3.18)

Hence recalling the inductive hypothesis on Hk,β we get

+∞∫
tk+1,α

(1 + s)k
∣∣A1/2u(s)

∣∣2(1−α)

H
ds < +∞.

Using this last inequality we obtain

2α

1 + α
Pk+1,α(t) � c2

k+1,α.

Since Pk+1,α is bounded for all α, integrating (3.17) and using (3.18) we get

Hk+1,α(t) � c3
k+1,α +

t∫
tk+1,α

(1 + s)k+1 |A1/2u′(s)|2H
|A1/2u(s)|2α

H

ds − (1 + t)k+1 〈Au(t), u′(t)〉H
|A1/2u(t)|2α

H

+ (k + 1)(1 + t)k
|A1/2u(t)|2(1−α)

H

2(1 − α)
− δ(1 + t)k+1 |A1/2u(t)|2(1−α)

H

2(1 − α)

+ δ(k + 1)

t∫
tk+1,α

(1 + s)k
|A1/2u(s)|2(1−α)

H

2(1 − α)
ds

� c4
k+1,α + δ(k + 1)λα,β

+∞∫
tk+1,α

(1 + s)kc(s)
|Au(s)|2H

|A1/2u(s)|2β
H

ds < +∞. �
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