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Abstract We consider the Cauchy problem for the Perona–Malik equation

ut = div
( ∇u

1 + |∇u|2
)

in a bounded open set � ⊆ R
n, with Neumann boundary conditions.

If n = 1, we prove some a priori estimates on u and ux. Then we consider
the semi-discrete scheme obtained by replacing the space derivatives by finite
differences. Extending the previous estimates to the discrete setting we prove
a compactness result for this scheme and we characterize the possible limits in
some cases. Finally, for n > 1 we give examples to show that the corresponding
estimates on ∇u are in general false.

Mathematics Subject Classification (2000) 35B45 · 35B50 · 35K55

1 Introduction

In this paper we consider the initial boundary value problem

ut = (ϕ′(ux))x = ϕ′′(ux)uxx in (−1, 1)× [0, T), (1.1)
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ux(−1, t) = ux(1, t) = 0 ∀t ∈ [0, T), (1.2)

u(x, 0) = u0(x) ∀x ∈ (−1, 1), (1.3)

which is the formal gradient flow of the integral functional

PMϕ(u) =
1∫

−1

ϕ(ux)dx. (1.4)

Since we are interested in smooth solutions, we require that (1.1) and (1.2)
are satisfied also for t = 0. In particular, Eq. 1.2 for t = 0 gives a compatibility
condition on u0.

We assume that ϕ ∈ C2(R) and for simplicity ϕ′(0) = 0, but we do not
assume that ϕ is convex: therefore Eq. 1.1 is a forward-parabolic PDE where
ϕ′′(ux) > 0, and a backward-parabolic PDE where ϕ′′(ux) < 0. The interesting
case is of course when the initial condition u0 is such that ϕ′′(u0x) changes its
sign in [−1, 1]: in this case we say that u0 is transcritical.

We also consider the n-dimensional generalization of (1.4), i.e. the functional

PMϕ(u) =
∫
�

ϕ(|∇u|)dx, (1.5)

whose gradient flow is the initial boundary value problem

ut = div
(
ϕ′(|∇u|) ∇u

|∇u|
)

in �× [0, T), (1.6)

∂u
∂n

= 0 in ∂�× [0, T), (1.7)

u(x, 0) = u0(x) ∀x ∈ �, (1.8)

where � ⊆ R
n is an open set with piecewise C1 boundary, and n is the exterior

normal to ∂�. Note that (1.6) is well defined since ϕ′(0) = 0.
The typical example is the so called Perona–Malik equation, corresponding

to ϕ(σ) = 2−1 log(1 + σ 2), introduced in [15] in the context of image processing
(see also [11]), hence in the case where n = 2,� is a rectangle, and u0 represents
the gray level of an image. A different choice is ϕ(σ) = (σ 2 − 1)2, considered
for example in [1] in the context of nonlinear elasticity and phase transitions.

From the analytical point of view, the forward–backward character of these
PDEs induces a general skepticism (see [2]), partially supported by some neg-
ative results [9,10,12]. In particular, it is known that problem (1.1), (1.2), and
(1.3) has no global solution (T = +∞) if u0 is transcritical (see [9,12]). Exis-
tence of local solutions, even for special classes of transcritical initial data, is
still an open problem.

On the other hand, numerical experiments exhibit much better stability prop-
erties than expected (see [3,4,6,7,13]).
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The existence of good reasons for being pessimistic and good reasons for
being optimistic is usually referred as “the Perona–Malik paradox”.

In this paper we partially support both positions. Concerning the one dimen-
sional problem (1.1), (1.2), and (1.3), in Theorem 2.2 we prove some a priori
estimates on u and ux. In particular, we prove that the L1 norm of ux in the
space variable (i.e. the total variation of u) is a non-increasing function of time,
while the L∞ norm of ux in the space variable is a non-decreasing function of
time if u0 is transcritical.

Then we consider the semi-discrete scheme for (1.1), (1.2), and (1.3), obtained
by replacing space derivatives with finite differences. In Theorem 2.5 we show
that some of the estimates proved in the continuous case, and in particular the
estimate of the total variation, can be extended to the discrete setting. Such
estimates are enough to prove (Theorem 2.7) that the solutions of the discrete
problems converge to a limit (up to subsequences), as the discretization step
goes to 0. This suggests to consider these limits as solutions of (1.1), (1.2), and
(1.3) in some weak sense, as we do in Definition 2.8. Then we show that the
properties of these limits are consistent with what observed in numerical exper-
iments (Theorem 2.9). We also prove that they are classical solutions of Eq. 1.1
in the forward region of the initial condition (Theorem 2.10). We do not think
that the same is true in the backward region, due to the “fibrillation” phenom-
enon conjectured in [5] as a consequence of the “staircasing” effect observed
in numerical experiments. This remains a challenging problem.

Finally, we consider the n-dimensional problem (1.6), (1.7), and (1.8). The
estimates on u can be generalized almost word by word (Theorem 2.14), but
for gradients the situation is different. In Theorem 2.15 we prove that the total
variation of the solution is a non-increasing function of time in the case of radial
solutions, but then we show with Theorem 2.17 that this cannot be true in gen-
eral, also for the Perona–Malik equation in a rectangle. A consequence is that
the argument used in dimension one to prove the compactness for the semi-dis-
crete scheme cannot be passed to dimension n > 1. We also show with Theorem
2.18 that it is no more true that the L∞ norm of the gradient is non-decreasing if
u0 is transcritical. This prevents us from extending in dimension n > 1 the proofs
of non-existence of global solutions for transcritical data given in [9] or [12].

This paper is organized as follows: in Sect. 2 we state our results the counter-
examples, in Sect. 3 we give proofs, in Sect. 4 we present the counter-examples.

2 Statements

Before we state our estimates, we collect some assumptions on ϕ, which will be
used in several statements.

(ϕ0) ϕ is an even non-negative function of class C2 such that ϕ′(0) = 0.
(ϕ1) σ · ϕ′(σ ) ≥ 0 for every σ ∈ R.
(ϕ2) ϕ is convex in a neighborhood of 0, i.e. there exists σ0 > 0 such that

ϕ′′(σ ) ≥ 0 if |σ | ≤ σ0.
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(ϕ3) ϕ is convex-concave, i.e. there exists σ0 > 0 such that ϕ′′(σ ) ≥ 0 if
|σ | ≤ σ0, and ϕ′′(σ ) ≤ 0 if |σ | ≥ σ0.

We remark that all these assumptions are satisfied in the Perona–Malik case.
Unless otherwise stated, we always consider C2 solutions (this means that ut

and the second order derivatives in the space variables are assumed to be con-
tinuous functions), even if most statements do not involve second derivatives,
and so we expect them to be true also for C1 solutions.

2.1 A priori estimates in dimension one

Let us consider problem (1.1), (1.2), and (1.3). The following equalities are our
main tools to derive estimates on u and ux.

Proposition 2.1 Let us assume that ϕ satisfies (ϕ0), let u : [−1, 1] × [0, T) → R

be a C2 solution of (1.1), (1.2), (1.3), and let ψ ∈ C2(R). Then

(1) for every t ∈ [0, T) we have that

d
dt

1∫
−1

ψ(u(x, t))dx = −
1∫

−1

ψ ′′(u(x, t)) · ux(x, t) · ϕ′(ux(x, t))dx; (2.1)

(2) if ψ ′(0) · ϕ′′(0) = 0, then for every t ∈ [0, T) we have that

d
dt

1∫
−1

ψ(ux(x, t))dx = −
1∫

−1

ψ ′′(ux(x, t)) · ϕ′′(ux(x, t)) · [uxx(x, t)]2 dx.

(2.2)

Using Proposition 2.1 with suitable choices of ψ , we obtain the following
estimates.

Theorem 2.2 Let us assume that ϕ satisfies (ϕ0), and let u : [−1, 1] × [0, T) → R

be a C2 solution of (1.1), (1.2), and (1.3).
Then we have the following estimates on u and ux.

(1) Classical gradient flow estimates. For every 0 ≤ t1 ≤ t2 < T we have that

PMϕ(u(x, t1))− PMϕ(u(x, t2)) =
t2∫

t1

1∫
−1

[
ϕ′′(ux)uxx

]2 dx dt

=
t2∫

t1

1∫
−1

[ut]
2 dx dt, (2.3)
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and in particular the function t → PMϕ(u(x, t)) is non-increasing. Moreover

‖u(x, t1)− u(x, t2)‖L2((−1,1)) ≤ {PMϕ(u0)
}1/2 · |t1 − t2|1/2. (2.4)

(2) Lp estimates on u. If ϕ satisfies also (ϕ1) then for every p ∈ [1, ∞] and
every t ∈ [0, T) we have that

‖u(x, t)‖Lp((−1,1)) ≤ ‖u0(x)‖Lp((−1,1)). (2.5)

(3) Maximum principle for u. If ϕ satisfies also (ϕ1) then for every (x, t) ∈
[−1, 1] × [0, T) we have that

min{u0(x) : x ∈ [−1, 1]} ≤ u(x, t) ≤ max{u0(x) : x ∈ [−1, 1]}. (2.6)

(4) Total variation estimate on u. If ϕ satisfies also (ϕ2) then for every t ∈ [0, T)
we have that

‖ux(x, t)‖L1((−1,1)) ≤ ‖u0x(x)‖L1((−1,1)). (2.7)

From now on, let us set

m(t) := min{ux(x, t) : x ∈ [−1, 1]}, M(t) := max{ux(x, t) : x ∈ [−1, 1]}.

(5) Barriers for ux. Let σ1 < σ2 be such that ϕ′′(σ ) ≥ 0 in the interval [σ1, σ2].
Then we have the following implications

M(0) ≤ σ2 �⇒ M(t) ≤ σ2 ∀t ∈ [0, T); (2.8)

m(0) ≥ σ1 �⇒ m(t) ≥ σ1 ∀t ∈ [0, T). (2.9)

Similarly, if ϕ′′(σ ) ≤ 0 in the interval [σ1, σ2], then we have the following
implications

M(0) ≥ σ2 �⇒ M(t) ≥ σ2 ∀t ∈ [0, T); (2.10)

m(0) ≤ σ1 �⇒ m(t) ≤ σ1 ∀t ∈ [0, T). (2.11)

(6) Subcritical maximum principle for ux. If ϕ′′(M(0)) > 0, then M(t) is a
non-increasing function, and ϕ′′(M(t)) ≥ 0 for every t ∈ [0, T).

(7) Supercritical (reverse) maximum principle for ux. If ϕ′′(M(0)) < 0, then
M(t) is a non-decreasing function, and ϕ′′(M(t)) ≤ 0 for every t ∈ [0, T).

(8) Critical maximum principle for ux. If ϕ′′(M(0)) = 0, then there are three
cases.
(8.1) If there exists δ > 0 such that ϕ′′(σ ) ≥ 0 for every σ ∈ [M(0) −

δ, M(0)], then M(t) is a non-increasing function, and ϕ′′(M(t)) ≥ 0
for every t ∈ [0, T).
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(8.2) If the assumption of (8.1) is not satisfied, and there exists δ > 0 such
that the set {σ ∈ [M(0), M(0) + δ] : ϕ′′(σ ) ≥ 0} has empty interior,
then M(t) is a non-decreasing function, and ϕ′′(M(t)) ≤ 0 for every
t ∈ [0, T).

(8.3) In any other case M(t) = M(0) for every t ∈ [0, T).

Remark 2.3 A few comments and consequences of the conclusions of
Theorem 2.2.

(a) Estimates (1) are the standard decay of the energy and 1/2-Hölder conti-
nuity in time of the gradient flow of a non-negative functional.

(b) Estimates such as (2) have been proved independently by many authors,
at least for the Perona–Malik equation (see [6,12]).

(c) Estimate (3) is a refinement of the case p = ∞ in estimate (2).
(d) Estimate (4) proves that (ϕ2) is enough to give an a priori bound on the

total variation of u, also in the transcritical case. Here p = 1 is crucial:
indeed it is not difficult to see that there are no Lp estimates (p > 1) on
ux in the transcritical case.

(e) From estimate (4) one can easily deduce that the total variation of u(x, t) in
the space variable in a non-increasing function of time. Analogous state-
ments can be obtained from estimates (2) and (3).

(f) Conclusions (6), (7), and (8) are stated for the maximum M(t). Symmetric
statements are true for the minimum m(t).

(g) Let us assume that ϕ satisfies (ϕ0) and (ϕ3), as in the Perona–Malik case.
Then (6), (7), and (8) can be read as follows: if 0 ≤ M(0) ≤ σ0, then M(t)
is non-increasing; if M(0) > σ0, then M(t) is non-decreasing. A symmetric
statement holds true for the minimum. In particular, if u0 is transcritical,
then the solution remains transcritical for all times: this is one of the key
tools to prove non-existence of global classical solutions for transcritical
initial data (see [9,12]).

(h) Let us assume that ϕ satisfies (ϕ0) and (ϕ2), as in the Perona–Malik case.
If u0(x) is non-increasing (resp. non-decreasing) in x, then the same is true
for u(x, t) for any fixed t ∈ [0, T). So the evolution preserves monotonicity.

(i) Let us assume that ϕ satisfies (ϕ0), and that there exists σ3 ∈ R such that
ϕ′′(σ ) ≥ 0 if |σ | ≥ σ3, as in the case where ϕ(σ) = (σ 2 − 1)2. Then for
every (x, t) ∈ [−1, 1] × [0, T) we have that

min{m(0), −σ3} ≤ ux(x, t) ≤ max{σ3, M(0)}.

We sketch a proof of the last three conclusions in Remark 3.1.

2.2 The semi-discrete scheme in dimension one

A natural approach to (1.1), (1.2), and (1.3) is to approximate it by discretizing
in the space variable. To this end, given an integer n > 0, we divide [−1, 1] in
2n intervals of length h = 1/n, and we consider the space PCn of all functions
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which are constant in each subinterval. Given f : [−1, 1] → R, we approximate
the derivative of f with the function

D1/nf (x) =
⎧⎨
⎩

f (x + h)− f (x)
h

if x ∈ [−1, 1 − h],
0 if x ∈ (1 − h, 1].

Then we approximate the functional (1.4) with the functional PMϕ,n : PCn →
R defined by

PMϕ,n(u) =
1−h∫
−1

ϕ
(

D1/nu(x)
)

dx ∀u ∈ PCn.

Finally, we approximate (1.1), (1.2), and (1.3) with the gradient flow of PMϕ,n
in the space PCn, which turns out to be a well posed ODE.

Proposition 2.4 For every n ∈ N we have that

(1) PCn, endowed with the L2 norm, is an Euclidean space of dimension 2n;
(2) the functional PMϕ,n : PCn → R is differentiable;
(3) if ϕ′′ is bounded, then ∇PMϕ,n : PCn → PCn is a Lipschitz continuous

function;
(4) if ϕ′′ is bounded, then for every u0n ∈ PCn the Cauchy problem

u′
n(t) = −∇PMϕ,n(un(t)) (2.12)

un(0) = u0n (2.13)

has a unique global solution un ∈ C1([0, +∞); PCn).

Some estimates can be extended from the continuous to the discrete setting.
In the following statement, with a little abuse of notation, we consider un both
as a function un : [0, +∞) → PCn, and as a function un : [−1, 1]×[0, +∞) → R.

Theorem 2.5 Let us assume that ϕ satisfies (ϕ0), and let un be the solution of the
Cauchy problem (2.12), (2.13).

(1) Classical gradient flow estimates. For every 0 ≤ t1 ≤ t2 < T we have that

PMϕ,n(un(t1))− PMϕ,n(un(t2)) =
t2∫

t1

∥∥u′
n(t)
∥∥2

L2((−1,1)) dt, (2.14)

and in particular the function t → PMϕ,n(un(t)) is non-increasing. More-
over

‖un(x, t1)− un(x, t2)‖L2((−1,1)) ≤ {PMϕ,n(u0n)
}1/2 · |t1 − t2|1/2. (2.15)
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(2) Lp estimates on un. If ϕ satisfies also (ϕ1), then for every p ∈ [1, ∞], and
every t ≥ 0, we have that

‖un(x, t)‖Lp((−1,1)) ≤ ‖u0n(x)‖Lp((−1,1)). (2.16)

(3) Maximum principle for un. If ϕ satisfies also (ϕ1), then for every (x, t) ∈
[−1, 1] × [0, +∞) we have that

min{u0n(x) : x ∈ [−1, 1]} ≤ un(x, t) ≤ max{u0n(x) : x ∈ [−1, 1]}. (2.17)

(4) Total variation estimate for un. If ϕ satisfies also (ϕ1), then for every t ≥ 0
we have that

‖D1/nun(x, t)‖L1((−1,1)) ≤ ‖D1/nu0n(x)‖L1((−1,1)). (2.18)

(5) Monotonicity of sub(and super)critical regions. If σ0 is a global maximum
point for ϕ′ (this is true for example under assumption (ϕ3)) and we set

I−
n (t) :=

{
x ∈ [−1, 1] : |D1/nun(x, t)| ≤ σ0

}
,

then I−
n (t1) ⊆ I−

n (t2) whenever 0 ≤ t1 ≤ t2. The same is true if the inequality
in the definition of I−

n (t) is strict.

Remark 2.6 The last three statements in Theorem 2.2, and in particular the
supercritical reverse maximum principle for ux, do not have a straight forward
discrete counterpart. Indeed, should it be true, the same argument of the con-
tinuous case (see [9,12]) would give the non existence of global solutions for
the Cauchy problem (2.12) and (2.13), which is of course an absurd.

The estimates of Theorem 2.5 are what is needed to prove a compactness
result for the semi-discrete scheme (see also [4,6,8] where similar strategies are
applied).

Theorem 2.7 Let us assume that ϕ satisfies (ϕ0), (ϕ1), and that ϕ′′ is bounded.
Let {u0n} be a family of functions such that u0n ∈ PCn for every n ∈ N, and

sup
n∈N

{
PMϕ,n(u0n)+ ‖u0n‖L∞((−1,1)) + ‖D1/nu0n‖L1((−1,1))

}
< +∞. (2.19)

Then the sequence {un} of the corresponding solutions of (2.12) and (2.13) is
relatively compact in C0([0, +∞); L2((−1, 1))).

This compactness result motivates the following weak notion of gradient flow
for the functional (1.4).
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Definition 2.8 Let us assume that ϕ satisfies (ϕ0), (ϕ1), and that ϕ′ and ϕ′′ are
bounded. Let u0 ∈ BV((−1, 1)) with total variation TV(u0). We say that a func-
tion u ∈ C0([0, +∞); L2((−1, 1))) belongs to GFϕ(u0) if there exists a sequence
{nk} of positive integers and a sequence {u0k} such that u0k ∈ PCnk for every
k ∈ N,

‖u0k − u0‖2 + |‖u0k‖∞ − ‖u0‖∞| +
∣∣∣‖D1/nk u0k‖1 − TV(u0)

∣∣∣→ 0, (2.20)

and finally uk → u in C0([0, +∞); L2((−1, 1))), where uk is the solution of (2.12)
with n = nk and initial condition u0k.

Now we show that the elements of GFϕ(u0) have most of the properties
observed in numerical simulations.

Theorem 2.9 Let ϕ be as in Definition 2.8, and let u0 ∈ BV((−1, 1)).
Then GFϕ(u0) �= ∅, and every u ∈ GFϕ(u0) has the following properties.

(1) Initial condition. u(0) = u0.
(2) Time regularity. u ∈ H1

loc((0, +∞); L2((−1, 1))), u′ ∈ L2((0, +∞);
L2((−1, 1))), and in particular u ∈ C1/2([0, +∞); L2((−1, 1))).

(3) Space regularity. For every t ≥ 0 we have that u(t) ∈ BV((−1, 1)) and

‖u(t)‖L∞((−1,1)) ≤ ‖u0‖L∞((−1,1)), (2.21)

TV(u(t)) ≤ TV(u0). (2.22)

(4) Weak equation solved. There exists g ∈ L∞((−1, 1)× (0, +∞)) such that
• for almost every t ≥ 0 we have that the function x → g(x, t) belongs to

H1((−1, 1)) and satisfies the boundary conditions g(−1, t) = g(1, t) = 0;
• u is a solution of ut = gx.

(5) Weak convergences. If nk and uk are as in Definition 2.8 then

u′
k ⇀ u′ weakly in L2((0, +∞), L2((−1, 1))); (2.23)

ϕ′ (D1/nkuk

)
⇀ g weakly * in L∞((−1, 1)× (0, +∞)); (2.24)

D1/nk uk(t) ⇀ Du(t) as Radon measures for every t ≥ 0, (2.25)

where Du(t) denotes the distributional derivative of u(t) in the space vari-
able.

(6) Stability. If {u0h} ⊆ BV((−1, 1)) is a sequence such that

‖u0h − u0‖2 + |‖u0h‖∞ − ‖u0‖∞| + |TV(u0h)− TV(u0)| → 0, (2.26)

and uh ∈ GFϕ(u0h) for every h ∈ N, then the sequence {uh} is relatively com-
pact in C0([0, +∞); L2((−1, 1))) and all its limit points belong to GFϕ(u0).
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At this point a natural question is whether the function g(x, t) found in state-
ment (4) above is equal to ϕ′(Du), up to a natural extension of ϕ′ to Radon
measures.

The staircasing effect observed in numerical experiments suggests that the
answer is no. In the convex–concave case we can however give a positive answer
in the subcritical region of the initial condition (note that we make no assump-
tion on u0k outside �).

Theorem 2.10 Let us assume that ϕ satisfies the assumptions of Definition 2.8,
that σ0 is a global maximum point for ϕ′, and that ϕ′(σ ) is strictly increasing in
[−σ0, σ0]. Let u0 ∈ BV((−1, 1)), let u ∈ GFϕ(u0), and let nk, u0k, and uk be as in
Definition 2.8.

Let us assume that there exists an open set� ⊆ (−1, 1) such that |D1/nk u0k(x)|≤
σ0 for every k ∈ N and every x ∈ �.

Then u has the following properties in �.

(1) More space regularity. For every t ≥ 0 the function x → u(x, t) belongs to
C1(�) and |ux(x, t)| ≤ σ0 in �.

(2) Strong convergences. For every t ≥ 0 we have that

D1/nk uk(x, t) → ux(x, t) uniformly on compact subsets of �,

(2.27)

ϕ′ (D1/nk uk(x, t)
)

→ ϕ′(ux(x, t)) uniformly on compact subsets of �.

(2.28)

(3) Classical solution. u is a classical solution of (1.1) in the open set � ×
(0, +∞).

Corollary 2.11 Let ϕ be as in Theorem 2.10, and let u0 be a Lipschitz continuous
function with Lipschitz constant less or equal than σ0.

Then the unique classical solution of (1.1), (1.2), and (1.3) is the unique ele-
ment of GFϕ(u0)which can be obtained by a subcritical approximating sequence,
i.e. by choosing nk and u0k in such a way that |D1/nku0k(x)| ≤ σ0 for every k ∈ N

and every x ∈ (−1, 1).

Remark 2.12 The result of Corollary 2.11 can be extended to piecewise sub-
critical data, i.e. functions u0 ∈ BV((−1, 1)) with a finite number m of jumps
located at points −1 < x1 < · · · < xm < 1, and which are Lipschitz continuous
in each connected component of (−1, 1) \ {x1, . . . , xm} with Lipschitz constant
less or equal than σ0. In this case indeed we can take nk and u0k in such a way
that |D1/nku0k| > σ0 only in the m intervals containing a jump point of u0. This
allows to apply Theorem 2.9 in every open set of the form

�ε := (−1, 1) \
m⋃

i=1

[xi − ε, xi + ε].
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Letting ε → 0+ we get that u satisfies (1.1) for every t > 0 and every x ∈
(−1, 1) \ {x1, . . . , xm}.

The behavior of u at jump points depends on the behavior of ϕ′(σ ) at infinity.
We don’t work out the details in this paper, referring the interested reader to
Sect. 5 of [8] where the analogous problem is studied for the Mumford–Shah
functional. What happens in the Perona–Malik case is that u satisfies the homo-
geneous Neumann boundary condition on both sides of discontinuity points. If
during the evolution the jump height at xi vanishes in a finite time Ti, then for
generic u0 there is no jump at xi for every t ≥ Ti, and this uniquely character-
izes u. Nevertheless for special choices of u0 there is a continuum of possible
limits, also if u0k has been chosen according to the limitations described at the
beginning of this remark.

There is one more case in which we can easily characterize GFϕ(u0).

Theorem 2.13 Let us assume that ϕ satisfies the assumptions of Definition 2.8,
and that

lim
σ→+∞

ϕ(σ)

σ
= 0. (2.29)

Let u0 ∈ BV((−1, 1)) be a function whose distributional derivative has the abso-
lutely continuous part equal to zero.

Then the unique element of GFϕ(u0) is the stationary solution u(t) ≡ u0.

This result, even if in accordance with numerical experiments, has an unpleas-
ant effect when combined with the stability property stated in (6) of Theorem
2.9. Indeed, since piecewise constant initial data are dense in BV((−1, 1)) in the
sense of (2.26), it is simple to conclude that the stationary solution u(t) ≡ u0
belongs to GFϕ(u0) for every u0 ∈ BV((−1, 1))!

Of course one can eliminate unwanted stationary solutions and even get
uniqueness by restricting the choice of the approximating sequence u0k, as we
did in Theorem 2.10, Corollary 2.11, and Remark 2.12. However, the same
argument shows that any notion of solution for which Theorem 2.13 and the
stability property hold true has this intrinsic non-uniqueness. In conclusion, if
one doesn’t want too much stationary solutions, either one looses the good
stationary solutions of Theorem 2.13, or one looses the stability property!

2.3 A priori estimates in higher dimension

Now we consider the extent to which the estimates obtained in the one dimen-
sional case can be extended to higher dimension. Unfortunately, negative an-
swers are more than positive ones.

The positive answers concern the classical gradient flow estimates (of course),
and the estimates on u.

Theorem 2.14 Let us assume that ϕ satisfies (ϕ0), and let u : �× [0, T) → R be
a C2 solution of (1.6), (1.7), and (1.8).
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(1) Classical gradient flow estimates. For every 0 ≤ t1 ≤ t2 < T we have that

PMϕ(u(x, t1))− PMϕ(u(x, t2)) =
t2∫

t1

∫
�

[ut(x, t)]2 dx dt,

and in particular the function t → PMϕ(u(x, t)) is non-increasing. Moreover

‖u(x, t1)− u(x, t2)‖L2(�) ≤ {PMϕ(u0)
}1/2 · |t1 − t2|1/2.

(2) Lp estimates on u. If ϕ satisfies also (ϕ1) then for every p ∈ [1, ∞] and
every t ∈ [0, T) we have that

‖u(x, t)‖Lp(�) ≤ ‖u0(x)‖Lp(�).

(3) Maximum principle for u. If ϕ satisfies also (ϕ1) then for every (x, t) ∈
�× [0, T) we have that

min
{
u0(x) : x ∈ �} ≤ u(x, t) ≤ max

{
u0(x) : x ∈ �} .

When passing to gradients, the positive answer is that the estimate of the
total variation of u is still true for radial solutions.

Theorem 2.15 Let � be an open disc in R
n. Let us assume that ϕ satisfies (ϕ0),

(ϕ1), (ϕ2), and let u : � × [0, T) → R be a radial C2 solution of (1.6), (1.7),
and (1.8).

Then for every t ∈ [0, T) we have that

‖∇u(x, t)‖L1(�) ≤ ‖∇u0(x)‖L1(�).

If u is not radial, things are more complex. A first reason is that the geom-
etry of � plays a role. Consider indeed the simplest example, i.e. a solution u
of the heat equation in a bounded regular open set � ⊆ R

2, with Neumann
boundary conditions. By the classical gradient flow estimates, the L2 norm of
∇u is a non-increasing function of time. The Lp norm (p �= 2) of ∇u is known
to be non-increasing provided that � is convex: the main tool is the so called
Bernstein method, described at the end of Chapter IV of [14].

The convexity of � is in any case essential, as shown by the following result.

Theorem 2.16 There exist a bounded (non-convex) open set � ⊆ R
2, and a

function u0 ∈ C∞(�), such that, if u is the solution of the heat equation in
�, with Neumann boundary conditions on ∂�, and initial condition u0, and
F(t) := ‖∇u(x, t)‖L1(�), then F ′(0) > 0.

For the Perona–Malik equation, the answer is negative also if� is a rectangle.
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Theorem 2.17 There exist a rectangular open set � = (0, A) × (0, B), and u0 ∈
C∞(�), such that, if u ∈ C1([0, T); H1(�)) ∩ C0([0, T); H3(�)) is a solution of
the Perona–Malik equation in �, with Neumann boundary conditions on ∂�,
and initial condition u0, and F(t) := ‖∇u(x, t)‖L1(�), then F ′(0) > 0.

Finally, we draw our attention on the supercritical reverse maximum prin-
ciple for the gradient. Once again the answer is negative, also in the radial
case.

Theorem 2.18 Let � be the unit disc with center in the origin of R
2. There exists

a radial function u0 ∈ C∞(�) with

max
{|∇u0(x)| : x ∈ �} > 1, (2.30)

such that, if u is a radial C2 solution of the Perona–Malik equation in �, with
Neumann boundary conditions on ∂�, and initial condition u0, then, for some
δ > 0,

max
{|∇u(x, t)| : x ∈ �} < max

{|∇u0(x)| : x ∈ �} ∀t ∈ (0, δ). (2.31)

We remind that the corresponding estimate in dimension one was a key tool
in the proof of non-existence of global C1 solutions with transcritical initial
data.

It is of course interesting to consider semi-discrete schemes for (1.6), (1.7),
and (1.8). In this case it should be easy to prove a discrete version of Theorem
2.14, but Theorem 2.17 shows that the total variation of the solution cannot
be estimated by the total variation of the initial condition. For this reason we
are skeptical about a simple extension of Theorem 2.7 and its consequences to
higher dimension.

3 Proofs

Proof of Proposition 2.1 Computing the time derivative, and integrating by
parts, we have that

d
dt

1∫
−1

ψ(u)dx =
1∫

−1

ψ ′(u)ut dx

=
1∫

−1

ψ ′(u)
(
ϕ′(ux)

)
x dx
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= −
1∫

−1

(
ψ ′(u)

)
x ϕ

′(ux)dx + [ψ ′(u)ϕ′(ux)
]x=1

x=−1

= −
1∫

−1

ψ ′′(u)ux ϕ
′(ux)dx,

where the boundary terms are zero due to the boundary condition (1.2) and
our assumption that ϕ′(0) = 0. This establishes equality (2.1).

Similarly

d
dt

1∫
−1

ψ(ux)dx =
1∫

−1

ψ ′(ux)utx dx

=
1∫

−1

ψ ′(ux)
(
ϕ′(ux)

)
xx dx

= −
1∫

−1

(
ψ ′(ux)

)
x (ϕ

′(ux))x dx + [ψ ′(ux)ϕ
′′(ux)uxx

]x=1
x=−1

= −
1∫

−1

ψ ′′(ux)ϕ
′′(ux)[uxx]2 dx,

where the boundary terms are zero due to the boundary condition (1.2) and
our assumption that ψ ′(0) · ϕ′′(0) = 0. This establishes equality (2.2).

To be precise, the argument used in the proof of (2.2) requires that u is of
class C3, because of the term (ϕ′(ux))xx which is involved. If u is only a C2

solution, then a standard approximation procedure is necessary. To begin with,
one takes a family {uε} of C3 approximations of u. It turns out that uε solves an
approximate equation such as

uεt = ϕ′′(uεx)uεxx + ρε,

where ρε(x, t) tends to zero uniformly on compact sets. Arguing as before,
one proves that uε satisfies an equality similar to (2.2), with some extra terms
depending on ρε, which disappear as ε → 0+. We spare the reader from the
details. ��
Proof of Theorem 2.2
Gradient flow estimates Applying (2.2) with ψ = ϕ, we immediately get (2.3).
Since ϕ is non-negative, using (2.3) and Hölder’s inequality we obtain that
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‖u(x, t1)− u(x, t2)‖L2((−1,1)) ≤
t2∫

t1

‖ut(x, τ)‖L2((−1,1)) dτ

≤ |t1 − t2|1/2
⎧⎪⎨
⎪⎩

t2∫
t1

‖ut(x, τ)‖2
L2((−1,1))dτ

⎫⎪⎬
⎪⎭

1/2

= |t1 − t2|1/2
{
PMϕ(u(x, t1))− PMϕ(u(x, t2))

}1/2

≤ |t1 − t2|1/2
{
PMϕ(u0)

}1/2 ,

which proves (2.4).

Lp estimates on u If p ∈ [2, ∞) the function ψ(σ) = |σ |p is C2 and convex.
By (ϕ1) this implies that ψ ′′(σ ) · σ · ϕ′(σ ) ≥ 0 for every σ ∈ R. From (2.1) we
deduce that

t →
1∫

−1

|u(x, t)|p dx

is a non-increasing function of time, which proves (2.5).
If p ∈ [1, 2), then the function ψ(σ) = |σ |p is convex but not of class C2. So

we approximate it with ψε(σ ) = (σ 2 + ε2)p/2: applying (2.1) to ψε, and letting
ε → 0+, we prove (2.5) also in this case.

Finally, the case p = ∞ can be proved by letting p → +∞, or simply deduced
from the maximum principle below.

Maximum principle for u Let K := max{u0(x) : x ∈ [−1, 1]}, and let

ψ(σ) :=
{

0 if σ ≤ K,
(σ − K)4 if σ ≥ K.

It is easy to see that ψ is a convex function of class C2. Arguing as above, we
have that

F(t) :=
1∫

−1

ψ(u(x, t))dx

is a non-negative and non-increasing function. Since F(0) = 0, then necessarily
F(t) = 0 for every t ∈ [0, T), which proves the inequality for the maximum
in (2.6).

The proof for the minimum is completely analogous.

Total variation estimate for u Let σ0 be as in (ϕ2). It is not difficult to find a
family {ψε(σ )}ε>0 of functions such that
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(4a) for every ε > 0, ψε is a convex function of class C2 such that ψ ′
ε(0) = 0,

and ψ ′′
ε (σ ) = 0 if |σ | ≥ σ0;

(4b) ψε(σ ) → |σ | uniformly on R as ε → 0+.

By (4a) and (ϕ2) we have that ψ ′′
ε (σ )ϕ

′′(σ ) ≥ 0 for every σ ∈ R, hence by
(2.2)

1∫
−1

ψε(ux(x, t))dx ≤
1∫

−1

ψε(u0x(x))dx, (3.1)

so that the conclusion follows from (4b) by letting ε → 0+.

Pointwise barriers for the derivative Let us prove (2.8). First of all, we remark
that M(0) ≥ 0 (by the Neumann boundary condition), hence σ2 ≥ 0. Now we
distinguish two cases.

Case σ2 > 0. Consider the function ψ(σ) = max{σ − σ2, 0}, and a family
{ψε(σ )}ε>0 such that

(5a) for every ε > 0, ψε is a convex function of class C2 with ψ ′′
ε (σ ) = 0 if

σ �∈ [σ1, σ2];
(5b) ψε → ψ uniformly on R as ε → 0+;
(5c) ψ ′

ε(0) = 0 for every ε > 0 (here we need that σ2 > 0).

Once again ψ ′′
ε (σ )ϕ

′′(σ ) ≥ 0 for every σ ∈ R, hence by (2.2) we get (3.1) also
for this family {ψε}. Passing to the limit as ε → 0+, we obtain that

0 ≤
1∫

−1

ψ(ux(x, t))dx ≤
1∫

−1

ψ(u0x(x))dx = 0,

where the last equality follows from the assumption that M(0) ≤ σ2. This proves
that ux(x, t) ≤ σ2 for every (x, t) ∈ [−1, 1] × [0, T).

Case σ2 = 0. Since ϕ′′(σ2) ≥ 0, it may happen that ϕ′′(0) = 0 or ϕ′′(0) > 0.

• Assume that ϕ′′(0) = 0. We can find a family {ψε(σ )}ε>0 satisfying (5a) and
(5b), but not (5c). In any case, ϕ′′(0) = 0 is enough to apply (2.2), and so we
can conclude exactly as in the case σ2 > 0.

• If ϕ′′(0) > 0, then ϕ′′(σ ) > 0 in the interval [σ1, η] for every η > 0 small
enough. Arguing as in the case σ2 > 0, we obtain that M(t) ≤ η for every
t ∈ [0, T), and then we conclude by letting η → 0+.

This completes the proof of (2.8).
The proof of (2.9) is completely analogous.
Now let us prove (2.10). If σ2 ≤ 0, the conclusion is trivial by the Neumann

boundary condition. If σ2 > 0, let ε > 0 be such that σ2 − ε ≥ max{0, σ1}. Let
ψε(σ ) be a convex function of class C2 such thatψε(σ ) = 0 for every σ ≤ σ2 −ε,
ψε(σ ) > 0 for every σ > σ2 − ε, and ψ ′′

ε (σ ) = 0 for every σ ≥ σ2.



Gradient estimates for the Perona–Malik equation 573

In this case ψ ′
ε(0) = 0 and ψ ′′

ε (σ )ϕ
′′(σ ) ≤ 0 for every σ ∈ R, hence by (2.2)

1∫
−1

ψε(ux(x, t))dx ≥
1∫

−1

ψε(u0x(x))dx > 0,

where the last equality follows from our assumption that M(0) ≥ σ2. This proves
that M(t) ≥ σ2 − ε for every t ∈ [0, T). We conclude by letting ε → 0+.

The proof of (2.11) is completely analogous.

Maximum principles for the derivative Let us consider the two sets

B− := {σ ≤ M(0) : ϕ′′(σ ) < 0},
B+ := {σ ≥ M(0) : ∃δ > 0 such that ϕ′′(ξ) ≥ 0 ∀ξ ∈ [σ − δ, σ ]},

and let us set

ξ1 := sup B− ∈ [−∞, M(0)], ξ2 := inf B+ ∈ [M(0), +∞],

where sup B− = −∞ if B− = ∅ (resp. inf B+ = +∞ if B+ = ∅).
From (2.8) we have that any element of B+ is an upper barrier for M(t), while

from (2.10) it is easy to deduce that any element of B− is a lower barrier for
M(t). It follows that

ξ1 ≤ M(t) ≤ ξ2 ∀t ∈ [0, T). (3.2)

Moreover, either ξ1 = M(0) or ξ2 = M(0). Assume indeed that ξ1 < M(0);
then necessarily ϕ′′(σ ) ≥ 0 in [ξ1, M(0)], and therefore ξ2 = M(0). We can
therefore distinguish three cases.

• If ξ1 < M(0) (this happens under the assumptions of statements (6) and
(8.1)), then ξ2 = M(0). From (3.2) we deduce that M(t) belongs the interval
[ξ1, M(0)], and we already know that ϕ′′(σ ) ≥ 0 in this interval. If t1 ∈ [0, T),
and M(t1) > ξ1, then we can use u(x, t1) as a new initial condition: apply-
ing (2.8) with [σ1, σ2] = [ξ1, M(t1)], we deduce that M(t) ≤ M(t1) for every
t ∈ [t1, T). By the continuity of M(t), this is enough to conclude that M(t) is
a non-increasing function.

• If ξ2 > M(0) (this happens under the assumptions of statements (7) and
(8.2)), then ξ1 = M(0). From (3.2) we deduce that M(t) belongs the interval
[M(0), ξ2], and it is easy to see that ϕ′′(σ ) ≤ 0 in this interval. If t1 ∈ [0, T),
and M(t1) > M(0), then we can use u(x, t1) as a new initial condition: apply-
ing (2.10) with [σ1, σ2] = [M(0), M(t1)], we deduce that M(t) ≥ M(t1) for
every t ∈ [t1, T), and this is enough to conclude that M(t) is a non-decreasing
function.
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• In the remaining case we have that ξ1 = ξ2 = M(0), and therefore M(t) is
constant by (3.2). ��

Remark 3.1 Let us prove statement (g) of Remark 2.3. To this end, it is enough
to apply statement (6) of Theorem 2.2 if 0 ≤ M(0) < σ0, statement (7) if
M(0) > σ0, and statement (8.1) if M(0) = σ0.

Let us prove now statement (h). Let us assume, without loss of generality, that
u0 is a non-increasing function of x, hence M(0) = 0 (remember the Neumann
boundary condition). By the subcritical maximum principle for ux, it follows
that ux(x, t) ≤ 0 for every (x, t) ∈ [−1, 1] × [0, T), which proves that u(x, t) is a
non-increasing function of x.

In order to prove statement (i), we just observe that in this case all real
numbers σ > max{σ3, M(0)} are upper barriers for M(t), and analogously for
the minimum.

Proof of Proposition 2.4 Let n > 0 be a fixed positive integer, and let h = 1/n
be the discretization step. An element u ∈ PCn can be identified with the 2n-
tuple (a1, . . . , a2n)∈R

2n, where u(x) = ai in the interval (−1 + (i − 1)h, −1 + ih).
The Euclidean norm on R

2n corresponds to the L2 norm on PCn multiplied
by

√
n. With this notation we have that

PMϕ,n(u) = h
2n−1∑
i=1

ϕ

(
ai+1 − ai

h

)
,

and the gradient flow of PMϕ,n with respect to the L2 norm of PCn reduces to
the following system of 2n ODEs (the dot denotes time derivatives)

ȧi(t) = 1
h

{
ϕ′
(

ai+1(t)− ai(t)
h

)
− ϕ′

(
ai(t)− ai−1(t)

h

)}
i = 1, . . . , 2n,

(3.3)

where by definition a0(t) = a1(t) and a2n+1(t) = a2n(t) for every t ≥ 0.
If ϕ′′ is bounded, then the right hand side of (3.3) is Lipschitz continuous,

hence this system has a unique global solution for every initial condition by the
Cauchy–Lipschitz–Picard Theorem for ODEs. ��

Proof of Theorem 2.5
Gradient flow estimates Classical gradient flow techniques.

Lp estimates and maximum principle We follow the same strategy used in the
continuous setting. To this end, we need a discrete version of (2.1). Given
ψ ∈ C1(R), using (3.3) and simple algebraic manipulations on the sums, we
have that
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d
dt

(
h

2n∑
i=1

ψ(ai)

)
= h

2n∑
i=1

ψ ′(ai)ȧi = −
2n∑

i=1

{
ψ ′(ai+1)− ψ ′(ai)

}
ϕ′
(

ai+1 − ai

h

)
.

(3.4)

In particular, if ψ is convex and ϕ satisfies (ϕ1), then each summand in the
right hand side of (3.4) is the product of two factors with the same sign. It
follows that

t → h
2n∑

i=1

ψ(ai(t))

is a non-increasing function. Now estimates (2.16) and (2.17) follow with the
same choices of the convex function ψ used in the continuous setting.

Total variation estimate We need a discrete version of (2.2). Givenψ ∈ C1(R)

with ψ ′(0) = 0, using (3.3) and simple algebraic manipulations on the sums, we
have that

d
dt

(
h

2n∑
i=1

ψ

(
ai+1 − ai

h

))
= h

2n∑
i=1

ψ ′
(

ai+1 − ai

h

)
ȧi+1 − ȧi

h

= − 1
h

2n∑
i=1

{
ψ ′
(

ai+1 − ai

h

)
− ψ ′

(
ai − ai−1

h

)}

·
{
ϕ′
(

ai+1 − ai

h

)
− ϕ′

(
ai − ai−1

h

)}
.

Now let us apply this equality to the family ψε(σ ) = √
σ 2 + ε. Let Fε(t) be

the corresponding sum in the right hand side. Integrating in [0, t] we have that

h
2n∑

i=1

ψε

(
ai+1(t)− ai(t)

h

)
= h

2n∑
i=1

ψε

(
ai+1(0)− ai(0)

h

)
− 1

h

t∫
0

Fε(τ )dτ . (3.5)

Unfortunately, we cannot prove that Fε(t) is non-negative (and examples
may be given where this is false). However, we prove that the limit of Fε(t) as
ε → 0+ is non-negative. To begin with, we observe that

lim
ε→0+ ψ

′
ε(σ ) =

⎧⎨
⎩

−1 if σ < 0,
0 if σ = 0,
1 if σ > 0.

Now let us examine each summand in the sum defining Fε(t). The limit of the
factor involvingψ ′

ε can only be −2, −1, 0, 1, 2, depending on the signs of ai+1−ai
and ai − ai−1. Let us assume that this limit is 2: this means that ai+1 − ai > 0
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and ai − ai−1 < 0. In this case by (ϕ1) the term involving ϕ′ is positive, and
therefore the limit of the summand is positive. Examining in the same way the
other cases, we prove that the limit of each summand is always non-negative.

Now we pass to the limit in (3.5): this can be done by Lebesgue’s theorem
since |ψ ′

ε(σ )| ≤ 1 for every ε > 0 and every σ ∈ R, and the terms involving ϕ′
are equibounded by continuity. We obtain that

2n∑
i=1

|ai+1(t)− ai(t)| ≤
2n∑

i=1

|ai+1(0)− ai(0)|,

which is exactly (2.18).

Monotonicity of sub(and super)critical regions The main tool is the following
comparison result for ODEs (see [8, Lemma 4.10]).

Lemma 3.2 Let f : R → R be a Lipschitz continuous function, and let C, V
be real numbers such that f (C) = −f (−C) = V. Let y ∈ C1([0, +∞); R) be a
function such that |y′(t) + f (y(t))| ≤ V for every t ≥ 0, and |y(T)| ≤ C (resp.
|y(T)| < C) for some T ≥ 0.

Then |y(t)| ≤ C (resp. |y(t)| < C) for every t ≥ T. ��

Let us set di(t) := (ai+1(t)−ai(t))/h for i = 1, . . . , 2n−1, and d0(t) = d2n(t) = 0
for every t ≥ 0. Thesis is equivalent to show that for every index i we have that
if |di(T)| ≤ σ0 (resp. |di(T)| < σ0) for some T ≥ 0, then |di(t)| ≤ σ0 (resp.
|di(t)| < σ0) for every t ≥ T. From (3.3) it is easy to deduce that

∣∣∣∣ d
dt

di(t)+ 2
h2 ϕ

′(di(t))

∣∣∣∣ = 1
h2

∣∣ϕ′(di+1(t))− ϕ′(di−1(t))
∣∣ ≤ 2

h2 ϕ
′(σ0),

and therefore we can conclude applying Lemma 3.2 with y(t) = di(t), f (σ ) =
2ϕ′(σ )/h2, C = σ0, V = 2ϕ′(σ0)/h2. ��

Proof of Theorem 2.7 By the standard Ascoli Theorem, it is enough to
prove that

(A1) for every t ≥ 0, the sequence {un(t)} is relatively compact in L2((−1, 1));
(A2) there exists a constant C ∈ R such that

‖un(t1)− un(t2)‖L2((−1,1)) ≤ C|t1 − t2|1/2

for every n ∈ N, and every t2 ≥ t1 ≥ 0.

Let M be the supremum in (2.19). Then by (2.15) we have that (A2) is satis-
fied with C = M1/2. Now let us fix t ≥ 0. By (2.16) with p = ∞ and (2.18) we
obtain that
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‖un(x, t)‖L∞((−1,1)) + ‖D1/nun(x, t)‖L1((−1,1)) ≤ M,

and so we have a bound on the L∞ norm and on the total variation of un(x, t)
as a function of x. By a well known result, this implies that the family {un(t)}
is relatively compact in Lp((−1, 1)) for every p ∈ [1, ∞) and therefore also
assumption (A1) is satisfied. ��

Proof of Theorem 2.9 Let nk, u0k, and uk be as in Definition 2.8. Since we
assumed that ϕ′ is bounded, the boundedness of ‖D1/nk u0k‖L1((−1,1)) implies
the boundedness of PMϕ,nk(u0k). By (2.20) we have therefore that

M := sup
k∈N

{
PMϕ,nk(u0k)+ ‖u0k‖L∞((−1,1)) + ‖D1/nk u0k‖L1((−1,1))

}
< +∞.

(3.6)

So we can apply Theorem 2.7 and deduce that GFϕ(u0) is nonempty.

Initial condition, time and space regularity The initial condition is trivial.
From (2.14) we have that

+∞∫
0

‖u′
k(x, t)‖2

L2((−1,1)) dt ≤ M. (3.7)

This proves that u′
k, up to subsequences, has a weak limit as k → +∞. It is

completely standard to see that this limit is indeed u′ and does not depend on
the subsequence. This proves both the conclusion of statement (2) and (2.23).

Passing to the limit in (2.16) with p = ∞ and using (2.20) we obtain (2.21).
Passing to the limit in (2.18) and using (2.20) we obtain both (2.22) and (2.25).

Weak equation solved From the boundedness of ϕ′ we get a uniform bound
on the L∞ norm of ϕ′ (D1/nk uk(x, t)

)
. It follows that, up to extracting a further

subsequence (not relabeled), ϕ′ (D1/nk uk(x, t)
)

converges to a function g(x, t) in
the weak * topology of L∞((−1, 1)× (0, +∞)).

Now we multiply both sides of (2.12) by a test function φ ∈ C∞((−1, 1)) and
we integrate in (−1, 1)× (0, T). With some simple algebra we find that

T∫
0

dt

1∫
−1

u′
k · φ dx = −

T∫
0

dt

1∫
−1

∇PMϕ,nk(uk) · φ dx

= −
T∫

0

dt

1∫
−1

ϕ′ (D1/nk uk

)
· D1/nkφ dx.
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Now we pass to the limit as k → +∞ using that u′
k ⇀ u′, ϕ′ (D1/nk uk

)
⇀

g(x, t), and D1/nkφ → φx strongly. We obtain that

T∫
0

dt

1∫
−1

u′ · φ dx = −
T∫

0

dt

1∫
−1

g · φx dx.

Since T is arbitrary, we get that for almost every t ≥ 0 the integrals in the
space variable coincide. This is equivalent to say that for almost every t ≥ 0 the
function x → g(x, t) belongs to H1((−1, 1)), g(−1, t) = g(1, t) = 0, and ut = gx.
Since this uniquely characterizes g in terms of u, we can conclude that the whole
sequence ϕ′(D1/nk uk) weakly * converges to g, without extracting further sub-
sequences. Therefore all the conclusions of statement (4) are proved.

Stability Thanks to the preceding estimates, assumption (2.26) implies uni-
form bounds on the L∞ norm, the total variation, and the Hölder constant of
uh. Therefore the compactness of {uh} follows from Ascoli’s Theorem.

So up to subsequences (not relabeled) we may assume that uh converges
to some u∞ in C0([0, +∞); L2((−1, 1))). By definition of GFϕ(u0h), for every
h ∈ N there exists nh ≥ h and v0h ∈ PCnh with corresponding solution vh of
(2.12) such that

‖v0h − u0h‖2 + |‖v0h‖∞ − ‖u0h‖∞| +
∣∣∣‖D1/nh v0h‖1 − TV(u0h)

∣∣∣ ≤ 1
h

,

‖vh(x, t)− uh(x, t)‖L2((−1,1)) ≤ 1
h

∀t ∈ [0, h].

This is enough to conclude that v0h approximates u0 as required in Definition
2.8 and vh → u∞, which is equivalent to say that u∞ ∈ GFϕ(u0). ��
Proof of Theorem 2.10 The strategy of the proof is the following. First of all we
choose an open set�1 ⊂⊂ �. In Proposition 3.3 we prove a pointwise estimate
on ‖u′

k(t)‖L2(�1)
for every t > 0 which improves the integral estimate com-

ing from (2.14). In Lemma 3.4 we show that the preceding estimate gives the
uniform convergence of ϕ′(D1/nkuk) in the compact subsets of �1, improving
the weak * convergence of (2.24). Finally we exploit the invertibility of ϕ′ in
[−σ0, σ0] to deduce that D1/nk uk uniformly converges to ux in the compact sub-
sets of�1, thus showing that the function g(x, t) in statement (4) of Theorem 2.9
coincides with ϕ′(ux(x, t)) in �1 × (0, +∞). Since �1 is arbitrary, this is enough
to prove all the conclusions.

Proposition 3.3 For every open set �1 ⊂⊂ � there exists a constant c = c(�1)

and a positive integer k0 = k0(�1) such that for every k ≥ k0 we have that

∥∥u′
k(T)

∥∥2
L2(�1)

≤ PMϕ,nk(u0k)

(
1
T

+ c
)

∀T > 0. (3.8)
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Proof Let us choose open sets �2 and �3 such that �1 ⊂⊂ �2 ⊂⊂ �3 ⊂⊂ �.
Let k0 be such that the neighborhood of �1 with radius 1/nk0 is contained in
�2 and the neighborhood of �3 with radius 1/nk0 is contained in �. Let us
choose a function r ∈ C∞((−1, 1)) such that r(x) ≡ 1 in �2, r(x) ≡ 0 outside
�3, and 0 ≤ r(x) ≤ 1 otherwise. Given k ≥ k0, once again we set h = 1/nk,
and we identify uk(t) with the 2nk-tuple (a1(t), . . . , a2nk(t)). We also consider
the 2nk-tuple of real numbers (r1, . . . , r2nk)where ri = r(−1+ ih). Finally we set
a0(t) = a1(t), a2nk+1(t) = a2nk(t), r0 = r2nk+1 = 0. With these notations estimate
(2.14) may be rewritten as

h

+∞∫
0

2nk∑
i=1

ȧ2
i (t)dt =

+∞∫
0

‖u′
k(t)‖2

L2((−1,1)) dt ≤ PMϕ,nk(u0k). (3.9)

Moreover by our choice of k0 and r we have that

‖u′
k(t)‖2

L2(�1)
≤ h

2nk∑
i=1

r2
i ȧ2

i (t), (3.10)

∣∣∣∣ ri+1 − ri

h

∣∣∣∣ ≤ ‖rx‖L∞((−1,1)) =: c1. (3.11)

Finally, by the monotonicity of subcritical regions, we have that |D1/nk uk| ≤
σ0 in � × (0, +∞), hence for every t ≥ 0 and every i = 1, . . . , 2nk we have the
implication

ri+1 + ri �= 0 �⇒ ϕ′′
(

ai+1(t)− ai(t)
h

)
≥ 0. (3.12)

Now we are ready to estimate the norm of u′
k(t) in L2(�1). To this end, we

compute the time derivative of the right hand side of (3.10) multiplied by t.

d
dt

⎛
⎝t · h

2nk∑
i=1

r2
i ȧ2

i

⎞
⎠ = h

2nk∑
i=1

r2
i ȧ2

i + t · 2h
2nk∑
i=1

r2
i ȧiäi. (3.13)

Let us concentrate on the second sum in the right hand side, where we use
(3.3) to compute äi. Manipulating the sums and using simple algebraic equalities
it can be rewritten as

2nk∑
i=1

r2
i ȧiäi = 1

h

2nk∑
i=1

r2
i ȧi

{
d
dt
ϕ′
(

ai+1 − ai

h

)
− d

dt
ϕ′
(

ai − ai−1

h

)}

= − 1
h

2nk∑
i=1

(
r2

i+1ȧi+1 − r2
i ȧi

) d
dt
ϕ′
(

ai+1 − ai

h

)
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= − 1
h2

2nk−1∑
i=1

(
r2

i+1ȧi+1 − r2
i ȧi

)
(ȧi+1 − ȧi)ϕ

′′
(

ai+1 − ai

h

)

= − 1
2h2

2nk−1∑
i=1

(
r2

i+1 + r2
i

)
(ȧi+1 − ȧi)

2ϕ′′
(

ai+1 − ai

h

)

− 1
2h2

2nk−1∑
i=1

(
ri+1 + ri

) (
ri+1 − ri

)
(ȧi+1 + ȧi)(ȧi+1 − ȧi)ϕ

′′
(

ai+1 − ai

h

)

=: S1 + S2

Let us consider now the simple algebraic inequality

|(a + b)(a − b)(c + d)(c − d)| ≤ 1
2

[
(a + b)2(c − d)2 + (c + d)2(a − b)2

]

≤ (a2 + b2)(c − d)2 + (c2 + d2)(a − b)2.

Recalling (3.12) we can estimate every nonzero term in S2 applying this
inequality with a = ri+1, b = ri, c = ȧi+1, d = ȧi. We obtain that

S2 ≤ 1
2h2

2nk−1∑
i=1

(
r2

i+1 + r2
i

)
(ȧi+1 − ȧi)

2ϕ′′
(

ai+1 − ai

h

)

+ 1
2h2

2nk−1∑
i=1

(
ri+1 − ri

)2
(ȧ2

i+1 + ȧ2
i )ϕ

′′
(

ai+1 − ai

h

)

The first term is exactly −S1, so that coming back to (3.13) we have proved
that

d
dt

⎛
⎝t · h

2nk∑
i=1

r2
i ȧ2

i

⎞
⎠ ≤ h

2nk∑
i=1

r2
i ȧ2

i + t · h
2nk−1∑

i=1

ϕ′′
(

ai+1 − ai

h

)

×
(

ri+1 − ri

h

)2 (
ȧ2

i+1 + ȧ2
i

)

≤ h
2nk∑
i=1

ȧ2
i + c2c2

1t · h
2nk−1∑

i=1

(
ȧ2

i+1 + ȧ2
i

)
,

where c1 is given by (3.11) and c2 denotes the supremum of ϕ′′ in [−σ0, σ0].
Integrating in [0, T] and using (3.9) we obtain that

T · h
2nk∑
i=1

r2
i ȧ2

i (T) ≤ PMϕ,nk(u0k)(1 + 2Tc2c2
1).

Combining with (3.10), estimate (3.8) is proved with c(�1) := 2c2
1c2. ��
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Lemma 3.4 Let nk → +∞ be a sequence of positive integers, let vk be a sequence
of functions such that vk ∈ PCnk for every k ∈ N, and let �1 ⊆ (−1, 1) be an
open set such that

sup
k∈N

‖∇PMnk,ϕ(vk)‖L2(�1)
< +∞. (3.14)

Then there exists a function γ ∈ H1(�1) such that, up to subsequences,

∇PMnk,ϕ(vk) ⇀ −γx weakly in L2(�1), (3.15)

ϕ′ (D1/nk vk

)
→ γ uniformly on compact subsets of �1. (3.16)

Proof By (3.14) and the boundedness of ϕ′ we have that there exist γ ∈ L2(�1),
ψ ∈ L2(�1), and a subsequence (not relabeled) such that

∇PMnk,ϕ(vk) ⇀ ψ weakly in L2(�1) (3.17)

ϕ′ (D1/nk vk

)
⇀ γ weakly in L2(�1). (3.18)

Now let φ ∈ C∞
0 (�1). It is easy to see that for k large one has that

∫
�1

∇PMnk,ϕ(vk) · φ dx =
∫
�1

ϕ′ (D1/nk vk

)
· D1/nkφ dx.

Now we pass to the limit using (3.17), (3.18) and the fact that D1/nkφ → φx
strongly. We obtain that

∫
�1

ψ · φ dx =
∫
�1

γ · φx dx,

which is equivalent to say that γ ∈ H1(�1) and ψ = −γx, which proves (3.15).
Now let I be a compact interval contained in�1, and let x, y ∈ I. Let M be the

supremum in (3.14), let us set γk := ϕ′(D1/nk vk), h = 1/nk, and let us identify
vk with a 2nk-tuple a1, . . . , a2nk so that

γk(y) = ϕ′
(

aj+1 − aj

h

)
, γk(x) = ϕ′

(
ai+1 − ai

h

)
,

for some integers i and j. Without loss of generality we can assume that y ≥ x,
so that j ≥ i. If the neighborhood of I with radius h is contained in �1, then by
the Cauchy Schwarz inequality we have that
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|γk(y)− γk(x)| =
∣∣∣∣ϕ′
(

aj+1 − aj

h

)
− ϕ′

(
ai+1 − ai

h

)∣∣∣∣
≤

j∑
m=i+1

∣∣∣∣ϕ′
(

am+1 − am

h

)
− ϕ′

(
am − am−1

h

)∣∣∣∣

≤√j − i ·
⎧⎨
⎩h2

j∑
m=i+1

1
h2

∣∣∣∣ϕ′
(

am+1 − am

h

)
−ϕ′

(
am − am−1

h

)∣∣∣∣
2
⎫⎬
⎭

1/2

≤ √h(j − i) · ∥∥∇PMϕ,nk(vk)
∥∥

L2(�1)

≤ M
{
|y − x| + 1

nk

}1/2

.

At this point the uniform convergence in I (up to subsequences) of γk follows
from a simple variant of the classical Ascoli Theorem (keeping into account the
vanishing term 1/nk). ��

We are now ready to conclude the proof of Theorem 2.10. Let T > 0. Form
Proposition 3.3 we know that

sup
k∈N

∥∥∇PMϕ,nk(uk(T))
∥∥

L2(�1)
= sup

k∈N

∥∥u′
k(T)

∥∥
L2(�1)

< +∞,

hence applying Lemma 3.4 with vk = uk(T) we deduce that there exists γ ∈
H1(�1) such that, up to subsequences (not relabeled),

ϕ′ (D1/nkuk(T)
)

→ γ uniformly on compact subsets of �1. (3.19)

Since |D1/nk uk(T)| ≤ σ0 (by the monotonicity of subcritical regions) and ϕ′
is invertible in [−σ0, σ0], we can apply (ϕ′)−1 to (3.19) obtaining that

D1/nk uk(T) → (ϕ′)−1(γ ) uniformly on compact subsets of �1.

Compared with (2.25) this proves that (ϕ′)−1(γ ) = Du(T). Therefore u(T) ∈
C1(�1) and γ = ϕ′(ux). Moreover this characterizes γ and therefore the whole
sequence ϕ′ (D1/nk uk

)
converges in �1 to γ , without extracting further subse-

quences. Since �1 is arbitrary, this is enough to conclude the proof. ��
Proof of Theorem 2.13 If the absolutely continuous part of the Du0 is zero and
ϕ satisfies (2.29), then (2.20) implies that PMϕ,nk(u0k) → 0. Now the conclusion
follows by passing to the limit in (2.15). ��
Proof of Theorem 2.14 The classical gradient flow estimates can be proved in
the usual way.
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The Lp estimates and the maximum principle for u can be proved as in
dimension one, up to replacing (2.1) with the following equality: if ψ ∈ C2(R),
and u : �× [0, T) → R is a solution of (1.6), (1.7), and (1.8), then

d
dt

∫
�

ψ(u(x, t))dx = −
∫
�

ψ ′′(u(x, t)) · |∇u(x, t)| · ϕ′(|∇u(x, t)|)dx.

This equality can be proved integrating by parts as in the proof of (2.1). ��
Proof of Theorem 2.15 Let � := {x ∈ R

n : |x| < R}. Writing u as a function of
t and r = |x|, equations (1.6), (1.7) take the form

ut = ϕ′′(ur)urr + (n − 1)
ϕ′(ur)

r
∀(r, t) ∈ (0, R)× [0, T), (3.20)

ur(0, t) = ur(R, t) = 0 ∀t ∈ [0, T), (3.21)

and moreover

‖∇u(x, t)‖L1(�) = ωn−1

R∫
0

rn−1|ur(r, t)| dr,

where ωn−1 is the (n − 1)-dimensional Hausdorff measure of the unit sphere
in R

n.
Now we need to extend (2.2) to radial solutions. Given ψ ∈ C2(R) with

ψ ′(0) = 0, we have that

d
dt

R∫
0

rn−1ψ(ur)dr =
R∫

0

rn−1ψ ′(ur)urt dr

=
R∫

0

rn−1ψ ′(ur)

(
ϕ′′(ur)urr + (n − 1)

ϕ′(ur)

r

)
r

dr

= −
R∫

0

(
rn−1ψ ′(ur)

)
r
ϕ′′(ur)urr dr

+(n − 1)

R∫
0

rn−1ψ ′(ur)

(
ϕ′(ur)

r

)
r

dr,

where we neglected the boundary terms in the integration by parts due to (3.21)
and our assumption thatψ ′(0) = 0. Computing the derivatives, two terms cancel
and we finally obtain that
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d
dt

R∫
0

rn−1ψ(ur)dr=−
R∫

0

rn−1ψ ′′(ur)ϕ
′′(ur)u2

rr dr − (n − 1)

R∫
0

ψ ′(ur)ϕ
′(ur)rn−3 dr

(3.22)

Now let us apply this identity to a family {ψε}ε>0 of functions satisfying (4a)
and (4b) as in the proof of Theorem 2.2, and

(4c) ψ ′
ε(σ )σ ≥ 0 for every σ ∈ R and every ε > 0.

By (4a) and (ϕ2) we have that ψ ′′
ε (σ )ϕ

′′(σ ) ≥ 0 for every σ ∈ R. By (4c) and
(ϕ1)we have thatψ ′

ε(σ )ϕ
′(σ ) ≥ 0 for every σ ∈ R. It follows that the right hand

side of (3.22) is non-positive, and therefore

R∫
0

rn−1ψε(ur(r, t))dr ≤
R∫

0

rn−1ψε(u0r(r))dr.

We finally conclude by letting ε → 0+. ��

4 Counter-examples

In this section we show our counter-examples to gradient estimates in dimension
2 (or higher). In the first two examples, we consider the function

F(t) :=
∫
�

|∇u(x, t)| dx, (4.1)

where u is a solution of the heat equation, and of the Perona–Malik equation,
respectively. What we need is to compute F ′(0), which is formally given by

F ′(0) =
∫
�

∇u(x, 0)
|∇u(x, 0)| · ∇ut(x, 0)dx, (4.2)

where the dot denotes the scalar product. We expect that this formula holds
true for large classes of functions; just for the reader’s (and our own) comfort,
we rigorously justify it under a set of assumptions on u(x, t) which are satisfied
in our examples.

Lemma 4.1 Let � ⊆ R
n be an open set, and let u : � × [0, T) → R. Let us

assume that u ∈ C1([0, T); H1(�)) and that ∇u(x, 0) �= 0 for every x ∈ �.
Then the function F(t) defined in (4.1) is (right) derivable at t = 0, and F ′(0)

is given by (4.2).
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Proof Since |∇u(x, 0)| �= 0 in �, we have that

F ′(0) = lim
t→0+

1
t

∫
�

{|∇u(x, t)| − |∇u(x, 0)|} dx

= lim
t→0+

1
t

∫
�

|∇u(x, t)|2 − |∇u(x, 0)|2
|∇u(x, t)| + |∇u(x, 0)| dx

= lim
t→0+

∫
�

∇u(x, t)+ ∇u(x, 0)
|∇u(x, t)| + |∇u(x, 0)| · ∇u(x, t)− ∇u(x, 0)

t
dx.

Since the first factor is bounded and u ∈ C0([0, T); H1(�)), it follows that the
first factor tends to |∇u(x, 0)|−1∇u(x, 0) in L2(�; Rn). Since u∈C1([0, T); H1(�)),
the second factor tends to ∇ut(x, 0) in L2(�; Rn). So we can pass to the limit in
the integral, and this proves (4.2). ��
We point out that in Lemma 4.1 we don’t need that ∇u(x, 0) �= 0 on ∂�.

Example 1 (proof of Theorem 2.16) Let� be the shaded region in the following
picture

analytically described by

� := {(x, y) ∈ R
2 : x ≥ 0, y ≥ 0, 1 < xy < 2, −1 < x2 − y2 < 1},

let f ∈ C∞(R) be a non-decreasing function such that f ′(x) > 0 if and only if
x ∈ (1, 2), and let

u0(x, y) := f (xy).
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Let u : � × [0, +∞) → R be the solution of the heat equation with Neu-
mann boundary conditions on ∂�, and u0 as initial condition, and let F(t)
be defined by (4.1). A direct computation shows that ∇u0 �= 0 in �. More-
over, u0 ∈ H3(�), and its normal derivative is identically zero in ∂�. By
the standard regularity results for the heat equation, this implies that u ∈
C0([0, +∞); H3(�))∩C1([0, +∞); H1(�)). It follows that all the assumptions of
Lemma 4.1 are satisfied, and ut(x, y, 0) = �u0(x, y) in �, and therefore by (4.2)

F ′(0) =
∫
�

∇u(x, y, 0)
|∇u(x, y, 0)| · ∇ut(x, y, 0)dx dy =

∫
�

∇u0

|∇u0| · ∇�u0 dx dy.

With our u0, this turns out to be

F ′(0) =
∫
�

4xy√
x2 + y2

f ′′(xy)dx dy +
∫
�

(
x2 + y2

)3/2
f ′′′(xy)dx dy.

Using the new variables v = xy, w = x2 − y2, these integrals become

F ′(0) =
1∫

−1

dw

2∫
1

2v
(4v2 + w2)3/4

f ′′(v)dv + 1
2

1∫
−1

dw

2∫
1

(
4v2 + w2

)1/4
f ′′′(v)dv.

Now, in the first integral we integrate by parts in v, and in the second integral
we integrate by parts twice in v. We finally obtain that

F ′(0) =
1∫

−1

dw

2∫
1

2v2 − w2

(4v2 + w2)7/4
f ′(v)dv,

and this is positive because the integrand is positive in the given domain. ��
Remark 4.2 A similar example can be given in an open set with boundary of
class C∞. To this end, it is enough to use the same initial condition u0, but
defined in an open set �′ of class C∞ which coincides with our � in the region
1 < xy < 2 (note that �′ is still a non-convex set). In order to use (4.2) in this
case, one needs to extend Lemma 4.1, allowing ∇u0 to be zero in �′ \�. We
leave the details to the interested reader.

Example 2 (proof of Theorem 2.17) The construction of the counter-example
is organized as follows: in the first paragraph we introduce a function a ∈
C∞(R) and a constant C > 0; in the second paragraph we introduce a function
b ∈ C∞(R) depending on a parameter λ > 0; then in the third paragraph we
consider the rectangular open set

� := (0, λ+ C + 2)× (0, λ+ 2), (4.3)
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and the initial conıtion u0 : � → R defined by

u0(x, y) := a(x − b(y))+ b(y), (4.4)

and we show that, if λ is big enough, this provides a counter-example.

First ingredient We show that there exist a constant C > 0, and a function
a ∈ C∞(R) such that a′(x) = 0 if and only if x ≤ 0 or x ≥ C, and

C∫
0

I(a′(x), a′′(x))dx > 0, (4.5)

where

I(r, s) := s2(2r2 − 2r − 1)
2(2r2 − 2r + 1)3/2(r2 − r + 1)2

.

Note that the integrand is negative near x = 0 and x = C.
In order to construct such a function, we first choose a function f ∈ C∞(R)

such that f (x) > 2 for every x ∈ (0, 1), and f (x) = 2 otherwise, and a function
g ∈ C∞(R) such that g(x) = 0 if and only if x ≤ 0, and g(x) = 2 for every x ≥ 1.
Given a positive integer n, we consider a function a ∈ C∞(R) such that

a′(x) =

⎧⎪⎪⎨
⎪⎪⎩

g(x) if x ∈ [0, 1],
f (x − i) if x ∈ [i, i + 1] for some i = 1, 2, . . . , n,
g(n + 2 − x) if x ∈ [n + 1, n + 2],
0 otherwise.

With this choice we have that

n+2∫
0

I(a′(x), a′′(x))dx = 2

1∫
0

I(g(x), g′(x))dx + n

1∫
0

I(f (x), f ′(x))dx.

The last integral is positive because f (x) > 2 in (0, 1). This means that if
C = n + 2 is large enough, then (4.5) is satisfied.

Second ingredient Let λ > 0. It is not difficult to see that there exists a
function b ∈ C∞(R) such that b(x) = 0 for every x ≤ 0, b(x) = λ+ 2 for every
x ≥ λ+2, b(x) = x for every x ∈ [1, λ+1], and b′(x) > 0 for every x ∈ (0, λ+2).

Conclusion Let � and u0 be defined by (4.3) and (4.4), respectively. Let
u ∈ C1([0, T); H1(�)) ∩ C0([0, T); H3(�)) be a solution of the Perona–Malik
equation in�, with Neumann boundary conditions on ∂�, and initial datum u0.
Let F(t) be defined as in (4.1).
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It is easy to verify that u0 ∈ C∞(�) and its normal derivative is identically
zero in ∂�, and moreover ∇u0 �= 0 in �.

Applying Lemma 4.1, and integrating by parts, we therefore have that

F ′(0) =
∫
�

∇u0

|∇u0| · ∇ut(x, y, 0)dx dy = −
∫
�

div
( ∇u0

|∇u0|
)

ut(x, y, 0)dx dy.

(4.6)

This integration by parts requires some justification. Indeed for the Perona–
Malik equation we have that

ut = uxx + uyy − u2
xuxx − u2

yuyy + u2
yuxx + u2

xuyy − 4uxuyuxy

(1 + u2
x + u2

y)
2 , (4.7)

and this is true also for t = 0 because of the regularity assumptions on u.
Moreover

div
( ∇u

|∇u|
)

= u2
yuxx − 2uxuyuxy + u2

xuyy

(u2
x + u2

y)
3/2 . (4.8)

With our choice of u0, it is not difficult to see that (4.8) is unbounded near
those points of ∂� where |∇u0| = 0. However, in the same points we have
that ut(x, y, 0) = 0, and the product turns out to be bounded, independently
on λ (since a lot of terms are involved, this requires a lengthy, but elementary,
calculation, which we leave to the interested reader).

In the same way, the vector function v(x, y) := ut(x, y, 0)|∇u0(x, y)|−1∇u0(x, y)
can be continuously extended to �, and the scalar product between v(x, y) and
the exterior normal to ∂� turns out to be identically zero in ∂�.

This justifies the integration by parts in (4.6).
Now we need to estimate the second integral in (4.6). Since u0x and u0xx are

non-zero only when 0 ≤ x − b(y) ≤ C, by (4.8) the integral reduces to

F ′(0) = −
λ+2∫
0

dy

b(y)+C∫
b(y)

div
( ∇u0(x, y)

|∇u0(x, y)|
)

ut(x, y, 0)dx.

Let us split the integration with respect to y in the three subintervals [0, 1],
[1, λ+ 1], and [λ+ 1, λ+ 2].

Since the integrand is bounded, independently on λ, we have that the first
and the third integral are constants, independent on λ, which we denote by
c1 and c3, respectively. When y ∈ [1, λ + 1], we have that b(y) ≡ y, hence
u0(x, y) = a(x − y) + y. Computing the derivatives of u0 in (4.8) and (4.7) in
terms of the derivatives of a, and using the variable change z = x−y, we obtain
that
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−
λ+1∫
1

dy

y+C∫
y

div
( ∇u0

|∇u0|
)

ut(x, y, 0)dx =
λ+1∫
1

dy

C∫
0

I(a′(z), a′′(z))dz =: c2λ.

In conclusion, we have that

F ′(0) = c1 + c3 + c2λ.

Since c2 > 0 by (4.5), it follows that F ′(0) > 0 when λ is large enough. ��
Example 3 (proof of Theorem 2.18) Let � := {(x, y) ∈ R

2 : x2 + y2 < 1}, and
let u0(x, y) = f (r), where r = (x2 + y2)1/2, and f ∈ C∞(R) is any function such
that

• f ′(r) > 0 for every r ∈ (0, 1), and f ′(r) = 0 otherwise;
• f ′(r) has a unique maximum point r0;
• f ′(r0) > 1, and f ′′(r0) = f ′′′(r0) = 0.

If u is a radial solution of the Perona–Malik equation in �, then u solves
(3.20) and (3.21) with ϕ(σ) = 2−1 log(1 + σ 2), and ur = |∇u|.

The maximum of |∇u0| in � is f ′(r0) > 1, hence (2.30) is satisfied.
If we prove that urt(r0, 0) < 0, then (2.31) follows by a standard calculus argu-

ment. In order to compute this derivative, we differentiate (3.20) with respect
to r in a neighborhood of (r0, 0): this can be done because (3.20) is a backward
strictly parabolic equation in a cylinder of the form (r0 −ε, r0 +ε)×[0, ε), hence
its solution is of class C∞ in the cylinder, also for t = 0. So we obtain that

(ur)t = ϕ′′′(ur)u2
rr + ϕ′′(ur)urrr + ϕ′′(ur)

r
urr − ϕ′(ur)

r2 . (4.9)

Now let us examine this expression for t = 0, and r = r0. The first and the
third summand are zero because urr(r0, 0) = f ′′(r0) = 0. The second summand is
zero because urrr(r0, 0) = f ′′′(r0) = 0. Therefore urt(r0, 0) is equal to the fourth
summand, hence it is negative. ��
Remark 4.3 Since no uniqueness result is known, it may happen that u0 is radial,

but the solution is not radial. Also in this case the computation of
(√

u2
x + u2

y

)
t

for t = 0 reduces to (4.9), and so the same argument works. We only need to
assume that u is regular enough to compute this derivative.
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