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We consider the hyperbolic–parabolic singular perturbation prob-
lem for a degenerate quasilinear Kirchhoff equation with weak dis-
sipation. This means that the coefficient of the dissipative term
tends to zero when t → +∞.
We prove that the hyperbolic problem has a unique global solution
for suitable values of the parameters. We also prove that the
solution decays to zero, as t → +∞, with the same rate of the
solution of the limit problem of parabolic type.

 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a real Hilbert space. For every x and y in H , |x| denotes the norm of x, and 〈x, y〉 denotes
the scalar product of x and y. Let A be a self-adjoint linear operator on H with dense domain D(A).
We assume that A is nonnegative, namely 〈Ax, x〉 ! 0 for every x ∈ D(A), so that for every α ! 0 the
power Aαx is defined provided that x lies in a suitable domain D(Aα).
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We consider the Cauchy problem

εu′′
ε(t) + 1

(1+ t)p
u′

ε(t) +
∣∣A1/2uε(t)

∣∣2γ Auε(t) = 0 ∀t ! 0, (1.1)

uε(0) = u0, u′
ε(0) = u1, (1.2)

where ε > 0, p ! 0, and γ > 0. Eq. (1.1) is the prototype of all degenerate Kirchhoff equations with
weak dissipation

εu′′
ε(t) + b(t)u′

ε(t) +m
(∣∣A1/2uε(t)

∣∣2)Auε(t) = 0 ∀t ! 0, (1.3)

where b : [0,+∞) → (0,+∞) and m : [0,+∞) → [0,+∞) are given functions which are always as-
sumed to be of class C1 (or at least locally Lipschitz continuous), unless otherwise stated. It is well
known that (1.1) is the abstract setting of a quasilinear nonlocal partial differential equation of hyper-
bolic type which was proposed as a model for small vibrations of strings and membranes.

Eq. (1.3) is called nondegenerate (or strictly hyperbolic) when

µ := inf
σ!0

m(σ ) > 0,

and mildly degenerate when µ = 0 but m(|A1/2u0|2) )= 0. In the special case of Eq. (1.1) this assump-
tion reduces to

A1/2u0 )= 0. (1.4)

Concerning the dissipation term b(t)u′
ε(t), we have constant dissipation when b(t) ≡ δ > 0 is a

positive constant, and weak dissipation when b(t) → 0 as t → +∞. Finally, the operator A is called
coercive when

ν := inf
{ 〈Ax, x〉

|x|2 : x ∈ D(A), x )= 0
}

> 0, (1.5)

and noncoercive when ν = 0.
The singular perturbation problem in its generality consists in proving the convergence of solutions

of (1.3), (1.2) to solutions of the first order problem

b(t)u′
ε(t) +m

(∣∣A1/2uε(t)
∣∣2)Auε(t) = 0, u(0) = u0, (1.6)

obtained setting formally ε = 0 in (1.3), and omitting the second initial condition in (1.2).
The singular perturbation problem gives rise to several subproblems. The first step is of course

the existence of global solutions for the limit problem (1.6). This has been established in [10] under
very general assumptions. The second step is the existence of a global solution for the hyperbolic
problem (1.3), (1.2). The third step is the convergence of solutions uε(t) of the hyperbolic problem
to the solution u(t) of the parabolic problem. The final goal are the so-called error-decay estimates
which prove in the same time that the difference uε(t)− u(t) decays to 0 as t → +∞ (with the same
rate of u(t)), and tends to 0 as ε → 0+ .

The second and third steps have generated a considerable literature, which we sum up below.
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Nondegenerate Kirchhoff equations with constant dissipation. The first results where obtained in the
eighties by E.H. de Brito [2] and Y. Yamada [21]. They independently proved the global solvability
of the hyperbolic problem with initial data (u0,u1) ∈ D(A) × D(A1/2) under a suitable assumption
involving ε, the initial data, and the constant dissipation δ. Once that δ and the initial data are fixed,
this condition holds true provided that ε is small enough. The key step in their proofs, as well as in
all the subsequent literature, is to show that solutions satisfy an a priori estimate such as

ε
|m′(|A1/2uε(t)|2)|
m(|A1/2uε(t)|2)

·
∣∣u′

ε(t)
∣∣ ·

∣∣Auε(t)
∣∣ " b(t), (1.7)

which is clearly more likely to be true when ε is small enough. Existence of global solutions without
the smallness assumption on ε remains a challenging open problem, as well as the nondissipative
case b(t) ≡ 0.

More recently H. Hashimoto and T. Yamazaki [12] obtained optimal error-decay estimates for the
singular perturbation problem. Thanks to these estimates, which improve or extend all previous works
(see [3,11]), this case can be considered quite well understood.

Degenerate Kirchhoff equations with constant dissipation. The case where m(σ ) = σγ (with γ ! 1) has
been studied in the nineties by K. Nishihara and Y. Yamada [16] (see also [20]). The result is the
existence of a unique global solution for the mildly degenerate equation provided that ε is small
enough. Later on this existence result was extended by the authors [6] to arbitrary locally Lipschitz
continuous nonlinearities m(σ ) ! 0, and by the first author [4,5] to non-Lipschitz nonlinearities of the
form m(σ ) = σγ with γ ∈ (0,1).

All the quoted papers considered also the asymptotic behavior of solutions, but the estimates
proved therein where in general far from being optimal. In the meanwhile sharp decay estimates
were the subject of a series of papers by T. Mizumachi [13,14] and K. Ono [17,18], in which however
only the special case m(σ ) = σ was considered. More recently the authors [7] obtained optimal and
ε-independent decay estimates for the general case. As expected the result is that solutions of the
hyperbolic problem always decay as the corresponding solutions of the limit problem.

As for the singular perturbation problem, in [8] the authors proved that uε(t) → u(t) uniformly in
time, but without sharp error-decay estimates, which in this case remain an open problem.

From the technical point of view, the difficulty is that in the degenerate case the denominator
in (1.7) may vanish. This cannot happen for t = 0 due to the mild nondegeneracy assumption, but it
does happen in the limit as t → +∞ due to the decay of solutions.

Nondegenerate Kirchhoff equations with weak dissipation. Let us come to the nondegenerate case with
b(t) = (1 + t)−p . What complicates things is the competition between the smallness of ε and the
smallness of b(t). In particular it is no more enough to prove that the left-hand side of (1.7) is
bounded, but it is necessary to prove that it decays with an a priori fixed rate.

This is the reason why this problem has been solved only in recent years in some papers by
M. Nakao and J. Bae [15], by T. Yamazaki [22,23], and by the authors [9]. The result is that for every
p ∈ [0,1], and every (u0,u1) ∈ D(A) × D(A1/2), the hyperbolic problem has a unique global solution
provided that ε is small enough. Moreover the solution decays to 0 as t → +∞ as the solution of the
limit problem, and optimal error-decay estimates for the singular perturbation have been proved (see
[9,22,23]). When p > 1 the existence of global solutions for the hyperbolic problem is still an open
problem, but in any case solutions cannot decay to 0 as t → +∞. On the other hand, solutions of the
limit parabolic problem decay to zero also for p > 1, faster and faster as p grows.

This means that a threshold appears. When p ∈ [0,1] the smallness of ε is dominant over the
smallness of b(t), and (1.3) behaves like a parabolic equation. When p > 1 the smallness of b(t) is
dominant over the smallness of ε, and (1.3) behaves like a nondissipative hyperbolic equation.

Degenerate Kirchhoff equations withweak dissipation. Let us finally come to Eq. (1.1), which is the object
of this paper. Now in (1.7) the smallness of ε has to compete both with the decay of b(t), and with
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the vanishing of the denominator. So one needs a priori decay estimates for terms whose denominator
vanishes in the limit.

To our knowledge the only previous result for this equation was obtained at the end of the nineties
by K. Ono [19], who proved global existence for the mildly degenerate case when γ = 1, p ∈ [0,1/3],
and of course ε is small enough. We recall that m(σ ) = σ is the only case where sharp decay esti-
mates were already available in those years.

In this paper we consider the global solvability of (1.1), (1.2) with more general values of the
parameters, and initial data (u0,u1) ∈ D(A) × D(A1/2) satisfying (1.4).

Our first result (Theorem 2.1) concerns the coercive case. Under this assumption we prove that a
unique global solution exists provided that γ > 0, p ∈ [0,1] and ε is small enough. We also prove
sharp decay estimates as t → +∞.

Our second result (Theorem 2.2) concerns the noncoercive case. In this case we prove that a unique
global solution exists provided that γ ! 1, p ∈ [0, (γ 2 + 1)/(γ 2 + 2γ − 1)], and ε is small enough.
Note that the supremum of this interval is 1 both when γ = 1 and when γ → +∞, but it is strictly
smaller than 1 for γ > 1. We also provide decay estimates for solutions.

Finally in both cases we show (Theorem 2.3) that for p > 1 solutions of (1.1) (provided that they
exist, which remains an open problem) do not decay to 0 as t → +∞.

From the point of view of global solvability and decay properties these results show that in the
coercive case Eq. (1.1) behaves like the nondegenerate one, exhibiting nondissipative hyperbolic be-
havior for p > 1, and parabolic behavior for p ∈ [0,1]. We point out that this is true also in the
non-Lipschitz case γ ∈ (0,1). In the noncoercive case (with γ ! 1) we have once again hyperbolic
behavior for p > 1, and parabolic behavior for p ∈ [0, (γ 2 + 1)/(γ 2 + 2γ − 1)].

Proofs rely on the techniques introduced in [7] in order to prove sharp decay estimates. When the
operator is coercive the decay rate depends only on p and γ . When the operator is noncoercive the
decay rate belongs to a range depending on p and γ , but within this range it seems to depend on
the initial conditions. The existence of a range of possible decay rates is what in the noncoercive case
creates the no-man’s land between (γ 2 + 1)/(γ 2 + 2γ − 1) and 1. What happens when p lies in this
interval is not clear yet.

In this paper we do not consider the behavior of solutions as ε → 0+ , even if all our ε-independent
estimates are for sure a first step in this direction. We just mention that a simple adaptation of the
arguments of [11] and [8] should be enough to prove two types of result: that uε → u uniformly in
time (without estimates of the convergence rate), and that uε → u in every interval [0, T ] with an
estimate of the error depending on T . On the other hand, obtaining error-decay estimates analogous
to the nondegenerate case seems to be a much more difficult task. Apart from the partial results
of [8] this problem is still open in the degenerate case, both with constant and with weak dissipa-
tion.

2. Statements

Our first result concerns the global solvability of the hyperbolic problem and decay properties of
solutions in the case of coercive operators.

Theorem 2.1. Let H be a Hilbert space, and let A be a nonnegative self-adjoint (unbounded) operator with
dense domain. Let us assume that A satisfies the coerciveness condition (1.5). Let γ > 0, and let p ∈ [0,1]. Let
us assume that (u0,u1) ∈ D(A) × D(A1/2) satisfy (1.4).

Then there exists ε0 > 0 such that for every ε ∈ (0,ε0) problem (1.1), (1.2) has a unique global solution

uε ∈ C2([0,+∞); H
)
∩ C1([0,+∞); D

(
A1/2)) ∩ C0([0,+∞); D(A)

)
. (2.1)

Moreover there exist positive constants C1 and C2 such that

C1

(1+ t)(p+1)/γ "
∣∣A1/2uε(t)

∣∣2 " C2

(1+ t)(p+1)/γ ∀t ! 0; (2.2)
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C1

(1 + t)(p+1)/γ "
∣∣Auε(t)

∣∣2 " C2

(1 + t)(p+1)/γ ∀t ! 0; (2.3)

∣∣u′
ε(t)

∣∣2 " C2

(1+ t)2+(p+1)/γ ∀t ! 0. (2.4)

Our second result is the counterpart of Theorem 2.1 in the case of noncoercive operators.

Theorem 2.2. Let H be a Hilbert space, and let A be a nonnegative self-adjoint (unbounded) operator with
dense domain. Let γ ! 1, and let

0 " p " γ 2 + 1
γ 2 + 2γ − 1

. (2.5)

Let us assume that (u0,u1) ∈ D(A) × D(A1/2) satisfy (1.4).
Then there exists ε0 > 0 such that for every ε ∈ (0,ε0) problem (1.1), (1.2) has a unique global solution

satisfying (2.1).
Moreover there exist constants C1 and C2 such that

C1

(1 + t)(p+1)/γ "
∣∣A1/2uε(t)

∣∣2 " C2

(1 + t)(p+1)/(γ +1) ∀t ! 0; (2.6)

∣∣Auε(t)
∣∣2 " C2

(1 + t)(p+1)/γ ∀t ! 0; (2.7)

∣∣u′
ε(t)

∣∣2 " C2

(1+ t)[2γ 2+(1−p)γ +p+1]/(γ 2+γ )
∀t ! 0. (2.8)

The last result of this paper concerns the case p > 1. An analogous result holds true for nonde-
generate equations (see [9, Theorem 2.3]).

Theorem 2.3. Let H and A be as in Theorem 2.2. Let m : [0,+∞) → [0,+∞) be a continuous function. Let
b : [0,+∞) → (0,+∞) be a continuous function such that

+∞∫

0

b(s)ds < +∞. (2.9)

Let (u0,u1) ∈ D(A) × D(A1/2) be such that

|u1|2 +
|A1/2u0|2∫

0

m(σ )dσ > 0. (2.10)

Let us assume that for some ε > 0 problem (1.3), (1.2) has a global solution uε satisfying (2.1).
Then

lim inf
t→+∞

(∣∣u′
ε(t)

∣∣2 +
∣∣A1/2uε(t)

∣∣2) > 0. (2.11)

Remark 2.4. The constants ε0, C1, C2 given in Theorem 2.1 above may be taken as continuous func-
tions of ν , γ , p, |u0|, |A1/2u0|, |A1/2u0|−1, |Au0|, |u1|, |A1/2u1|. The same is true for the constants ε0,
C1, C2 given in Theorem 2.2, apart from the fact that in this case there is no dependence on ν .
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Remark 2.5. Our results can be easily extended to more general Kirchhoff equations. For example with
the same technique we can deal with nonlinearities m : [0,+∞) → [0,+∞) of class C1 such that

c1σγ "m(σ ) " c2σγ , c1σγ −1 "m′(σ ) " c2σγ −1

in a right-hand neighborhood of σ = 0 for suitable positive constants c1 and c2. However this gener-
ality only complicates proofs without introducing any new idea.

Remark 2.6. In Theorem 2.1 we assume that γ > 0, while in Theorem 2.2 we assume that γ ! 1.
Some weaker results can be obtained with similar techniques also when the operator is noncoer-
cive and γ > 0. For example for every γ > 0 one can prove the global solvability for every p ∈
[0,γ /(γ + 2)] (and of course ε small enough). The solution also satisfies (2.6). We sketch the argu-
ment in Remark 3.4. Note that when γ ! 1 the upper bound γ /(γ + 2) is always less than the upper
bound in (2.5).

3. Proofs

Proofs are organized as follows. First of all in 3.1 we state and prove two simple comparison
results for ordinary differential equations, which we need several times in the sequel. Then we prove
Theorems 2.1 and 2.2. Their proofs have a common part, which we concentrate in 3.2 in the form of
an a priori estimate (Proposition 3.3). Then in 3.3 we conclude the proof of Theorem 2.1, and in 3.4
we conclude the proof of Theorem 2.2. Finally, in 3.5 we prove Theorem 2.3.

3.1. Comparison results for ODEs

Numerous variants of the following comparison result have already been used in [4–9].

Lemma 3.1. Let T > 0, let p ! 0, and let f : [0, T ] → [0,+∞) be a function of class C1 . Let us assume that
there exist two constants c1 > 0, c2 ! 0 such that

f ′(t) " − c1
(1+ t)p

f (t) + c2
√

f (t) ∀t ∈ [0, T ]. (3.1)

Then we have that

f (t) " f (0) +
(
c2
c1

)2

(1+ t)2p ∀t ∈ [0, T ]. (3.2)

Proof. From (3.1) if follows that

f ′(t) " − c1
2(1+ t)p

f (t) + c22
2c1

(1+ t)p,

which is equivalent to say that f (t) is a subsolution of the differential equation

y′(t) = − c1
2(1+ t)p

y(t) + c22
2c1

(1+ t)p . (3.3)

Let g(t) denote the right-hand side of (3.2). Then

− c1
2(1+ t)p

g(t) + c22
2c1

(1+ t)p " 0 " g′(t),
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which is equivalent to say that g(t) is a supersolution of (3.3). Since f (0) " g(0) the conclusion
follows from the standard comparison principle between subsolutions and supersolutions. !

The next comparison result looks quite technical, but the basic idea is the following. When f (t) ≡ 0
the differential inequalities (3.5) and (3.7) can be explicitly integrated, thus providing estimates for
w(t). When f (t) is small enough according to (3.4) estimates of the same order can still be proved.
The interested reader is referred to [7, Lemma 4.2] for a similar comparison result.

Lemma 3.2. Let p ! 0, γ > 0, α > 0, and T > 0 be real numbers. Let w : [0, T ] → [0,+∞) be a function of
class C1 with w(0) > 0, and let f : [0, T ] → R be a continuous function.

Let us assume that

∣∣∣∣∣

t∫

0

(1+ s)p f (s)ds

∣∣∣∣∣ " min
{

1
4γ [w(0)]γ ,

α

2(p + 1)

}
(1+ t)p+1 ∀t ∈ [0, T ]. (3.4)

Then we have the following implications.

(1) If w satisfies the differential inequality

w ′(t) " −2(1+ t)p
[
w(t)

]1+γ (
α + f (t)

)
∀t ∈ [0, T ], (3.5)

then we have the following estimate

w(t) " w(0)
[
max

{
2,

p + 1
αγ [w(0)]γ

}]1/γ

· 1
(1+ t)(p+1)/γ ∀t ∈ [0, T ]. (3.6)

(2) If w satisfies the differential inequality

w ′(t) ! −2(1+ t)p
[
w(t)

]1+γ (
α + f (t)

)
∀t ∈ [0, T ], (3.7)

then we have the following estimate

w(t) ! w(0)
[
1+ 3αγ [w(0)]γ

p + 1

]−1/γ

· 1
(1+ t)(p+1)/γ ∀t ∈ [0, T ]. (3.8)

Proof. Let y(t) be the solution of the Cauchy problem

y′(t) = −2
[
y(t)

]γ +1
, y(0) = w(0).

It is easy to see that

y(t) = w(0)
(
1+ 2γ

[
w(0)

]γ
t
)−1/γ ∀t > − 1

2γ [w(0)]γ .

For every t ∈ [0, T ] let us set

Φ(t) := α

p + 1

[
(1+ t)p+1 − 1

]
+

t∫

0

(1+ s)p f (s)ds, z(t) := y
(
Φ(t)

)
.
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First of all we have to prove that z(t) is well defined. This is true because if we set

C := min
{

1
4γ [w(0)]γ ,

α

2(p + 1)

}
,

then from (3.4) we have that

Φ(t) !
(

α

p + 1
− C

)[
(1+ t)p+1 − 1

]
− C ! −C > − 1

2γ [w(0)]γ .

Moreover a simple calculation shows that z(t) is a solution of the Cauchy problem

z′(t) = −2(1 + t)p
[
z(t)

]γ +1(
α + f (t)

)
∀t ∈ [0, T ], (3.9)

z(0) = w(0). (3.10)

Proof of statement (1). Assumption (3.5) is equivalent to say that w(t) is a subsolution of the Cauchy
problem (3.9), (3.10). The usual comparison principle implies that w(t) " z(t). Now we have to esti-
mate z(t). From (3.4) it follows that

1+ 2γ
[
w(0)

]γ
Φ(t) ! 1+ 2γ

[
w(0)

]γ
((

α

p + 1
− C

)[
(1+ t)p+1 − 1

]
− C

)

! 1+ 2γ
[
w(0)

]γ
(

α

2(p + 1)

[
(1+ t)p+1 − 1

]
− 1

4γ [w(0)]γ
)

= 1
2

+ αγ [w(0)]γ
p + 1

[
(1+ t)p+1 − 1

]

! min
{
1
2
,
αγ [w(0)]γ

p + 1

}
(1+ t)p+1,

where in the last step we exploited the elementary inequality

A + B(x − 1) ! min{A, B}x ∀A ! 0, ∀B ! 0, ∀x ! 1.

It follows that

w(t) " z(t) = w(0)
[
1+ 2γ

[
w(0)

]γ
Φ(t)

]−1/γ

" w(0)
[
max

{
2,

p + 1
αγ [w(0)]γ

}]1/γ

· 1
(1+ t)(p+1)/γ ,

which is exactly (3.6).

Proof of statement (2). Assumption (3.7) is equivalent to say that w(t) is a supersolution of the
Cauchy problem (3.9), (3.10), hence w(t) ! z(t) for every t ∈ [0, T ].

Since

1+ 2γ
[
w(0)

]γ
Φ(t) " (1 + t)p+1 + 2γ

[
w(0)

]γ
(

α

p + 1
+ C

)
(1+ t)p+1

"
(
1+ 3αγ [w(0)]γ

p + 1

)
(1+ t)p+1,

the conclusion follows as in the previous case. !



M. Ghisi, M. Gobbino / J. Differential Equations 248 (2010) 381–402 389

3.2. Basic energy estimates

In this section we prove some energy estimates and a lower bound for |A1/2uε(t)|. Such estimates
do not require the coerciveness of the operator, and they are fundamental both in the proof of Theo-
rem 2.1 and in the proof of Theorem 2.2. They extend to the weakly dissipative equation the estimates
stated in [7, Section 3.4] in the case of constant dissipation.

The estimates involve the following energies

Fε(t) := ε
|A1/2u′

ε(t)|2
|A1/2uε(t)|2γ

+
∣∣Auε(t)

∣∣2, (3.11)

Pε(t) := ε
|A1/2uε(t)|2|A1/2u′

ε(t)|2 − 〈Auε(t),u′
ε(t)〉2

|A1/2uε(t)|2γ +4 + |Auε(t)|2
|A1/2uε(t)|2

, (3.12)

Q ε(t) := |u′
ε(t)|2

|A1/2uε(t)|4γ +2 , (3.13)

Rε(t) := ε
|A1/2u′

ε(t)|2
|A1/2uε(t)|2γ +2 + |Auε(t)|2

|A1/2uε(t)|2
. (3.14)

We point out that the first summand in the definition of Pε(t) is nonnegative due to the Cauchy–
Schwarz inequality.

We state the result in the form of an a priori estimate. We assume that in some interval [0, S)
there exists a solution of the hyperbolic problem satisfying a given estimate (see (3.15) below), and
we deduce that this solution satisfies several energy inequalities in the same interval. We point out
that all constants do not depend on S .

Proposition 3.3. Let H and A be as in Theorem 2.2. Let γ > 0, p ∈ [0,1], K > 0 be real numbers, and let
(u0,u1) ∈ D(A) × D(A1/2) satisfy (1.4).

Then there exist positive constants ε0 , σ0 , σ1 with the following property. If ε ∈ (0,ε0), S > 0, and

uε ∈ C2([0, S); H
)
∩ C1([0, S); D

(
A1/2)) ∩ C0([0, S); D(A)

)

is a solution of (1.1), (1.2) such that

A1/2uε(t) )= 0 and
|〈Auε(t),u′

ε(t)〉|
|A1/2uε(t)|2

" K
(1+ t)p

∀t ∈ [0, S), (3.15)

then for every t ∈ [0, S) we have that

Fε(t) +
t∫

0

1
(1+ s)p

|A1/2u′
ε(s)|2

|A1/2uε(s)|2γ
ds " Fε(0); (3.16)

Pε(t) " Pε(0); (3.17)

Q ε(t) " Q ε(0) + 4Pε(0)(1 + t)2p; (3.18)

(1+ t)2p Rε(t) +
t∫

0

(1+ s)p
|A1/2u′

ε(s)|2
|A1/2uε(s)|2γ +2 ds

"
[
Rε(0) + 2(K + 1)Pε(0)

]
(1+ t)p+1; (3.19)
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∣∣∣∣∣

t∫

0

(1+ s)p
〈u′′

ε(s), Auε(s)〉
|A1/2uε(s)|2γ +2 ds

∣∣∣∣∣ " σ0(1+ t)p+1; (3.20)

∣∣A1/2uε(t)
∣∣2 ! σ1

(1+ t)(p+1)/γ . (3.21)

Proof. Let us set

σ0 := |〈u1, Au0〉|
|A1/2u0|2γ +2 + 3

2

(√
P1(0)Q 1(0) + 2P1(0)

)
+ (2γ + 3)

(
R1(0) + 2(K + 1)P1(0)

)
,

σ1 :=
∣∣A1/2u0

∣∣2
(
1+ 3γ P1(0)|A1/2u0|2γ

p + 1

)−1/γ

. (3.22)

Let us choose ε0 in such a way that

4ε0 " 1, 4ε0K (γ + 1) " 1, σ0ε0 " min
{

1
4γ |A1/2u0|2γ

,
P1(0)

2(p + 1)

}
. (3.23)

Proof of (3.16) through (3.19). Let us compute the time derivative of the energies (3.11) through
(3.14). After some computations we find that

F ′
ε = −2

(
1

(1+ t)p
+ γ ε

〈u′
ε, Auε〉

|A1/2uε|2
) |A1/2u′

ε|2
|A1/2uε|2γ

, (3.24)

P ′
ε = −2

(
1

(1 + t)p
+ (γ + 2)ε

〈u′
ε, Auε〉

|A1/2uε|2
) |A1/2uε|2|A1/2u′

ε|2 − 〈Auε,u′
ε〉2

|A1/2uε|2γ +4 , (3.25)

Q ′
ε = −2

ε

(
1

(1+ t)p
+ (2γ + 1)ε

〈u′
ε, Auε〉

|A1/2uε|2
)
Q ε − 2

ε

〈u′
ε, Auε〉

|A1/2uε|2γ +2 , (3.26)

R ′
ε = −2

(
1

(1+ t)p
+ (γ + 1)ε

〈u′
ε, Auε〉

|A1/2uε|2
) |A1/2u′

ε|2
|A1/2uε|2γ +2 − 2

〈u′
ε, Auε〉|Auε|2
|A1/2uε|4

. (3.27)

Thanks to assumption (3.15) and the second inequality in (3.23) we have that

F ′
ε(t) " − 1

(1 + t)p
|A1/2u′

ε(t)|2
|A1/2uε(t)|2γ

; (3.28)

P ′
ε(t) " 0; (3.29)

Q ′
ε(t) " −1

ε

1
(1+ t)p

Q ε(t) − 2
ε

〈u′
ε(t), Auε(t)〉

|A1/2uε(t)|2γ +2 ; (3.30)

R ′
ε(t) " −3

2
1

(1+ t)p
|A1/2u′

ε(t)|2
|A1/2uε(t)|2γ +2 − 2

〈u′
ε(t), Auε(t)〉|Auε(t)|2

|A1/2uε(t)|4
. (3.31)

Integrating (3.28) in [0, t] we obtain (3.16).
Conclusion (3.17) trivially follows from (3.29).
From (3.30) we deduce that
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Q ′
ε(t) " −1

ε

1
(1+ t)p

Q ε(t) + 2
ε

|u′
ε(t)| · |Auε(t)|

|A1/2uε(t)|2γ +2

" −1
ε

1
(1+ t)p

Q ε(t) + 2
ε

√
Pε(0)

√
Q ε(t).

Therefore applying Lemma 3.1 we obtain (3.18).
From (3.31) we have that

[
(1+ t)2p Rε(t)

]′ = 2p(1+ t)2p−1Rε(t) + (1 + t)2p R ′
ε(t)

" 2p(1+ t)2p−1ε
|A1/2u′

ε|2
|A1/2uε|2γ +2 + 2p(1+ t)2p−1 |Auε|2

|A1/2uε|2

− 3
2
(1 + t)p

|A1/2u′
ε|2

|A1/2uε|2γ +2 − 2(1+ t)2p
|Auε|2

|A1/2uε|2
〈u′

ε, Auε〉
|A1/2uε|2

=: I1(t) + I2(t) + I3(t) + I4(t).

Since 2p − 1 " p and 2pε " 2ε0 " 1/2, we have that

I1(t) + I3(t) "
(
2pε − 3

2

)
(1+ t)p

|A1/2u′
ε(t)|2

|A1/2uε(t)|2γ +2 " −(1+ t)p
|A1/2u′

ε(t)|2
|A1/2uε(t)|2γ +2 .

From (3.15), (3.17), and the fact that 2p − 1 " p we have that

I2(t) + I4(t) " 2(K + p)(1 + t)p
|Auε(t)|2

|A1/2uε(t)|2
" 2(K + 1)(1+ t)p Pε(0).

It follows that

[
(1 + t)2p Rε(t)

]′ " −(1+ t)p
|A1/2u′

ε(t)|2
|A1/2uε(t)|2γ +2 + 2(K + 1)Pε(0)(1+ t)p .

Integrating in [0, t] we obtain (3.19).

Proof of (3.20). Let us consider the following identity

(1 + t)p
〈u′′

ε, Auε〉
|A1/2uε|2γ +2 =

[
(1+ t)p

〈u′
ε, Auε〉

|A1/2uε|2γ +2

]′
− (1+ t)p

|A1/2u′
ε|2

|A1/2uε|2γ +2

+ (2γ + 2)(1 + t)p
〈u′

ε, Auε〉2
|A1/2uε|2γ +4 − p(1+ t)p−1 〈u′

ε, Auε〉
|A1/2uε|2γ +2

=: J1(t) + J2(t) + J3(t) + J4(t). (3.32)

In order to estimate the integral of the left-hand side, we estimate the integrals of the four terms
in the right-hand side. By (3.17) and (3.18) we have that

|〈u′
ε(t), Auε(t)〉|

|A1/2uε(t)|2γ +2 " |Auε(t)|
|A1/2uε(t)|

· |u′
ε(t)|

|A1/2uε(t)|2γ +1

"
√

Pε(0)
√

Q ε(0) + 4Pε(0)(1 + t)2p

"
(√

Pε(0)Q ε(0) + 2Pε(0)
)
(1+ t)p, (3.33)
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hence

∣∣∣∣∣

t∫

0

J1(s)ds

∣∣∣∣∣ " |〈u1, Au0〉|
|A1/2u0|2γ +2 + (1+ t)2p

(√
Pε(0)Q ε(0) + 2Pε(0)

)
.

The integral of J2(t) can be easily estimated using (3.19).
As for J3(t), by Cauchy–Schwarz inequality we have that

〈u′
ε(t), Auε(t)〉2

|A1/2uε(t)|2γ +4 " |A1/2u′
ε(t)|2|A1/2uε(t)|2

|A1/2uε(t)|2γ +4 = |A1/2u′
ε(t)|2

|A1/2uε(t)|2γ +2 ,

and therefore we reduce once again to (3.19).
Finally, from (3.33) we obtain that

∣∣∣∣∣

t∫

0

J4(s)ds

∣∣∣∣∣ " 1
2

(√
Pε(0)Q ε(0) + 2Pε(0)

)
(1 + t)2p .

Plugging all these estimates in (3.32), and recalling once again that 1 " (1 + t)2p " (1 + t)p+1 for
every t ! 0, we obtain (3.20).

Proof of (3.21). Let us set wε(t) := |A1/2uε(t)|2. Then

w ′
ε(t) = −2(1+ t)p

[
wε(t)

]γ +1
( |Auε(t)|2

|A1/2uε(t)|2
+ ε

〈u′′
ε(t), Auε(t)〉

|A1/2uε(t)|2γ +2

)
, (3.34)

hence by (3.17)

w ′
ε(t) ! −2(1 + t)p

[
wε(t)

]γ +1
(
P1(0) + ε

〈u′′
ε(t), Auε(t)〉

|A1/2uε(t)|2γ +2

)
.

This means that wε satisfies a differential inequality of the form (3.7) with

α := P1(0), f (t) := ε
〈u′′

ε(s), Auε(s)〉
|A1/2uε(s)|2γ +2 . (3.35)

Thanks to (3.20) and the last inequality in (3.23) we have that

∣∣∣∣∣

t∫

0

(1+ s)p f (s)ds

∣∣∣∣∣ " εσ0(1+ t)p+1 " min
{

1
4γ |A1/2u0|2γ

,
P1(0)

2(p + 1)

}
(1 + t)p+1,

and therefore the function f (t) satisfies assumption (3.4) of Lemma 3.2. From statement (2) of that
lemma we obtain (3.21). !
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3.3. Proof in the coercive case

Local maximal solutions. Problem (1.1), (1.2) admits a unique local-in-time solution, and this solution
can be continued to a solution defined in a maximal interval [0, T ), where either T = +∞, or

limsup
t→T−

(∣∣A1/2u′
ε(t)

∣∣2 +
∣∣Auε(t)

∣∣2) = +∞, (3.36)

or

lim inf
t→T−

∣∣A1/2uε(t)
∣∣2 = 0. (3.37)

We omit the proof of these standard results. The interested reader is referred to [6] (see also [1]).

Preliminaries and notations. Let ν satisfy (1.5), and let

σ2 :=
∣∣A1/2u0

∣∣2
[
max

{
2,

p + 1
νγ |A1/2u0|2γ

}]1/γ

.

Let K be such that

K >
|〈Au0,u1〉|
|A1/2u0|2

, K >
(√

P1(0)Q 1(0) + 2P1(0)
)
σ

γ
2 . (3.38)

Starting with this value of K let us define σ0 and σ1 as in the proof of Proposition 3.3, and let us
choose ε0 satisfying (3.23), and the further requirement

σ0ε0 " min
{

ν

2(p + 1)
,

1
4γ |A1/2u0|2γ

}
. (3.39)

Let us finally set

S := sup
{
τ ∈ [0, T ): A1/2uε(t) )= 0 and

|〈Auε(t),u′
ε(t)〉|

|A1/2uε(t)|2
" K

(1 + t)p
∀t ∈ [0,τ ]

}
.

From the mild nondegeneracy assumption (1.4) and the first inequality in (3.38) it is easy to see
that S > 0. Moreover in the interval [0, S) all the conclusions of Proposition 3.3 hold true.

Estimate from above for |A1/2uε(t)|. Let us set wε(t) := |A1/2uε(t)|2 as in the proof of Proposition 3.3.
Once again wε(t) is a solution of (3.34). Since we are in the coercive case we have that |Auε(t)|2 !
ν|A1/2uε(t)|2. Therefore from (3.34) it follows that

w ′
ε(t) " −2(1+ t)p

[
wε(t)

]γ +1
(
ν + ε

〈u′′
ε(t), Auε(t)〉

|A1/2uε(t)|2γ +2

)
,

which means that wε satisfies an inequality of the form (3.5) with α := ν , and f (t) defined as
in (3.35). Thanks to (3.20) and (3.39) the function f (t) satisfies assumption (3.4) of Lemma 3.2. From
statement (1) of that lemma we obtain that

∣∣A1/2uε(t)
∣∣2 " σ2

(1+ t)(p+1)/γ ∀t ∈ [0, S). (3.40)
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Global existence. We prove that S = T = +∞. Let us assume by contradiction that S < T . By definition
of S this means that

either
∣∣A1/2uε(S)

∣∣2 = 0 or
|〈Auε(S),u′

ε(S)〉|
|A1/2uε(S)|2

= K
(1+ S)p

. (3.41)

By continuity all the estimates proved so far hold true also for t = S . In particular (3.21) rules out
the first possibility in (3.41).

From (3.33), (3.40), and the second inequality in (3.38), we have that

|〈Auε(S),u′
ε(S)〉|

|A1/2uε(S)|2
" |Auε(S)|

|A1/2uε(S)|
· |u′

ε(S)|
|A1/2uε(S)|2γ +1 ·

∣∣A1/2uε(S)
∣∣2γ

"
(√

P1(0)Q 1(0) + 2P1(0)
)
(1 + S)p · σ

γ
2

(1+ S)p+1 <
K

1+ S
" K

(1+ S)p
,

which rules out the second possibility in (3.41).
It remains to prove that T = +∞. Let us assume by contradiction that T < +∞. Then the quoted

local existence result says that either (3.36) or (3.37) holds true.
On the other hand now we know that (3.21) is satisfied for every t ∈ [0, T ), which rules (3.37) out.

Moreover from (3.40) we have that |A1/2uε(t)|2 is uniformly bounded from above in [0, T ), hence
by (3.16) it follows that also |A1/2u′

ε(t)| and |Auε(t)| are uniformly bounded from above in [0, T ).
This rules (3.36) out.

Decay estimates. Let us prove estimates (2.2), (2.3), and (2.4). Now we know that the solution is
global, and that all the estimates proved so far hold true for every t ! 0.

Therefore (2.2) follows from (3.21) and (3.40). Moreover from (3.17) and the coerciveness assump-
tion (1.5) we have that

ν " |Auε(t)|2
|A1/2uε(t)|2

" P1(0) ∀t ! 0,

hence (2.3) follows from (2.2). Finally, (2.4) follows from (3.18) and (3.40). !

3.4. Proof in the noncoercive case

Local maximal solutions. As in the coercive case there exists a unique local-in-time solution which
can be continued to a solution defined in a maximal interval [0, T ), where either T = +∞, or (3.36)
holds true, or (3.37) holds true.

Preliminaries and notations. Let σ1 be the constant defined in (3.22), let

σ3 := 16(γ + 1)
(
|u1|2 +

∣∣A1/2u0
∣∣2γ +2 + 2|u0|2

)
,

σ4 := 2
|A1/2u1|2
|A1/2u0|2γ

+ 2|Au0|2 + 1
2

|〈Au0,u1〉|
|A1/2u0|2γ

+ 36σ 1−γ
1 ,

and let K be such that

K >
|〈Au0,u1〉|
|A1/2u0|2

, K >
[
(1+ γ )σ3

](γ −1)/(γ +1)
( |u1|

|A1/2u0|2γ
√

σ4 + 4σ4

)
. (3.42)
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Starting with this value of K let us define σ0 as in the proof of Proposition 3.3, and let us choose
ε0 satisfying (3.23) and the further condition

16ε0 " 1.

As in the coercive case let us finally set

S := sup
{
τ ∈ [0, T ): A1/2uε(t) )= 0 and

|〈Auε(t),u′
ε(t)〉|

|A1/2uε(t)|2
" K

(1 + t)p
∀t ∈ [0,τ ]

}
.

From the mild nondegeneracy assumption (1.4), and the first inequality in (3.42), it is easy to see
that S > 0. Moreover in the interval [0, S) all the conclusions of Proposition 3.3 hold true.

In the following we set

β = p + 1
γ

,

and we prove estimates involving the following energies

Hε(t) := ε
∣∣u′

ε(t)
∣∣2 + 1

γ + 1

∣∣A1/2uε(t)
∣∣2γ +2; (3.43)

Dε(t) := ε(1 + t)p
〈
u′

ε(t),uε(t)
〉
+ 1

2

(
1− εp

(1+ t)1−p

)∣∣uε(t)
∣∣2; (3.44)

D̂ε(t) := ε(1 + t)2β−1 〈u′
ε(t), Auε(t)〉

|A1/2uε(t)|2γ
; (3.45)

Gε(t) := (1+ t)β
|u′

ε(t)|2
|A1/2uε(t)|4γ

. (3.46)

All the estimates we present are first claimed in the interval [0, S). At the end of the proof we
show that S = T = +∞, thus obtaining that all the estimates actually hold true for every t ! 0.

First order estimate. In this section of the proof we show that

(1 + t)p+1Hε(t) +
∣∣uε(t)

∣∣2 +
t∫

0

(1 + s)
∣∣u′

ε(s)
∣∣2 ds " σ3 ∀t ∈ [0, S). (3.47)

To this end we begin by taking the time derivative of (3.44):

D ′
ε(t) = −(1+ t)p

∣∣A1/2uε(t)
∣∣2γ +2 + ε(1 + t)p

∣∣u′
ε(t)

∣∣2 + εp(1− p)

2
|uε(t)|2

(1 + t)2−p .

Integrating in [0, t] we obtain that

t∫

0

(1 + s)p
∣∣A1/2uε(s)

∣∣2γ +2
ds

= Dε(0) − Dε(t) + ε

t∫

0

(1+ s)p
∣∣u′

ε(s)
∣∣2 ds + εp(1 − p)

2

t∫

0

|uε(s)|2
(1+ s)2−p ds. (3.48)
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From our assumptions on ε and p we have that 2ε < 1/4, 2p " p + 1, εp " 1/2. Therefore

−Dε(t) " 2ε2(1+ t)2p
∣∣u′

ε(t)
∣∣2 + 1

8

∣∣uε(t)
∣∣2 + εp

2(1+ t)1−p

∣∣uε(t)
∣∣2 − 1

2

∣∣uε(t)
∣∣2

" 1
4
ε(1 + t)p+1∣∣u′

ε(t)
∣∣2 − 1

8

∣∣uε(t)
∣∣2.

Plugging this estimate in (3.48) we obtain that

1
8

∣∣uε(t)
∣∣2 +

t∫

0

(1+ s)p
∣∣A1/2uε(s)

∣∣2γ +2
ds

" Dε(0) + 1
4
ε(1+ t)p+1∣∣u′

ε(t)
∣∣2 + ε

t∫

0

(1+ s)
∣∣u′

ε(s)
∣∣2 ds + εp(1 − p)

2

t∫

0

|uε(s)|2
(1+ s)2−p ds.

(3.49)

Let us consider now the energy defined in (3.43). A simple calculation gives that

[
(1+ t)p+1Hε

]′ = −(1 + t)
(
2− ε(p + 1)

(1+ t)1−p

)∣∣u′
ε

∣∣2 + p + 1
γ + 1

(1+ t)p
∣∣A1/2uε

∣∣2γ +2
.

Let us integrate in [0, t]. Using (3.49) and rearranging the terms we obtain that

(1 + t)p+1
(
1− 1

4
p + 1
γ + 1

)
ε
∣∣u′

ε(t)
∣∣2 + (1 + t)p+1

γ + 1

∣∣A1/2uε(t)
∣∣2γ +2

" Hε(0) −
(
2− ε(p + 1) − ε

p + 1
γ + 1

) t∫

0

(1 + s)
∣∣u′

ε(s)
∣∣2 ds

+ p + 1
γ + 1

(

Dε(0) − 1
8

∣∣uε(t)
∣∣2 + εp(1− p)

2

t∫

0

|uε(s)|2
(1+ s)2−p ds

)

.

From the smallness assumptions on ε, and the fact that (p + 1)/(γ + 1) " 2, it follows that

1
2
(1+ t)p+1Hε(t) +

t∫

0

(1+ s)
∣∣u′

ε(s)
∣∣2 ds + 1

8
p + 1
γ + 1

∣∣uε(t)
∣∣2

"
(
Hε(0) + 2

∣∣Dε(0)
∣∣) + p + 1

γ + 1
εp(1 − p)

2

t∫

0

|uε(s)|2
(1+ s)2−p ds. (3.50)

In particular we have that

∣∣uε(t)
∣∣2 " 8(γ + 1)

p + 1

(
Hε(0) + 2

∣∣Dε(0)
∣∣) + 4ε(1 − p)

t∫

0

|uε(s)|2
(1+ s)2−p ds,
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hence by Gronwall’s lemma

∣∣uε(t)
∣∣2 " 8(γ + 1)

p + 1

(
Hε(0) + 2

∣∣Dε(0)
∣∣)exp

(

4ε(1− p)

t∫

0

1
(1+ s)2−p ds

)

" 8(γ + 1)
p + 1

(
Hε(0) + 2

∣∣Dε(0)
∣∣)exp(4ε)

" 16(γ + 1)
p + 1

(
Hε(0) + 2

∣∣Dε(0)
∣∣).

Integrating in [0, t] we obtain that

(1 − p)

t∫

0

|uε(s)|2
(1 + s)2−p ds " 16

γ + 1
p + 1

(
Hε(0) + 2

∣∣Dε(0)
∣∣).

Coming back to (3.50) we have therefore that

1
2
(1 + t)p+1Hε(t) +

t∫

0

(1+ s)
∣∣u′

ε(s)
∣∣2 ds + 1

8
p + 1
γ + 1

∣∣uε(t)
∣∣2

" (1+ 8pε)
(
Hε(0) + 2

∣∣Dε(0)
∣∣). (3.51)

It remains to estimate the right-hand side. This can be easily done because 8pε " 1, and

Hε(0) + 2
∣∣Dε(0)

∣∣ " ε|u1|2 + 1
γ + 1

∣∣A1/2u0
∣∣2γ +2 + 2ε

∣∣〈u1,u0〉
∣∣ + (1− εp)|u0|2

" |u1|2 +
∣∣A1/2u0

∣∣2γ +2 + 2|u0|2.

Plugging this estimate in (3.51), and multiplying by 8(γ + 1), we obtain (3.47).

Second order estimate. In this section of the proof we show that

(1 + t)β Fε(t) + 1
2

1
(1+ t)β

t∫

0

(1+ s)2β−p |A1/2u′
ε(s)|2

|A1/2uε(s)|2γ
ds " σ4 ∀t ∈ [0, S). (3.52)

To this end we begin by computing the time derivative of (3.45):

D̂ ′
ε(t) = −(1 + t)2β−1∣∣Auε(t)

∣∣2 + ε(1+ t)2β−1 |A1/2u′
ε(t)|2

|Auε(t)|2γ

− 2γ ε(1+ t)2β−1 〈u′
ε(t), Auε(t)〉2

|A1/2uε(t)|2γ +2

− (1+ t)2β−p−1
(
1− ε

2β − 1
(1+ t)1−p

) 〈u′
ε(t), Auε(t)〉

|A1/2uε(t)|2γ
=: I1(t) + I2(t) + I3(t) + I4(t). (3.53)
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Let us estimate this derivative from above. To this end in I2(t) we replace the exponent 2β − 1
with the bigger exponent 2β − p. The term I3(t) is nonpositive and can be neglected. In order to
estimate I4(t) we remark that 0 < β " 2, hence 0 " |2β − 1| " 3. Due to the smallness of ε we have
therefore that

∣∣∣∣1− ε
2β − 1

(1 + t)1−p

∣∣∣∣ " 1+ |2β − 1|ε
(1 + t)1−p " 1+ 3ε " 2,

and thus

∣∣I4(t)
∣∣ " 2(1+ t)2β−p−1 |A1/2u′

ε(t)|
|A1/2uε(t)|2γ −1

" 1
4β

(1 + t)2β−p |A1/2u′
ε(t)|2

|A1/2uε(t)|2γ
+ 4β(1+ t)2β−p−2 1

|A1/2uε(t)|2γ −2 .

Since γ ! 1 we can estimate the last term using (3.21). After some calculations with the exponents
we obtain that

1
|A1/2uε(t)|2γ −2 " σ

1−γ
1 (1 + t)p+1−β , (3.54)

hence

∣∣I4(t)
∣∣ " 1

4β
(1 + t)2β−p |A1/2u′

ε(t)|2
|A1/2uε(t)|2γ

+ 4βσ
1−γ
1 (1 + t)β−1.

Plugging these estimates in (3.53) we have proved that

D̂ ′
ε(t) " −(1 + t)2β−1∣∣Auε(t)

∣∣2 + (1 + t)2β−p
(
ε + 1

4β

) |A1/2u′
ε(t)|2

|A1/2uε(t)|2γ

+ 4βσ
1−γ
1 (1+ t)β−1.

Integrating in [0, t] we obtain that

t∫

0

(1+ s)2β−1∣∣Auε(s)
∣∣2 ds "

(
ε + 1

4β

) t∫

0

(1+ s)2β−p |A1/2u′
ε(s)|2

|A1/2uε(s)|2γ
ds

+ D̂ε(0) − D̂ε(t) + 4σ 1−γ
1 (1 + t)β . (3.55)

Using (3.54) once more we have that

−D̂ε(t) " ε2

2
(1 + t)2β

|A1/2u′
ε(t)|2

|A1/2uε(t)|2γ
+ 1

2
(1 + t)2β−2 1

|A1/2uε(t)|2γ −2

" ε2

2
(1 + t)2β

|A1/2u′
ε(t)|2

|A1/2uε(t)|2γ
+ 1

2
σ

1−γ
1 (1+ t)β+p−1.

Since β + p − 1 " β , plugging this estimate in (3.55) we obtain that
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t∫

0

(1+ s)2β−1∣∣Auε(s)
∣∣2 ds " D̂ε(0) + ε2

2
(1+ t)2β

|A1/2u′
ε(t)|2

|A1/2uε(t)|2γ
+ 9

2
σ

1−γ
1 (1 + t)β

+
(
ε + 1

4β

) t∫

0

(1+ s)2β−p |A1/2u′
ε(s)|2

|A1/2uε(s)|2γ
ds. (3.56)

Let us consider now the energy defined in (3.11). A simple calculation gives that

[
(1 + t)2β Fε

]′ = −(1+ t)2β
(

2
(1+ t)p

+ 2εγ
〈Auε,u′

ε〉
|A1/2uε|2

− 2βε

1+ t

) |A1/2u′
ε|2

|A1/2uε|2γ

+ 2β(1+ t)2β−1|Auε|2.

By definition of S and the second inequality in (3.23), we have that

2εγ
|〈Auε(t),u′

ε(t)〉|
|A1/2uε(t)|2

+ 2βε

1+ t
" (2εγ K + 2βε)

1
(1 + t)p

" 1
(1+ t)p

, (3.57)

hence

[
(1+ t)2β Fε(t)

]′ " −(1 + t)2β−p |A1/2u′
ε(t)|2

|A1/2uε(t)|2γ
+ 2β(1+ t)2β−1∣∣Auε(t)

∣∣2.

Let us integrate in [0, t]. Using (3.56) and rearranging the terms we obtain that

(1 + t)2β(1 − βε)ε
|A1/2u′

ε(t)|2
|A1/2uε(t)|2γ

+ (1 + t)2β
∣∣Auε(t)

∣∣2

+
(
1
2

− 2βε

) t∫

0

(1+ s)2β−p |A1/2u′
ε(s)|2

|A1/2uε(s)|2γ
ds

" Fε(0) + 2β D̂ε(0) + 9βσ
1−γ
1 (1+ t)β .

Since β " 2, and 2βε " 4ε " 1/4, it follows that

1
2
(1+ t)2β Fε(t) + 1

4

t∫

0

(1+ s)2β−p |A1/2u′
ε(s)|2

|A1/2uε(s)|2γ
ds

" Fε(0) + 2β D̂ε(0) + 9βσ
1−γ
1 (1+ t)β

" |A1/2u1|2
|A1/2u0|2γ

+ |Au0|2 + 1
4

|〈Au0,u1〉|
|A1/2u0|2γ

+ 18σ 1−γ
1 (1+ t)β .

Dividing by (1+ t)β/2 we obtain (3.52).
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Estimate on the derivative. Let us consider the energy defined in (3.46). Its time derivative is given by

G ′
ε(t) = −1

ε
(1 + t)β

(
2

(1+ t)p
+ 4εγ

〈u′
ε(t), Auε(t)〉

|A1/2uε(t)|2
− βε

1+ t

) |u′
ε(t)|2

|A1/2uε(t)|4γ

− 2
ε
(1+ t)β

〈u′
ε(t), Auε(t)〉

|A1/2uε(t)|2γ
.

Arguing as in (3.57) we find that

4εγ
|〈u′

ε(t), Auε(t)〉|
|A1/2uε(t)|2

+ βε

1+ t
" 3

2
1

(1 + t)p
,

hence

G ′
ε(t) " − 1

2ε
1

(1+ t)p
Gε(t) + 2

ε
(1+ t)β/2∣∣Auε(t)

∣∣ ·
√
Gε(t).

Thanks to (3.52) we have therefore that

G ′
ε(t) " − 1

2ε
1

(1+ t)p
Gε(t) + 2

ε

√
σ4 ·

√
Gε(t),

hence by Lemma 3.1

Gε(t) " Gε(0) + 16σ4(1 + t)2p ∀t ∈ [0, S). (3.58)

Global existence. We prove that S = T = +∞. Let us assume by contradiction that S < T . Then by
continuity all the estimates proved so far hold true also for t = S . Moreover by definition of S we
have the alternative (3.41).

The first possibility can be ruled out using (3.21) exactly as in the coercive case.
In order to rule out the second possibility we consider the inequality

|〈Auε(S),u′
ε(S)〉|

|A1/2uε(S)|2
"

∣∣Auε(S)
∣∣ · |u′

ε(S)|
|A1/2uε(S)|2γ

·
∣∣A1/2uε(S)

∣∣2γ −2
. (3.59)

Let us estimate the three factors. From (3.52) we have that

∣∣Auε(S)
∣∣ "

√
σ4

(1+ S)β/2 .

From (3.58) we have that

|u′
ε(S)|

|A1/2uε(S)|2γ
"

√
Gε(0) + 16σ4(1+ S)2p

(1+ S)β/2 "
( |u1|

|A1/2u0|2γ
+ 4

√
σ4

)
1

(1 + S)β/2−p .

Since γ ! 1 the last factor in (3.59) can be estimated using (3.47). We obtain that

∣∣A1/2uε(S)
∣∣2γ −2 "

[
(γ + 1)σ3

](γ −1)/(γ +1) 1
(1+ S)(p+1)(γ −1)/(γ +1) .
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Plugging all these estimates in (3.59), and recalling (3.42), we obtain that

|〈Auε(S),u′
ε(S)〉|

|A1/2uε(S)|2
<

K
(1 + S)p

(1 + S)2p−β−(p+1)(γ −1)/(γ +1).

If p satisfies (2.5), then the last exponent is less than or equal to zero, and this is enough to rule
out the second possibility in (3.41).

It remains to prove that T = +∞. So let us assume by contradiction that T < +∞. Then the quoted
local existence result says that either (3.36) or (3.37) holds true.

On the other hand as in the coercive case we have that (3.21) is satisfied for every t ∈ [0, T ), which
rules (3.37) out. Moreover from (3.47) we have that |A1/2uε(t)|2 is uniformly bounded from above in
[0, T ), hence by (3.16) it follows that also |A1/2u′

ε(t)| and |Auε(t)| are uniformly bounded from above
in [0, T ). This rules (3.36) out.

Decay estimates. Let us prove estimates (2.6), (2.7), and (2.8). Now we know that the solution is
global, and that all the estimates proved so far hold true for every t ! 0.

Therefore the lower bound in (2.6) follows from (3.21), while the upper bound follows from (3.47).
Moreover (2.7) follows from (3.52). Finally, (2.8) follows from (3.58) and (2.6).

Remark 3.4. A careful inspection of the proofs reveals that (3.47) was proved without using the as-
sumption γ ! 1. At this point one can modify (3.59) as follows:

|〈Auε(S),u′
ε(S)〉|

|A1/2uε(S)|2
" |Auε(S)|

|A1/2uε(S)|
· |u′

ε(S)|
|A1/2uε(S)|2γ +1 ·

∣∣A1/2uε(S)
∣∣2γ .

Now we can estimate the first and second factor using (3.33) as we did in the coercive case, and
then estimate the last factor using (3.47). All these inequalities require neither the coerciveness of the
operator, nor γ ! 1.

We end up with an estimate such as

|〈Auε(S),u′
ε(S)〉|

|A1/2uε(S)|2
" K1

(1 + S)p
(1+ S)2p−γ (p+1)/(γ +1)

for a suitable constant K1. The last exponent is less than or equal to zero provided that p " γ /(γ +2).
This is the key point of the proof of global solvability for γ > 0 and p ∈ [0,γ /(γ + 2)] without
coerciveness assumptions. We leave the details to the interested reader.

3.5. Proof of Theorem 2.3

In analogy with (3.43) let us set

Hε(t) := ε
∣∣u′

ε(t)
∣∣2 +

|A1/2uε(t)|2∫

0

m(σ )dσ .

Assumption (2.10) is equivalent to say that Hε(0) > 0. Moreover we have that

H ′
ε(t) = −2b(t)

∣∣u′
ε(t)

∣∣2 ! −2
ε
b(t)Hε(t) ∀t ! 0,
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hence

Hε(t) ! Hε(0)exp

(

−2
ε

t∫

0

b(s)ds

)

∀t ! 0.

The right-hand side is greater than a positive constant independent of t because of (2.9) and the
fact that Hε(0) > 0. This implies (2.11).
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