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Abstract

In this paper we consider several examples of sequences of partial sums of triangular arrays
of random variables {X,, : n > 1}; in each case X,, converges weakly to an infinitely divisible
distribution (a Poisson distribution or a centered Normal distribution). For each sequence we
prove large deviation results for the logarithmically weighted means {@ S i Xein>1}
with speed function v, = logn. We also prove a sample path large deviation principle for

{X, :n > 1} defined by X,,(-) = ZL%T;(UZ)), where 02 € (0,00) and {U,, : n > 1} is a sequence
of independent standard Brownian motions.
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1 Introduction

Let {X,, : n > 1} be defined by X, := U1+7\/E+U”, where {U,, : n > 1} is a sequence of i.i.d. centered
random variables with unit variance. The almost sure central limit theorem states the almost sure
weak convergence to the standard Normal distribution of the sequences of random measures
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The almost sure central limit theorem was proved independently in [4], [11] and [21] under stronger
moment assumptions; successive refinements appear in [12] and [17], in which only finite variance
is required.

There is a wide literature in the field of large deviations, namely the asymptotic computation of
small probabilities on an exponential scale (see e.g. [7] as a reference on this topic). Some results in
this field concern the almost sure central limit theorem: see e.g. Theorem 1 in [19] (the expression
of the rate function is provided by Theorem 3 in the same reference) for the sequence in (1) and
Theorem 1.1 in [13] for the sequence in (2). Both the results are proved assuming that all the
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(common) moments of the random variables {U,, : n > 1} are finite; the optimality of the moment
assumptions is discussed in [18].

A generalization of the almost sure central limit theorem is proved in [2] for sequences {X, :
n > 1} where X,, := ¢,(Ui,...,U,) for some independent random variables {U,, : n > 1} and
some measurable functions {g,, : n > 1} which satisfy mild technical conditions. The result in [2]
allows to recover some almost sure limit results in the literature, as for instance those concerning
the Fisher Tippett Theorem (see e.g. Theorem 3.2.3 in [8]) in [10] and [5]; in this direction a more
general result is proved in [9].

In this paper we consider several examples for the sequence {X,, : n > 1} and, for each one
of them, X, converges weakly to an infinitely divisible distribution (more precisely a Poisson
distribution or a centered Normal distribution). In some sense these examples are inspired by a
well known generalization of the central limit theorem concerning partial sums of triangular arrays
of uniformly asymptotically negligible random variables which converge weakly to an infinitely
divisible distribution with finite variance (see e.g. Theorem 28.2 in [3], where one can easily
overcome the null expected value hypothesis). For any choice of {X,, : n > 1} we prove large
deviation principles for {@ py %X g :n > 1}, i.e. the sequence of integrals with respect to the
random measures in (1), with speed function v, = logn (obviously we have the same results if we
consider the expected values with respect to the random probability measures in (2); the details
will be omitted).

All the large deviation results presented in this paper, except Theorem 3.4, concern the almost
sure convergence of logarithmically weighted means guaranteed by a suitable condition on the
covariances Cov(Xp, Xi), for all 1 < j < k (see condition (C1) below). In Theorem 3.4 we have

again {@ Sh_1+Xy :n > 1} and the sequence {X,, : n > 1} is defined by X, () = &%7;(02)’
where 02 € (0,00) and {U,, : n > 1} is a sequence of independent standard Brownian motions.

One of our examples concerns the framework of the almost sure central limit theorem as in [19]
(and in [13]) but, as we shall see (see subsection 4.5 below for more details), the large deviation
principle for the sequence of integrals with respect to the random measures cannot be derived from
the one for the sequence of the random measures using standard large deviation tools. Similarly,
in subsection 4.3, we show that the results in this paper cannot be derived by the main result in
[15], which concerns weighted sums of independent identically distributed random variables.

The outline of the paper is as follows. We start with some preliminaries in section 2. In section
3 we give the statements of the large deviation results together with brief sketches of their proofs.
Minor results and remarks are presented in section 4. We conclude with sections 5, 6 and 7 in
which we present some details of the proofs of Theorems 3.1-3.2, 3.3 and 3.4, respectively.

We conclude with some notation and symbols used throughout the paper. We write x,, ~ v, (as
n — 00) to mean lim, .. £ = 1 and we adopt the convention Zé’:a x; = 0 if a > b. Furthermore
we use the symbol P(\) for the Poisson distribution with mean A > 0 (one can also allow X\ = 0
referring to the distribution of the constant random variable equal to zero) and the symbol N(u, o2)
be the Normal distribution with mean z € R and variance o2 > 0.

2 Preliminaries

2.1 Large deviations

We refer to [7] (pages 4-5). Let X be a topological space equipped with its completed Borel o-
field. A sequence of X-valued random variables {Z,, : n > 1} satisfies the large deviation principle
(LDP for short) with speed function v, and rate function I if: lim, . v, = oo; the function
I:R — [0,00] is lower semi-continuous;

1
limsup —log P(Z,, € F) < — inf I(z) for all closed sets F;

n—oo Un zeF



1
liminf —log P(Z, € G) > — ing I(x) for all open sets G.

n—0oo Up Te

A rate function [ is said to be good if its level sets {{z € X : I(z) < n} :n > 0} are compact.

In what follows we prove LDPs with X = R and we use the Gértner Ellis Theorem (see e.g.
Theorem 2.3.6 in [7]); the application of this theorem consists in checking the existence of the
function A : R — (—o00, 00] defined by

1
A(9) := lim — logE[e"0%"] (3)
n—00 Up,
and, if A is essentially smooth (see e.g. Definition 2.3.5 in [7]) and lower semi-continuous, the LDP
holds with good rate function A* : R — [0, o] defined by

A*(x) :=sup{fz — A(0)}. (4)

0cR
We also prove a sample path LDP, i.e. a LDP with X = C]0,T], i.e. the family of all continuous
functions on [0,7] (for some T' € (0,00)) equipped with the topology of uniform convergence. In
such a case we consider an abstract version of the Gartner Ellis Theorem, i.e. Theorem 4.5.20 in
[7] (Baldi’s Theorem); note that in such a case the dual space X*, i.e. the space of all continuous
linear functionals on X, is the family of all signed Borel measures with bounded variation on [0, 7.

2.2 Strong laws of large numbers for logarithmically weighted means

We start with some strong laws of large numbers for logarithmically weighted means which can be
proved using the following standard argument (see e.g. Lemma 1 in [9]; see also Theorem 1 in [20]
cited therein): if {X,, : » > 1} is a sequence of random variables with finite variances such that
(C1): there exists C,p € (0,00) such that |Cov(Xp, Xi)| < C (%)p foralll <j <k,

then

1 1
lim D~ (Xx — E[X}]) = 0 almost surely. (5)

n—oo logn — k

Proposition 2.1 (Binomial laws converging to the Poisson law) Let {U, : n > 1} be a se-
quence of independent random variables uniformly distributed on [0,1] and let {p, : n > 1} be a
sequence of numbers in [0,1] such that limy,_.oo np, = X for some A € (0,00). Let {X, :n > 1} be
defined by Xpn = Y| Liy,<p,y- Then lim, . @ Sor_1 1 Xk = A almost surely.

Proof. Firstly {np, : n > 1} is bounded and let B € (0,00) a constant such that np, < B for all
n > 1. For 1 < h < k we have Cov(Xp, Xi) = hCov(l{y,<p,1> Livi<pey) = MPn A pr — prpr}
and therefore Cov(Xp, Xi) € [0,hpg]. Then |Cov(Xp, Xi)| < kpg (%) < B% and condition
(C1) holds with C = B and p = 1. Thus (5) holds. We complete the proof noting that
limy, o0 @ Py %E[Xk] = X as a consequence of E[X}]| = kpy, (for all k > 1) and of lim,, oo np, =
A O

Proposition 2.2 (Poisson laws converging to the Poisson law) Let {U, : n > 1} be a se-
quence of independent Poisson processes with intensity 1 and let {t, : n > 1} be a sequence of
nonnegative numbers such that lim,_.. nt, = X for some X € (0,00). Let {X,, : n > 1} be defined
by Xy, =Y i Ui(tn). Then lim, .o @ Sor1 Xk = A almost surely.

Proof. Firstly {nt,, : n > 1} is bounded and let B € (0,00) a constant such that nt,, < B for all n >
1. For 1 < h < k we have Cov (X}, Xi) = hCov(U(tn), Ur(tx)) = hVar[Uy(ts A t)] and therefore
Cov(Xp, Xk) € [0, htg]. Then |Cov (X, Xi)| < ki, (%) < B% and condition (C1) holds with C' = B
and p = 1. Thus (5) holds. We complete the proof noting that lim, @ Sro tE[Xy] = X as
a consequence of E[X}]| = kty (for all £ > 1) and of lim,, o nt, = A. O



Proposition 2.3 (Central Limit Theorem) Let {U,, : n > 1} be a sequence of i.i.d. centered
random variables with finite variance 0. Let {X, : n > 1} be defined by X, = % Then

. 1 no1
limy,— o0 Tozn > k=1 57Xk = 0 almost surely.

1
Proof. For 1 < h < k one can easily check that Cov(Xp, Xi) = o2 (%)2 Then condition (C1)
holds with C' = 0% and p = 3, and (5) holds. This completes the proof since E[X;] = 0 for all
k>1.0

2.3 Some classical relations

We recall some classical relations which will be used in the proofs below. Firstly

j : j
. 1 . Jj+1 1 J :
log(j + 1) gkzlk < 1+logj and log*— skzk <log—=— (j 2 i >2). (6)
Moreover, if a € (0,1),
Lt sy b e Gy Gzizy @
1-a Sk T 1-a ==
note that (7) holds if « < 0 and j >4 > 1. Finally, if a > 1,
1 71
S TG DT S} m S g ()T (22 2). (8)
k=1

3 Large deviation results and sketches of proofs

In this section we give the statements of the LDPs proved in the present paper, together with a
brief sketch of their proofs. Note that the same rate function and the same sketch of the proof
pertain to Theorems 3.1 and 3.2. Moreover, in some sense, Theorem 3.4 is a sample path version
of Theorem 3.3.

Theorem 3.1 (LDP for the strong law of large numbers in Proposition 2.1) Consider the
same situation as in Proposition 2.1. Assume moreover that p, > ppy1 for all n > 1. Then
{@ Py %Xk :n > 1} satisfies the LDP with speed function v, = logn and good rate function
p(n) defined by

I?(A)(x):{ ((X\)f—ﬁﬁ if x>0

if x<O.

Theorem 3.2 (LDP for the strong law of large numbers in Proposition 2.2) Consider the
same situation as in Proposition 2.2. Assume moreover that t, > tp,i1 for all n > 1. Then
{@ Py %Xk :n > 1} satisfies the LDP with speed function v, = logn and good rate function

Ip(y) defined by
_ 2
Ipy(z) = { (V= VN)? if 220

if x<O.

Sketch of the proof of Theorems 3.1-3.2. In section 5 we prove (3) with Z, = @ Py %Xk,
v, = logn and
20 if <1

— 1-6
A(g)_{oo if 6> 1.



Then the Géartner Ellis Theorem can be applied and the LDP holds with the good rate function
Ipeyy given by A* in (4) (if # > 0 the supremum A*(x) is attained at 6 = 1 — \/g; if x <0 the
supremum A*(z) is attained by taking the limit as § — —o0). O

Theorem 3.3 (LDP for the strong law of large numbers in Proposition 2.3) Consider the
same situation as in Proposition 2.8, with 0> > 0. Assume moreover that E[e?U1] < oo for all 6 € R;
hence m; := E[U]] < oo forall j > 1. For o := Zi ?émh,h T;.LJ h, for all j > 6, we assume the
following condition:

(C2) : there exists M € (0,00) such that Cp := sup;>¢ lj\OZ,—J]' < 0.

Then {@ > ory %Xk : m > 1} satisfies the LDP with speed function v, = logn and good rate

2

function In o2 defined by Ino,q2)(7) = goz-

802

Sketch of the proof of Theorem 3.3. In section 6 we prove (3) with Z, logn pya ka, v, = logn

and A(f) = 2026%. Then the Girtner Ellis Theorem can be applied and the LDP holds with the
good rate function Iy 42y given by A* in (4) (for any € R the supremum A*(z) is attained at
0=%). 0

402

Theorem 3.4 (Sample path LDP) Let {U, : n > 1} be a sequence of independent standard

(real valued) Brownian motions. Let {X,, : n > 1} be the sequence of continuous processes on [0,T]
n (2. .

defined by X,(-) = % for some % € (0,00). Then {@ S ohe1 # Xk i n > 1} satisfies the

LDP with speed function v, =logn and good rate function Ig(,2.) defined by

T . )
Ino.o2)(E(t)dt  if x € A
I _ [ Iy o)
3(02')(33) { 00 otherwise,

where Ino,o2) i as in Theorem 3.3 and A is the family of all absolutely continuous functions x on
[0,T] such that z(0) = 0.

Sketch of the proof of Theorem 3.4. We illustrate how to apply Theorem 4.5.20 in [7]; the details
will be shown in section 7. Let X* be the dual space of X = C[0,T]. In subsection 7.1 we check the
existence of the function A : X* — (—o0, o] (actually we have A(f) < oo for all § € X*) defined by

1 :
A(B) := lim — logE[e’ Jo Z»(1db(1)) 9)

n—00 Uy,
with Z, logn Sor1 3 Xk, vp = logn and A(f) = 20> fOT 62((r,T])dr. In subsection 7.2 it is proved
that {Z, : n > 1} is an exponentially tight sequence. Then the function A* : X — [0, co] defined by

T

A*(z) := sup {/ x(t)do(t) — A(Q)}
e X* 0

coincides with Ip(,2.) in the statement; this is a consequence of a more general result Lévy processes

taking values on a Banach space (see section 3 in [6] where T = 1; the result can be easily extended

to any T € (0,00)). We complete the proof showing that the set of exposed points F coincides with

{r € X't Ip(y2.)(x) < oo}; this will be done in subsection 7.3. [J

4 Minor results and remarks

Firstly we remark that the rate functions Ip.\) and In,,2) presented above can be expressed in
terms of the Hellinger distance between two suitable probability measures. Furthermore we present
the LDPs for sums of two independent sequences of logarithmically weighted means as in the



theorems of the previous section. We also show that we cannot recover any LDP in this paper as a
consequence of the LDP in [15]. Finally we concentrate our attention on Theorem 3.3: we present
some examples for which the condition (C2) holds and we illustrate a connection with the LDPs
for two sequences of logarithmically weighted empirical measures in the literature (see e.g. [13] and
[19]). In this section we refer to another well known large deviation result, i.e. the contraction
principle (see e.g. Theorem 4.2.1 in [7]).

4.1 Rate functions and Hellinger distance

It is known that the sequences {X,, : n > 1} in the theorems of the previous section converge
weakly (as n — oo): the weak limit is P(\) in Theorems 3.1-3.2 and N(0, 0?) in Theorem 3.3. In
this subsection we illustrate how the rate functions can be expressed in terms of the weak limits of
the sequences {X,, : n > 1}. In view of what follows we introduce the Hellinger distance between
two probability measures P; and P, on the same measurable space ) (see e.g. section 3.2 in [16];
see also section 14.5 in [22]), which is H?[Py, P;] defined by

Jig Py, P dP1 dPy for any measure p such that P; and P,
1 P2 du dp B are absolutely continuous w.r.t. p.

Note that we also have H2[Py, P] = 1—A[Py, P,] where A[Py, P5] := [, /%%dﬂ is the Hellinger
affinity. We always have a choice for u, i.e. p = P; + P>. In what follows we rewrite the rate
functions Ipy) and I ,2) in terms of the Hellinger distance (or affinity) between two suitable

probability measures on R.

The rate function Ip,) in Theorems 3.1-3.2. It is easy to check that H?[P(A1),P(X2)] =
_GWA-VA9)?
1—e 2 for all A1, A2 > 0. Then we have

Iy (@) = ~2log(1 — H2[P(x), P(N)]) = —2log(A[P(x), P(V)]) (for = > 0).

The rate function Iy ,2) in Theorem 3.3. It is easy to check that H2[N(p1,03),N(p2,03)] =

_ (w1—p9)?

11— /%e weited) for all (u1,07), (u2,03) € R x (0,00). Then we have

In,02)(7) = —log(1 — H2[N(z,0%),N(0,0?)]) = —log(A[N(z, 0%), N(0, c%)]).

4.2 LDPs for sums of two independent sequences

In this subsection we consider two independent sequences {Zfll) :n > 1} and {Z7(12) :n > 1} as
in the theorems in the previous sections (except Theorem 3.4). More precisely, for h € {1,2}, we

define Z{" = g py %X,gh), where {Xq(ll) :n > 1} and {Xff) :n > 1} are two independent

sequences. Then we give the details of proof of the LDP of {Zr(Ll) + 2% 0> 1} (with speed
function v, = logn) in several cases. In each case the proof is an immediate consequence of the
application of the contraction principle for the continuous function (z1,x2) — x1 + z2, which gives
the good rate function I1,9 defined by

11*2(33‘) = inf{[l(xl) + IQ($2) T+ x99 = .1'}, (10)

where I; and I are the rate functions for {Z,gl) :n > 1} and {Zq(f) : n > 1}, respectively. In
each case we also give the details of the proof of the LDP as a consequence of the application of



the Gartner Ellis Theorem. We remark that the rate function can be expressed in terms of the
Hellinger distance with respect to the weak limit of Xfll) + Xr(Lz) as n — oo if the weak limits (and
therefore their convolution) are of the same kind. This is what happens in all the cases except the
last one.

Both the sequences as in Theorems 3.1-3.2 with [, = Ip,) for h € {1,2}. The rate
function 142 in (10) coincides with Ip(y,y),). Moreover, for x > 0, the infimum in (10) is attained
M Aox

at (r1,22) = ( peEs v ). We have the same result by applying the Gartner Ellis Theorem: the
rate function A* in (4) coincides with Ip(y, 4»,) because the function A in (3) is

A6 20 :
o+ ifd<l1
AG) = J 1-6 T 1-9

(6) {oo if 0 > 1.

Both the sequences as in Theorem 3.3 with Ij, = I ,2) for h € {1,2}. The rate function
Iis2 in (10) coincides with Iy s24,2). Moreover, for z € R, the infimum in (10) is attained at

2 2
o1x o5

(x1,22) = (52,2, ;27 52)- We have the same result by applying the Gértner Ellis Theorem: the rate
1 2 1 2
function A* in (4) coincides with Inq ;2. ,2) because the function A in (3) is A(6) = 20262 + 2026
1 2

A sequence as in Theorems 3.1-3.2 and the other one as in Theorem 3.3. We consider
I = Iy and Iz = Iyq,s2). We do not have an explicit formula for the rate function I1.2 in
(10); more precisely, for x € R, the infimum is attained at (x1,z2) = (z1(z),x — z1(z)) where

r1(z) € (0,00) is the unique solution of the equation (in x1) *3* + \/% —1 =0. The Géartner Ellis
Theorem allows to prove the LDP with a different expression of the rate function: the function A
in (3) is
RUN 202 4
)= | T t20%7 o<1
%) if 6> 1,

and A* in (4) becomes A*(z) = 0(x)x — A(0(x)), where 0(z) € (—o0, 1) is the unique solution of
the equation (in ) x = A'(0), ie. x = ﬁ + 40%0. Here it seems that we cannot express the
rate function in terms of the Hellinger distance with respect to the convolution between P(\) and
N(0, 0?), which is the weak limit of X,(ll) + X7(12) as n — oo (indeed X,(ll) and X7(l2) converge weakly

to P(A\) and N(0, 0?), respectively).

4.3 On the LDPs in [15] and in Theorems 3.1-3.2-3.3

In this subsection we discuss the differences between the LDPs in this paper (except the one in
Theorem 3.4) and the LDP in [15]. Firstly we note that, in the framework of Theorems 3.1-3.2,
we cannot have a weighted sum of i.i.d. random variables; indeed we have @22:1 %Xk =
Yoy @ > =i +1{ti<pyy in Theorem 3.1 and @ ShiXe =30, @ Sor_; +Ui(ty) in Theo-
rem 3.2. On the contrary, in Theorem 3.3, we have

Y X Y w Il it o) = S

X = a;(n)U;, with a;(n) :=

logn ek k — ’ v ! logn kVk'

k=i

for a sequence {Uy,, : n > 1} of i.i.d. random variables.

In what follows we show that the LDP in [15] does not allow to recover the LDP in Theorem
3.3 with 02 = 1 (this restriction meets (2.1) in [15]). Firstly we note that we should have A(f) =
So00, gl by (2.4) in [15]; thus we have

apcp, | 2 ifh=2
Bl 0 if h> 3.



We also have ¢ = 1 by the definition of the function C in [15]; then, if we do not have any restriction
on the (common) distribution of the random variables {U,, : n > 1}, we should have as = 4 and
ap, = 0 for all h > 3. Moreover, if we look at (2.2)-(2.3) in [15], we should have

n n h

1 1 ap

—_— —— | =——+—R(h for all h,n >1
(logn)h Zzl <; k\/%) (logn)h*1 ( 7n) or a ,n =1,

where the error term R(h,n) is close to 1 in a suitable sense. This condition cannot hold because
the left hand side and the right hand side have a different behavior as n — co.

4.4 Some examples for which condition (C2) holds

In this subsection we show that condition (C2) holds if the (centered) random variables {U,, : n >
1} are bounded or normal distributed. A natural question is whether it is possible to characterize
condition (C2) in terms of some features of the (common) law of the random variables of {U,
n>1}.

Bounded random variables {U,, : n > 1}. If P(|U,| < B) =1 for some B € (0,0), we have
-3
Z ”L mJ h
h!
h=

Then (C2) holds by taking M > 2B.

ZB]; i ii@m: CB) _ (opy.

o] =

<

Normal distributed random variables {U,, : n > 1}. If {U, : n > 1} are N(0, 0?) distributed,

it is known that mo, = 02’“% and moi_1 = 0 for all £k > 1. Then for all p > 3 we have

_ 2p+1-3 my, M2py1-h __
Q2p+1 = 2 =3 Rl pri—hy — 0 and
2p—3 p—2 p
0< o — N Mapn Z N Z g
>~ G2p — 71 7a. 1 ~ - .
P = hl (2p — h)! 2k k! 20—k (p — k)! 2pp‘

Then (C2) holds by taking M > o.

4.5 On the LDPs in [13]-[19] and in Theorem 3.3 (with % = 1)

Let M(R) be the space of all nonnegative Borel measures on R and let M;(R) be the space of
all probability measures on R. Both M(R) and M;(R) are equipped with the topology of weak
convergence. Then, in the framework of Theorem 3.3 with o2 = 1, it is known that the sequences
of logarithmically weighted empirical measures in (1) and (2) satisfy the LDP (see the references
cited in the Introduction); in both cases we have the same good rate function J defined by

2
sy =l bk (/5 ()) NO,1)(dy)  if v € My (R) and v < N(0, 1)
otherwise,

where v < N(0, 1) means that v is absolutely continuous with respect to N(0,1) and Wyl) is the
density.

If the map v — [ yv(dy) were continuous on M;(R), we could prove Theorem 3.3 by an
application of the contraction principle and the good rate function Inyg,1) would be

Ino,1)(z) = inf {J(V) : /Ryy(dy) = x} for all z € R. (11)

8



Unfortunately v — [ yv(dy) is not continuous; nevertheless (11) holds. In fact, for any fixed
z € R, let v € Mi(R) be such that v < N(0,1) (otherwise we have J(v) = o0) and [, yv(dy) = .
Then we have

2 4 v 2

(d dv(y)> _ (it ®) _1(4‘;N501><y>> v
NNy T ] a4 dv

dy \| N(0,1) 9 N(do,1)(y) 4\ 55 N(0, 1)

1/d dv 2 dv
:Z (dleg N(O, 1)(9)) N(O, 1)(21)7

whence we obtain

2 2
-3 [ (;‘; N{ﬁfl)@)) N1 = § [ (0w 50500 ) vl

Thus, by the Jensen inequality, we have

102 ([ By & pian)

and the lower bound is attained if and only if d% log %(y) is a constant function, i.e. log %(y)

2
is a linear function. Thus we have Néio 0 (y) = eP= for some 0 € R and, by taking into account
the constraint [ yv dy)

= x, we have to choose § = x. In conclusion this choice of v gives
2 .
(fR dcé log NO oo W ) = % = In,1) () and this proves (11).

5 The proof of (3) for Theorems 3.1-3.2

In this section we give the details of the proofs of Theorem 3.1 and 3.2 which lead to the application
of the Gartner Ellis Theorem. In the framework of the two theorems we have to check that

. logE[e?Xk=1 %X’C] B % if <1
n11_>11010 og =\ oo ifO>1 (for all 6 € R). (12)

oXn_, X
Note that, in both the situations, the function 6 — W

{3>°%_1 + X : n > 1} are non-negative random variables. Thus, assuming that (12) holds for § < 1,
we can easily obtain (12) for § > 1 as follows: for each n < 1 (and for § > 1) we have

is non-decreasing because

logE[enzzzl %Xk] < logE[eezzzl %Xk]

(for all n > 1),

logn - logn
whence s iy T
log Ele 2«k=1 %k logE k=1 %k
ﬂ = lim inf ogEle il < lim inf ogEle i
1—n n—0o0 logn n—o0 logn

and we conclude letting n T 1.
Thus we only have to prove (12) for # < 1. The two theorems deserve different proofs.



5.1 The proof of (12) (with § < 1) for Theorem 3.1

We start with a useful expression for logE[ee k=1 %X’“] provided by the next Lemma 5.1. This
expression is given in terms of the following quantities:

{ b = ATkt (5 € {1, n}, i < j);
o = pi(0) — 1) and B = 0 pia 0V), — b)) (e {1,...,n—1})

Lemma 5.1 We have log E[e? Zk=1 %X’@] =" Mog(1+ oy + ﬂi(n)) +log(1 + o) for alln > 1.

Proof of Lemma 5.1. Firstly, since the random variables {U,, : n > 1} are i.i.d. and > }_, %Xk =
k
S bt it Lt <p} = 2oim1 Do %1{Ui§pk}’ we have

n
log E[eGZZﬂ %Xk] = Z]Og E[e922:i %1{Ui§pk}:|.
=1

By the monotonicity of the sequence {p, : n > 1}, the expected values in each summand at the
right hand side can be written as follows:

1
E[ef Zk=i & 11visni)] :/ I Xhizi 5100 (@) g
0

Pn n—1 D; 1
:/ eezz=i %l[o,pk](w)dx + Z/ 6922=i %l[o,pk](w)dx +/ 60 ZZ:@ %1[O,pk](1')dx
0 .

=i Y Pj+1 pi

n—1
n 1 J 1
=pne’ Zi=ik 4+ "(p; — pjp1)e’ Zi=i & + (1 —py).
j=i

Then we have to prove that

n-1 . (n) .o .
oy, L . o, 1 1—p) — 14+ o; + f; ifie{l,...,n—1} 13
P +;(pj Pit1)e TAEP=0 4, if i = n. (13)
We start with the left hand side in (13). For i = n it is equal to
9 A
pren + (1 —pp) =1+pplen —1) =1+ .

For i € {1,...,n — 1} it is equal to
n—1 - n—1 - L
J J n
1 — pi —|—Zp]ee k=i k — ij+1€9 k=i k +pn€62k:iE —
j=i j=i

n n—1
9 97 _ L 97 _ L
1 —pi+piei + § pje k=1k—§ pjp1e “h=ik =
j=i

j=i+1
[4 n-l j+1 1 j 1
J J
Lt pilet —1)+ > pjpa(?Thaik — e/ Thei) =1+ a; + 4. O
j=i
Note that, since lim,, ..o np, = A,
A0
= P (bW — 1) :pn(e% — 1)~ — —0asn— oo; (14)
n

10



thus lim,,_ o log(ltan) _ ) and, by Lemma 5.1, (12) will be proved for § < 1 if we show that

logn

. S og(1+ i + 8™) A0

= . 15
n—00 logn 1-6 (15)
j 2]
Moreover, since BZ.(n) = Z}:Z.l ijeGZi:i %(em —1),
n—1 92 %
|5 ’<ZP+16 Zkzk\ej+1—1\<C'Z G
] =1
where C' 1= sup,,>1 7Pn SUPgc(0,1] ]7691_1| € (0,00). Thus, in order to check that
lim ﬁ (16)

n>1—00

we can use (6) with ¢ > 2 and the second inequality in (8) with o = 2 — 6 as follows: for 0 <6 < 1

nl 05k (I | i \?1 1
< < — :
ATESIE —@_1)9;(]-“)29—(@»_1) it—o "

for 8 <0
n—1 g5 1 n—1
e’ k=i k 1 1 1
<= - —0
; (j+1)2 = ; (G+1)%% —i(1-0)
an or every integer ig >
By (14) and (16), f y integer g > 1,
10 ) io (n) ig 2 io (n) 2
lim Zz:l Q; :0; lim Ez:l i :0; lim Zz:l Q; =0; lim Ez:l{ﬁz } =0.
n—oo logn n—oo  logn n—oco logn n—oo logn

Note that there exists m > 0 such that |log(1 + z) — | < ma? for |z| < . Then, by (14) and
(16) there exists an integer iy such that, for any integer n and i such that n > ¢ > ip, we have

| + Bi(n)| < £ and therefore

> {log(1 +ai+5") = (o + 5")}| <3 [log(1+ s 4+ 5") — (o + 5"
<m(ai+ ) < 2m > (aF + {8 1).

In conclusion, for # < 1, the proof of (15) (and therefore of (12)) will be a consequence of the
following relations:

Dimig % iy O

(1) : limy 00 Togn (:)0; (79) : limy oo Togn =0; .
. Yy B . . Y 16
(447) : limp 00 ﬁ = 1)‘799; (1v) : limy o I?)T 0.
Proofs of (i)-(i1). By (14) and the Cesaro theorem we have lim,, Zf:gi(;lai = lim,, oo Ny, = 0
and lim,, .~ Zf:;% L= limy oo na =0.

Proof of (iii). Consider the quantity v; := Egzl pj+1(b§-21 - bg-i)), and the following equalities hold:
n—1 n—1n—1 . ) n—1
AR 9 WIRTISIEES it
i=1 i=1 j=i j=1

11



—1
I >\9
logn — 1-0

Thus we have to prove that lim,, .
the Cesaro theorem. Since

, which is equivalent to lim, o nvy, = % by

LN , o LN 0 <
Nyn = NPn+1 Z(bgp)rl - bg)) = npn+1(en-90—1 - 1) Zbg) ~ )\7 Z bg) as n — oo,
=1 =1 =1

we only have to prove that

n (%)
lim 2z bn” 1 (17)

n—00 n C1-6

We prove (17) for 0 < § < 1; the proof (17) for 6 < 0 is similar (the inequalities must be reversed
but lead to the same conclusion) and therefore omitted. By (6)

[%
(n+1)? <b) < nf and <n+1> < bW < ( n

1 1 —

0
1> (for i € {2,...,n});

hence, summing over i € {1,...,n}, by (7) with & = 6 we obtain

Z?:bsz) nf 0—1 nt—0
0 =< €+Z7,211) ~n e+10

mb) (n+1) D (n+1)¢ (n+1)1-¢ 1

n n i=130 " n 1-0 — 19

>_’1i9
as n — oo.

Vv

Proof of (iv). Firstly let us consider the following quantities:

{ Aip = Z;L zl P32+1(b§21 - bgl)) ' '
Bin = Zj>k:ipj+1pk+1(b§-|)-1 b§’))(b§cil b()) ZJ i+1 Zk zp]JrlpkH-l(bg-i)—l bﬁ))(b,(ﬁl bi@%

then we can write
{B0F = ¢ 02 =) b = Ain +2Bi,

and we prove (iv) showing that
n—1
lim ==L Ain _ 0 (18)
n—oo  logn
and .
— an
w izt Bin (19)

n—oo  logn

Proof of (18). Consider
J , ,
pii= P, — b2
i=1

Hence >0 Ay = 3007 Z? - p§+1( J_)H b(z)) =3 ~! p;; then (18) is equivalent to lim,,

0 and, by the Cesaro theorem it is also equ1valent to lim,, o np, = 0. We note that

-1
Z?:1 Pj
logn

" 7 i _0 - i )\292 i I3
Npn = npgl-f—l Z(b$z3r1 - b%))Q = np?wrl(@"“ - 1)2 Z{bg)}Q ~ m Z{bg)}ﬂ as n — 0.
i=1 j= i=1

We start with the case 0 < 6 < 1. From (6) we get

20 260
(n+1)% < {p12 < 29329 and <nj1> < {p)? < <zn1) (for i € {2,...,n});

12



hence

6
2\_2’_612)3 Zz 1{b }2< ?:9512 (29+Zz 2(1 1)29) NA202 20- 321 1%

2202 2202 (n41
R (o)) > BT s L~ NS L

As for the proof of (ii7) we have reverse inequalities for the case # < 0 and we obtain similar
estimates. In conclusion we prove (18) distinguishing the following three cases:

as n — OoQ.

e for § < I we have n? 331" 1%~n29_3q1__22; = L )—>Oasn—>ooby (7) with a = 26;

(i—20
263 1 _ -2 1 logn _
e for 6 = 1 we have n i r =N ) i i~y — 0asn — oo by (6);

o for <O <lwehave0 <n?* 33" 2 <Cn? 3 — 0asn — oofor C =32 5 € (0,00)
since 20 —3 < 0if § <6 < 1.

Proof of (19). Consider

j—17-1
&= > prpen (07, = 57) (0, - b)),
=1 k=i
Hence we have Z?:l in Z IE] i+1 Zk ng+1pk+1(b§ll — bg ))(bl(gl — b](;)) = E;‘;Ql &j; then
(19) is equivalent to lim, Zfo:;ngj = 0 and, by the Cesaro theorem, it is also equivalent to

lim,, 00 n&, = 0. We note that

n—1n—1 n—1 k
nén=n>y_ an+1pk+1(b7(13rl - bq(l))(b;ll — o) = nppa( (enit —1 )Y D prra(eFT — 150"
i=1 k=i k=1 i=1
n 1 k ‘ ]
Zpkz-H - )bﬁf)b,(;) as n — o0;
k=1 i=1

thus, if ®(n) := ZZ;% le pk+1(eki+1 - 1)b£f)bg), (19) will be proved if we show that
lim 2(n) = 0. (20)

We start with the case 0 < § < 1. From (6) we get
0,0,0.0 g n \"( k\°
0< ®(n N)\HZ (enek: +Z<i—1> (i_1>>asn—>oo
9n1 1 %
<\On kZZIW< +Z§:; i=1)? >

Then we prove (20) (and therefore (19)) for 0 < 6 < 1 distinguishing the following three cases:

o for0<0<} Wehave)ﬁnezk ! k; (2 + by iy ) <20 St s (2 4+ 555 ) =

Anfe?0 S k2 7 + %939 St k9+1 < an9 for a suitable constant Cy € (0,00) by (7) with
a = 26 and noting that Y 7, k2,9 Py W € (0, 00);

(e+3ko i) < 4nd Xiol A (e+1+log(k 1)) < Cvn
,00)) by (6);

=

—1 At n—1
o for 0 = 5 we have gn2 ) ;7

TN
O i

(for a suitable constant C' €

13



°f0r2<9<1wehave/\9n92k 1k1 (20+Zz2 G—1)2? )<C’9n where
Cyp = (329 + 21':2 m) Zkzl ]{327_3 € (0,00).

We conclude with the case §# < 0. Firstly note that Cp = Y 72, kz—l_g € (0,00) and C :=

efr

SUp,,>1 NP infpe (0] ¢ =1 € (—00,0). Then, in order to prove (20) (and therefore (19)), we use (6),
(7) with o =26 and (7 ) with o =1+ € as follows:

n — (k+1)2 —
n—1 k 0 0
Z% = (k:il)2 (‘39”966’“9 * ; (z - 1) <z Ij 1) )
n—1 k n—1
Z%nG 2 % <e29 + ; G _11)20> > 762909n9 + (f’f;g) g k11+9
~ 62909719 + n(lcilé;e) 1711_((11:0)0) = %eQngng + n(l—CQH)W\ —0asn— o0

5.2 The proof of (12) (with § < 1) for Theorem 3.2
Firstly we have
log E[eez}z:l %Xk} = logE[€9ZZ:1 %Zf:l Ui(tk)]
_IOgE[ 027« 1Ek 7«% )] = ZlogE[eaz:Z:z %Ul(tk)L
i=1

since Uy ...,U, are i.i.d. processes. By the monotonicity of the sequence {t,, : n > 1}, for any
ke {i,...,n} we have Ui(ty) = Ui(tn) + ZZ;;;{Ul(th) — Ui (tp+1)}; hence Uj(tg) is the sum of
independent Poisson distributed random variables Uy (ty,), Ui (tn—1) — Ui(tn), ..., Ur(tx) — Ui (tx+1)
with means t,,t,—1 — tn,...,tk — tgr1, respectively, and we have

logE[e 0 ho1 #X Z]Og[@ GZk s 7 UL () +0 0 £ S h iU (th)— Ul(th+1)}]
=1

=3 log Ble? Tins #0100 TRZHU ) -U1 (0} Do ]

=1
n n—1

=3 {tn(e"m—ii 1) > (b — t ) (TR — 1)} -
=1 h=1

14



We obtain the following expression handling the latter sum as follows:

n n—1 n—1
log E[e? 2k-1 i Xk] = > {tneezz—i’lﬂ +) (th - the1)e! Thei - (tn + ) (th— th+1)) }

i=1 hi h=1

_Z{t eGEk ”“+Z th_tthl) HZk zk—t}

=1
-y {ztheﬂzﬁii (1 Sttt
i=1 (h=i h=i
- - h 1 - h—11 © = h—1 1
:Z {Ztheezk—ik — Ztheezk:i k} = Z theoz:k i k )
' ' j i=1 h=i
SR WEEE

In conclusion we have

log E[e/Zhat iX] S0 gy (er — 1) S0 TR %

logn N logn
n
n— Y n—
Nntn(e% -1) Zegzk:;% ~ Zeequ’l% as n — 0o
i=1 i=1

by the Cesaro Theorem and lim,, .~ nt, = A, and we complete the proof (12) for # < 1 noting that

logE[e?Zk=1%%]  A0e? A0 nl™?
logn nl=0  pl-01-4

as n — o0

by (6) and (7) (for the cases i =1 and 7 € {2,...,n}, respectively).

6 The proof of (3) for Theorem 3.3
In this section we give the details of the proof of Theorem 3.3 which lead to the application of the

Gartner Ellis Theorem. In the framework of that theorem we have to check that

log E[eez;;:l %Xk
lim

n—00 logn

) = 20262 (for all § € R). (21)

In what follows we set .

Sip = Z k\lf (form >i>1). (22)

Then, since the random variables {U, : n > 1} are i.i.d. and Y, _, %Xk =y %Ei
oy sinUi, (21) becomes

L i log Bl e

= 20262 (for all § € R).
n—00 logn

Let igp be a fixed integer and let n and i be such that i < ip and n > i. Note that P(0U; >
0) > 0 since the random variables {U,, : n > 1} are centered and 0 < s;, < s, < 00 where
S100 = 9 gy ﬁ Then we have

E[eési,nU1] _ E[eesi,nU1 1{9U120}} + E[608i,nU1 1{9U1<0}] < ]E[6051,00U1] +1<o00
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and
E[e” ] = E[e® " g1, 501] + Ele?n P 1gr, cop] > Ele? " 1g17,50y] > P(OUL > 0) > 0,
whence we easily obtain

032 nUl

n—00 logn

=0 (for all 6 € R).

Thus (21) is equivalent to

ZZ i IOgE[ 937, nUl]
lim ;

= 20260 (for all § € R and ig > 1). (23)
n—00 logn

In what follows we shall choose iy in a suitable way
For the function ¢ defined by ¢(y) := Z;X’ 1 GrY, we have

oy y+z y and E[e?U] = 1+ ¢(y).

The function ¢ is continuous on R and, since ¢(0) = 0, there exists § > 0 such that |¢(y)| < 3.
Hence, for all § € R, there exists an integer ig such that, for any integer n and i such that n > ¢ > 4,
we have |0s; | < ¢ and therefore |¢(0s; )| < % Introduce A;,, and B;,, defined by

o0

Aip = 92 2 nand B, = E %938571;
i L
=3

moreover note that there exists m > 0 such that |log(1 4+ 2) — x| < ma? for || < 1. Then, since
&(0sin) = Aipn+ Bin = E[easiv"Ul] — 1, for n > i > ip we have |A; , + Bin| < %, whence we obtain
|log E[e?*inU1] — (A;, + Bin)| < m(A;n + Biyn)?, and the following inequalities:

n

> {log B[] — (Aip + Bin)}| <D [log E[e™n ] — (A + Biy)|

1=10 74'_7:0
<mZ (Ain + Bin)? <2mz (A2, + BE)

i=ig i=ig

In conclusion the proof of (23) (and therefore of (21)) will be a consequence of the following
relations:

. . Yitig Ain .. . Yieig Bin
(i) : limp oo W = 20%0%; (i1) : limy_oo Ho’%n =0;
227) @ 1My 00 logn 7 \2) ¢ Mp—oo logn :

Proof of (i). By the definition of A; ., (i) is equivalent to

nooog2
lim Lizio Sin =1. (24)
n—oo  4logn

By (8) with a = 2 we have 2 (W - \/an_l) < sin <2 ( il_l _ %) whence
11 2 Sin 11 2
-+ — < — < - + =



Thus we have the bounds

2
Z:'L:io Sin 1 Zn 1 + n—i+1 Z 1
4logn = logn =10 1 n+1 Vn+1 1=i0 \/§
Z?:'L'O S?n

A

) 1 n 1 n—ig+l 2 7\ 1
4logn — logn (Zi:io i—1 + n NG Zi:io q/z‘_l) ’

whence we obtain (24), noting that > ~logn asn — oo by (6), and Y77 \% ~

n as n — oo by (7) with a =

1
Z?Zio m

i=ig 1 Z
1
‘ 2
Proof of (ii). Firstly, by (8) with a = 4 and j > 3

3 (and also ig > 2), we have

n

. =

Si—-1)r  J2(—1)5!

Then, by the second inequality in (8) with o = % and the latter equality, we obtain

. oo 1
)] Z] 3 ]l (2|9|) Zz 10 (ifl)%

n oo |my] j 1
- logn logn

g il (210))

logn

27, 10 B; n
logn

<2

— 0 (as n — 00),

noting that » 2% %(2]9 )9 < 0o because a convergent power series is also absolutely convergent.
Proof of (iii). By the definition of A; ,, (4i7) is equivalent to

no 4
Zi:io Sin

n—oo  logn

= 0. (25)

Moreover we already remarked that s;, < 2 ( \/7 f) whence we obtain the inequality s n <

n Z'L 2 L
= 1) Thus (25) holds noting that 0 < Ez 0 i <16 lgg(; -

Proof of (iv). By the Cauchy formula for the product of two convergent series we have Bﬁn =

— 0 asn — co.

> s ;6 sfn (where «; is as in the statement of Theorem 3.3); moreover (C2) and the second

inequality in (8) with a = 3 yield

] (e}
<Zaj|e|f< ) = Z( vy
Now define iy := [(2|0|M)?] 4 2. Then, for i > i1, we have \|/T < \/‘“ﬂ < 1, whence

i<2|9\M>j_ 1 <2|0|M>6< 1 (2\«9]M>6_ C
T - 2|6| M - - 2|0| M T T (5 —1)3°
S \Vi 1 1— 22 \ Vi 1 1- 22 i—1 (i—1)

for a suitable constant C' > 0. Thus, for n > ig V i1, we have

Vi 1
Dicio Bin Z:O w0l Bl + i iovin+1 Bin - S B2, . CCo Y21 (igvin) 41 =T
logn logn - logn logn

n 1 igVi
2im(igvin+1 o3 Yili) Bl :
Togn ~Togn = O noting

that, by the second inequality in (8) with v = 2 as before, | B; | is bounded by a positive constant:
. J . .
[Binl < 2525 5101 (25)" < 5552, 5 210]) < o

and we trivially have lim,,

= 0. We also get that lim,,—
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7 Some details on the proof of Theorem 3.4

We start by checking the existence of the function A : X* — [0, c0] defined by (9), where X* is the
dual space of X = C[0,T]. Later we shall prove the exponential tightness for @ 1 kX Ein> 1}

In the final subsection we shall study the exposed points. In view of what follows it is useful to
remark that, by (22), we have

- 1 1 Zz 1 U
Do Xe=> 1 Zsm i(o%). (26)
k=1 k=1

7.1 The proof of (9)
We have to check that

o SRoy £ Xk (D)do() T
im 108 Elelo == | _ 202/ 62((r, T])dr (for all 6 € X*). 27)

n—00 logn 0

Then, by (26), remembering that {U, : n > 1} are i.i.d. processes and U;(c?-) and oUy(-) are
equally distributed, (27) becomes

" OSi,n T
lim Zi:l IOgE[e n Jo U1(t)d6(t)}

n—oo logn

T
= 202/ 62((r, T])dr (for all 6 € X*).
0

Now note that

/0 //dU1 )do(t //dé? (t)dUi(r /GerUl)

whence we obtain
2

T
log E[e7%in I Ul(t)de(t)] log E[e oSim [y 0((r,T])dUL(r )] _ 02522’71/ 92((74’ T))dr,
0

and in turn (27) by (24).

7.2 The exponential tightness for {@ Sy %Xk in > 1}

By (26) the exponential tightness condition for {10 o 1 k:X Ein > 1} can be written as follows:

(ET): For all R € (0,00) there exists a compact set Kr C C[0,T] (with respect to the uniform
topology) such that

1 1 —
li log P inUi(0?) ¢ K < _R.
lgl_,Sogp logn 8 <{logn ;S’ (0%) ¢ R}) -

Our aim is to find the compact set K in (ET) following the procedure in [1]. In view of this
let us consider the modulus of continuity of f € C[0,T7, i.e

wg(n) =sup{|f(t2) — f(t1)] : 0 <81 <tp < 1,89 — t1 < n} for n > 0.

Then, given a sequence 0 := {0, : n > 1} such that 6,, | 0 as n | oo, consider the sets {As ) : k > 1}
defined by Asp = {f € C0,T] : wy(dg) < %}, and the set As := Np>1Asy is compact by the
Ascoli-Arzela Theorem. Our aim is to check (ET) choosing Kr = Agsg), i.e. choosing for any
R € (0,00) the sequence § = §(R) in a suitable way.
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We trivially have P ({logn S sinUi(c?) € Ag}) <3y ({logn S sinUi(c?) € Ag,k})
since A§ = Up>1A§ 5k Then it suffices to show that, for a suitable choice of 6 = §(R), there exists
a sequence of positive numbers {f, : n > 1} such that >_ -, 8, < oo and

< —Rlogn_
({lognzszn i EA }) _ﬁk’e

Now let Bf (k> 1 and t € [0,7]) be the set defined by

Bf;:{feo[o,T]: sup | f(r) - )y>31k}

TE[t,t+6y]

. . . T "
Then, by the triangle inequality, we have Ag,k =U j:’é B;%k. Thus

1 S 2 c
P ({logn ;Si7nUi(U ) S Aé,k})

Tdk_l 1 n 1 n
2 2,
< Z P ({ sup log ;smUi(a r)— log ;si,nUi(a Jok)

T€[jO,(7+1)0]

4

T8 !
logn
= P sup Szn{U U T (U ](5 )} })
2 ({remkmlm] Z 3k
logn
>
re[0,64] 3k })

_ logn
=(1+T5 )P sup |U smcr?" > .
S <{rew 1<Z > 3 }>

=1
Then, by the Désiré André reflection principle (and noting that U; and —U; are equally distributed)
and by a well known estimate for the tail of Gaussian random variables, we have

P ({1 - ZE 1 sinUi(0%:) € A(;,k}> 4(1 + Ték )P ({Ul (O’ Ok ZE 1 Sin | > 3%

—4(1 4+ T6;"

n

Z si7nUi(02r)

=1

=(1+T5,"P <{ sup

_x
e 2dx

1/ / logn
\/ 6k22 1 ?n

log2 n

1 18k2o'25k Z",Ll s?’n

<4(1+7T6. 1Y)

1ogn

2m 3ka\/5k 1 zn

n
i=15i,n

logn

Thus, setting a, := , we get

logn
e 18k%0 26kan

4
({lognZSzn 7 GA }) < TW(I—FT(S 3]430@ logn

Van

moreover, since a,, — 4 as n — oo by (24), there exist two positive constants C1 and Co such that

logn
< T CokZs
({mgnzsm i(0) € Aj }) < Cik/Ope ©2F0n
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for n and k large enough.
Then a suitable choice for the sequence 6 = {0, : n > 1} is §, = %. Indeed Y7o ko) =

1 1 k4
Zk21 72 < 0o and G = 5 > R for k large enough.

7.3 The exposed points

We recall that z is an exposed point of A* if there exists an exposing hyperplane 6, such that

T
A (x) —|—/0 (2(t) — x(t))db,(t) < A*(2), for all z # x.

Note that, obviously, x is not an exposed point of A*. Then we have to show that this condition
holds for any = € X such that A*(z) < co. If A*(2) = oo there is nothing to prove. Moreover
we can say that, if A*(z) < oo, there exists a unique 6, € X* such that 0,((r,T]) = “Z((:Q) for all
r € [0,T]; thus if A*(2) < co we have

T T T
A*(z) + /0 (2(t) — (t))dba(t) = /0 2(8)db, (1) — A(B,) < /0 2(8)d8, () — A(8:) = A*(2).
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