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Abstract

In this paper we consider several examples of sequences of partial sums of triangular arrays
of random variables {Xn : n ≥ 1}; in each case Xn converges weakly to an infinitely divisible
distribution (a Poisson distribution or a centered Normal distribution). For each sequence we
prove large deviation results for the logarithmically weighted means { 1

log n

∑n
k=1

1
kXk : n ≥ 1}

with speed function vn = log n. We also prove a sample path large deviation principle for
{Xn : n ≥ 1} defined by Xn(·) =

∑n
i=1 Ui(σ

2·)√
n

, where σ2 ∈ (0,∞) and {Un : n ≥ 1} is a sequence
of independent standard Brownian motions.
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1 Introduction

Let {Xn : n ≥ 1} be defined by Xn := U1+···+Un√
n

, where {Un : n ≥ 1} is a sequence of i.i.d. centered
random variables with unit variance. The almost sure central limit theorem states the almost sure
weak convergence to the standard Normal distribution of the sequences of random measures

{
1

log n

n∑

k=1

1
k
1{Xk∈·} : n ≥ 1

}
(1)

and, of course, of {
1

L(n)

n∑

k=1

1
k
1{Xk∈·} : n ≥ 1

}
, where L(n) :=

n∑

k=1

1
k
. (2)

The almost sure central limit theorem was proved independently in [4], [11] and [21] under stronger
moment assumptions; successive refinements appear in [12] and [17], in which only finite variance
is required.

There is a wide literature in the field of large deviations, namely the asymptotic computation of
small probabilities on an exponential scale (see e.g. [7] as a reference on this topic). Some results in
this field concern the almost sure central limit theorem: see e.g. Theorem 1 in [19] (the expression
of the rate function is provided by Theorem 3 in the same reference) for the sequence in (1) and
Theorem 1.1 in [13] for the sequence in (2). Both the results are proved assuming that all the
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(common) moments of the random variables {Un : n ≥ 1} are finite; the optimality of the moment
assumptions is discussed in [18].

A generalization of the almost sure central limit theorem is proved in [2] for sequences {Xn :
n ≥ 1} where Xn := gn(U1, . . . , Un) for some independent random variables {Un : n ≥ 1} and
some measurable functions {gn : n ≥ 1} which satisfy mild technical conditions. The result in [2]
allows to recover some almost sure limit results in the literature, as for instance those concerning
the Fisher Tippett Theorem (see e.g. Theorem 3.2.3 in [8]) in [10] and [5]; in this direction a more
general result is proved in [9].

In this paper we consider several examples for the sequence {Xn : n ≥ 1} and, for each one
of them, Xn converges weakly to an infinitely divisible distribution (more precisely a Poisson
distribution or a centered Normal distribution). In some sense these examples are inspired by a
well known generalization of the central limit theorem concerning partial sums of triangular arrays
of uniformly asymptotically negligible random variables which converge weakly to an infinitely
divisible distribution with finite variance (see e.g. Theorem 28.2 in [3], where one can easily
overcome the null expected value hypothesis). For any choice of {Xn : n ≥ 1} we prove large
deviation principles for { 1

log n

∑n
k=1

1
kXk : n ≥ 1}, i.e. the sequence of integrals with respect to the

random measures in (1), with speed function vn = log n (obviously we have the same results if we
consider the expected values with respect to the random probability measures in (2); the details
will be omitted).

All the large deviation results presented in this paper, except Theorem 3.4, concern the almost
sure convergence of logarithmically weighted means guaranteed by a suitable condition on the
covariances Cov(Xh, Xk), for all 1 ≤ j < k (see condition (C1) below). In Theorem 3.4 we have
again { 1

log n

∑n
k=1

1
kXk : n ≥ 1} and the sequence {Xn : n ≥ 1} is defined by Xn(·) =

∑n
i=1 Ui(σ

2·)√
n

,
where σ2 ∈ (0,∞) and {Un : n ≥ 1} is a sequence of independent standard Brownian motions.

One of our examples concerns the framework of the almost sure central limit theorem as in [19]
(and in [13]) but, as we shall see (see subsection 4.5 below for more details), the large deviation
principle for the sequence of integrals with respect to the random measures cannot be derived from
the one for the sequence of the random measures using standard large deviation tools. Similarly,
in subsection 4.3, we show that the results in this paper cannot be derived by the main result in
[15], which concerns weighted sums of independent identically distributed random variables.

The outline of the paper is as follows. We start with some preliminaries in section 2. In section
3 we give the statements of the large deviation results together with brief sketches of their proofs.
Minor results and remarks are presented in section 4. We conclude with sections 5, 6 and 7 in
which we present some details of the proofs of Theorems 3.1-3.2, 3.3 and 3.4, respectively.

We conclude with some notation and symbols used throughout the paper. We write xn ∼ yn (as
n →∞) to mean limn→∞ xn

yn
= 1 and we adopt the convention

∑b
i=a xi = 0 if a > b. Furthermore

we use the symbol P(λ) for the Poisson distribution with mean λ ≥ 0 (one can also allow λ = 0
referring to the distribution of the constant random variable equal to zero) and the symbol N(µ, σ2)
be the Normal distribution with mean µ ∈ R and variance σ2 > 0.

2 Preliminaries

2.1 Large deviations

We refer to [7] (pages 4-5). Let X be a topological space equipped with its completed Borel σ-
field. A sequence of X-valued random variables {Zn : n ≥ 1} satisfies the large deviation principle
(LDP for short) with speed function vn and rate function I if: limn→∞ vn = ∞; the function
I : R→ [0,∞] is lower semi-continuous;

lim sup
n→∞

1
vn

log P (Zn ∈ F ) ≤ − inf
x∈F

I(x) for all closed sets F ;

2



lim inf
n→∞

1
vn

log P (Zn ∈ G) ≥ − inf
x∈G

I(x) for all open sets G.

A rate function I is said to be good if its level sets {{x ∈ X : I(x) ≤ η} : η ≥ 0} are compact.
In what follows we prove LDPs with X = R and we use the Gärtner Ellis Theorem (see e.g.

Theorem 2.3.6 in [7]); the application of this theorem consists in checking the existence of the
function Λ : R→ (−∞,∞] defined by

Λ(θ) := lim
n→∞

1
vn

logE[evnθZn ] (3)

and, if Λ is essentially smooth (see e.g. Definition 2.3.5 in [7]) and lower semi-continuous, the LDP
holds with good rate function Λ∗ : R→ [0,∞] defined by

Λ∗(x) := sup
θ∈R

{θx− Λ(θ)}. (4)

We also prove a sample path LDP, i.e. a LDP with X = C[0, T ], i.e. the family of all continuous
functions on [0, T ] (for some T ∈ (0,∞)) equipped with the topology of uniform convergence. In
such a case we consider an abstract version of the Gärtner Ellis Theorem, i.e. Theorem 4.5.20 in
[7] (Baldi’s Theorem); note that in such a case the dual space X∗, i.e. the space of all continuous
linear functionals on X, is the family of all signed Borel measures with bounded variation on [0, T ].

2.2 Strong laws of large numbers for logarithmically weighted means

We start with some strong laws of large numbers for logarithmically weighted means which can be
proved using the following standard argument (see e.g. Lemma 1 in [9]; see also Theorem 1 in [20]
cited therein): if {Xn : n ≥ 1} is a sequence of random variables with finite variances such that
(C1): there exists C, ρ ∈ (0,∞) such that |Cov(Xh, Xk)| ≤ C

(
h
k

)ρ
for all 1 ≤ j < k,

then

lim
n→∞

1
log n

n∑

k=1

1
k
(Xk − E[Xk]) = 0 almost surely. (5)

Proposition 2.1 (Binomial laws converging to the Poisson law) Let {Un : n ≥ 1} be a se-
quence of independent random variables uniformly distributed on [0, 1] and let {pn : n ≥ 1} be a
sequence of numbers in [0, 1] such that limn→∞ npn = λ for some λ ∈ (0,∞). Let {Xn : n ≥ 1} be
defined by Xn =

∑n
i=1 1{Ui≤pn}. Then limn→∞ 1

log n

∑n
k=1

1
kXk = λ almost surely.

Proof. Firstly {npn : n ≥ 1} is bounded and let B ∈ (0,∞) a constant such that npn ≤ B for all
n ≥ 1. For 1 ≤ h < k we have Cov(Xh, Xk) = hCov(1{U1≤ph}, 1{U1≤pk}) = h{ph ∧ pk − phpk}
and therefore Cov(Xh, Xk) ∈ [0, hpk]. Then |Cov(Xh, Xk)| ≤ kpk

(
h
k

) ≤ B h
k and condition

(C1) holds with C = B and ρ = 1. Thus (5) holds. We complete the proof noting that
limn→∞ 1

log n

∑n
k=1

1
kE[Xk] = λ as a consequence of E[Xk] = kpk (for all k ≥ 1) and of limn→∞ npn =

λ. ¤

Proposition 2.2 (Poisson laws converging to the Poisson law) Let {Un : n ≥ 1} be a se-
quence of independent Poisson processes with intensity 1 and let {tn : n ≥ 1} be a sequence of
nonnegative numbers such that limn→∞ ntn = λ for some λ ∈ (0,∞). Let {Xn : n ≥ 1} be defined
by Xn =

∑n
i=1 Ui(tn). Then limn→∞ 1

log n

∑n
k=1

1
kXk = λ almost surely.

Proof. Firstly {ntn : n ≥ 1} is bounded and let B ∈ (0,∞) a constant such that ntn ≤ B for all n ≥
1. For 1 ≤ h < k we have Cov(Xh, Xk) = hCov(U1(th), U1(tk)) = hVar[U1(th ∧ tk)] and therefore
Cov(Xh, Xk) ∈ [0, htk]. Then |Cov(Xh, Xk)| ≤ ktk

(
h
k

) ≤ B h
k and condition (C1) holds with C = B

and ρ = 1. Thus (5) holds. We complete the proof noting that limn→∞ 1
log n

∑n
k=1

1
kE[Xk] = λ as

a consequence of E[Xk] = ktk (for all k ≥ 1) and of limn→∞ ntn = λ. ¤
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Proposition 2.3 (Central Limit Theorem) Let {Un : n ≥ 1} be a sequence of i.i.d. centered
random variables with finite variance σ2. Let {Xn : n ≥ 1} be defined by Xn =

∑n
i=1 Ui√

n
. Then

limn→∞ 1
log n

∑n
k=1

1
kXk = 0 almost surely.

Proof. For 1 ≤ h < k one can easily check that Cov(Xh, Xk) = σ2
(

h
k

) 1
2 . Then condition (C1)

holds with C = σ2 and ρ = 1
2 , and (5) holds. This completes the proof since E[Xk] = 0 for all

k ≥ 1. ¤

2.3 Some classical relations

We recall some classical relations which will be used in the proofs below. Firstly

log(j + 1) ≤
j∑

k=1

1
k
≤ 1 + log j and log

j + 1
i

≤
j∑

k=i

1
k
≤ log

j

i− 1
(j ≥ i ≥ 2). (6)

Moreover, if α ∈ (0, 1),

1
1− α

(
j1−α − i1−α

) ≤
j∑

k=i

1
kα

≤ 1
1− α

(
(j + 1)1−α − (i− 1)1−α

)
(j ≥ i ≥ 2); (7)

note that (7) holds if α < 0 and j ≥ i ≥ 1. Finally, if α > 1,

1
α− 1

(
i1−α − (j + 1)1−α

) ≤
j∑

k=i

1
kα

≤ 1
α− 1

(
(i− 1)1−α − j1−α

)
(j ≥ i ≥ 2). (8)

3 Large deviation results and sketches of proofs

In this section we give the statements of the LDPs proved in the present paper, together with a
brief sketch of their proofs. Note that the same rate function and the same sketch of the proof
pertain to Theorems 3.1 and 3.2. Moreover, in some sense, Theorem 3.4 is a sample path version
of Theorem 3.3.

Theorem 3.1 (LDP for the strong law of large numbers in Proposition 2.1) Consider the
same situation as in Proposition 2.1. Assume moreover that pn ≥ pn+1 for all n ≥ 1. Then
{ 1

log n

∑n
k=1

1
kXk : n ≥ 1} satisfies the LDP with speed function vn = log n and good rate function

IP(λ) defined by

IP(λ)(x) =
{

(
√

x−
√

λ)2 if x ≥ 0
∞ if x < 0.

Theorem 3.2 (LDP for the strong law of large numbers in Proposition 2.2) Consider the
same situation as in Proposition 2.2. Assume moreover that tn ≥ tn+1 for all n ≥ 1. Then
{ 1

log n

∑n
k=1

1
kXk : n ≥ 1} satisfies the LDP with speed function vn = log n and good rate function

IP(λ) defined by

IP(λ)(x) =
{

(
√

x−
√

λ)2 if x ≥ 0
∞ if x < 0.

Sketch of the proof of Theorems 3.1-3.2. In section 5 we prove (3) with Zn = 1
log n

∑n
k=1

1
kXk,

vn = log n and

Λ(θ) =
{

λθ
1−θ if θ < 1
∞ if θ ≥ 1.
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Then the Gärtner Ellis Theorem can be applied and the LDP holds with the good rate function

IP(λ) given by Λ∗ in (4) (if x > 0 the supremum Λ∗(x) is attained at θ = 1 −
√

λ
x ; if x ≤ 0 the

supremum Λ∗(x) is attained by taking the limit as θ → −∞). ¤

Theorem 3.3 (LDP for the strong law of large numbers in Proposition 2.3) Consider the
same situation as in Proposition 2.3, with σ2 > 0. Assume moreover that E[eθU1 ] < ∞ for all θ ∈ R;
hence mj := E[U j

1 ] < ∞ for all j ≥ 1. For αj :=
∑j−3

h=3
mh
h!

mj−h

(j−h)! for all j ≥ 6, we assume the
following condition:
(C2) : there exists M ∈ (0,∞) such that C0 := supj≥6

|αj |
Mj < ∞.

Then { 1
log n

∑n
k=1

1
kXk : n ≥ 1} satisfies the LDP with speed function vn = log n and good rate

function IN(0,σ2) defined by IN(0,σ2)(x) = x2

8σ2 .

Sketch of the proof of Theorem 3.3. In section 6 we prove (3) with Zn = 1
log n

∑n
k=1

1
kXk, vn = log n

and Λ(θ) = 2σ2θ2. Then the Gärtner Ellis Theorem can be applied and the LDP holds with the
good rate function IN(0,σ2) given by Λ∗ in (4) (for any x ∈ R the supremum Λ∗(x) is attained at
θ = x

4σ2 ). ¤

Theorem 3.4 (Sample path LDP) Let {Un : n ≥ 1} be a sequence of independent standard
(real valued) Brownian motions. Let {Xn : n ≥ 1} be the sequence of continuous processes on [0, T ]
defined by Xn(·) =

∑n
i=1 Ui(σ

2·)√
n

for some σ2 ∈ (0,∞). Then { 1
log n

∑n
k=1

1
kXk : n ≥ 1} satisfies the

LDP with speed function vn = log n and good rate function IB(σ2·) defined by

IB(σ2·)(x) =
{ ∫ T

0 IN(0,σ2)(ẋ(t))dt if x ∈ A

∞ otherwise,

where IN(0,σ2) is as in Theorem 3.3 and A is the family of all absolutely continuous functions x on
[0, T ] such that x(0) = 0.

Sketch of the proof of Theorem 3.4. We illustrate how to apply Theorem 4.5.20 in [7]; the details
will be shown in section 7. Let X∗ be the dual space of X = C[0, T ]. In subsection 7.1 we check the
existence of the function Λ : X∗ → (−∞,∞] (actually we have Λ(θ) < ∞ for all θ ∈ X∗) defined by

Λ(θ) := lim
n→∞

1
vn

logE[evn
∫ T
0 Zn(t)dθ(t)] (9)

with Zn = 1
log n

∑n
k=1

1
kXk, vn = log n and Λ(θ) = 2σ2

∫ T
0 θ2((r, T ])dr. In subsection 7.2 it is proved

that {Zn : n ≥ 1} is an exponentially tight sequence. Then the function Λ∗ : X → [0,∞] defined by

Λ∗(x) := sup
θ∈X∗

{∫ T

0
x(t)dθ(t)− Λ(θ)

}

coincides with IB(σ2·) in the statement; this is a consequence of a more general result Lévy processes
taking values on a Banach space (see section 3 in [6] where T = 1; the result can be easily extended
to any T ∈ (0,∞)). We complete the proof showing that the set of exposed points F coincides with
{x ∈ X : IB(σ2·)(x) < ∞}; this will be done in subsection 7.3. ¤

4 Minor results and remarks

Firstly we remark that the rate functions IP(λ) and IN(0,σ2) presented above can be expressed in
terms of the Hellinger distance between two suitable probability measures. Furthermore we present
the LDPs for sums of two independent sequences of logarithmically weighted means as in the
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theorems of the previous section. We also show that we cannot recover any LDP in this paper as a
consequence of the LDP in [15]. Finally we concentrate our attention on Theorem 3.3: we present
some examples for which the condition (C2) holds and we illustrate a connection with the LDPs
for two sequences of logarithmically weighted empirical measures in the literature (see e.g. [13] and
[19]). In this section we refer to another well known large deviation result, i.e. the contraction
principle (see e.g. Theorem 4.2.1 in [7]).

4.1 Rate functions and Hellinger distance

It is known that the sequences {Xn : n ≥ 1} in the theorems of the previous section converge
weakly (as n → ∞): the weak limit is P(λ) in Theorems 3.1-3.2 and N(0, σ2) in Theorem 3.3. In
this subsection we illustrate how the rate functions can be expressed in terms of the weak limits of
the sequences {Xn : n ≥ 1}. In view of what follows we introduce the Hellinger distance between
two probability measures P1 and P2 on the same measurable space Ω (see e.g. section 3.2 in [16];
see also section 14.5 in [22]), which is H2[P1, P2] defined by

H2[P1, P2] :=
1
2

∫

Ω

(√
dP1

dµ
−

√
dP2

dµ

)2

dµ,
for any measure µ such that P1 and P2

are absolutely continuous w.r.t. µ.

Note that we also have H2[P1, P2] = 1−A[P1, P2] where A[P1, P2] :=
∫
Ω

√
dP1
dµ

dP2
dµ dµ is the Hellinger

affinity. We always have a choice for µ, i.e. µ = P1 + P2. In what follows we rewrite the rate
functions IP(λ) and IN(0,σ2) in terms of the Hellinger distance (or affinity) between two suitable
probability measures on R.

The rate function IP(λ) in Theorems 3.1-3.2. It is easy to check that H2[P(λ1), P(λ2)] =

1− e−
(
√

λ1−
√

λ2)2

2 for all λ1, λ2 ≥ 0. Then we have

IP(λ)(x) = −2 log(1−H2[P(x), P(λ)]) = −2 log(A[P(x), P(λ)]) (for x ≥ 0).

The rate function IN(0,σ2) in Theorem 3.3. It is easy to check that H2[N(µ1, σ
2
1), N(µ2, σ

2
2)] =

1−
√

2σ1σ2

σ2
1+σ2

1
e
− (µ1−µ2)2

4(σ2
1+σ2

1) for all (µ1, σ
2
1), (µ2, σ

2
2) ∈ R× (0,∞). Then we have

IN(0,σ2)(x) = − log(1−H2[N(x, σ2),N(0, σ2)]) = − log(A[N(x, σ2), N(0, σ2)]).

4.2 LDPs for sums of two independent sequences

In this subsection we consider two independent sequences {Z(1)
n : n ≥ 1} and {Z(2)

n : n ≥ 1} as
in the theorems in the previous sections (except Theorem 3.4). More precisely, for h ∈ {1, 2}, we
define Z

(h)
n = 1

log n

∑n
k=1

1
kX

(h)
k , where {X(1)

n : n ≥ 1} and {X(2)
n : n ≥ 1} are two independent

sequences. Then we give the details of proof of the LDP of {Z(1)
n + Z

(2)
n : n ≥ 1} (with speed

function vn = log n) in several cases. In each case the proof is an immediate consequence of the
application of the contraction principle for the continuous function (x1, x2) 7→ x1 + x2, which gives
the good rate function I1∗2 defined by

I1∗2(x) := inf{I1(x1) + I2(x2) : x1 + x2 = x}, (10)

where I1 and I2 are the rate functions for {Z(1)
n : n ≥ 1} and {Z(2)

n : n ≥ 1}, respectively. In
each case we also give the details of the proof of the LDP as a consequence of the application of
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the Gärtner Ellis Theorem. We remark that the rate function can be expressed in terms of the
Hellinger distance with respect to the weak limit of X

(1)
n + X

(2)
n as n →∞ if the weak limits (and

therefore their convolution) are of the same kind. This is what happens in all the cases except the
last one.

Both the sequences as in Theorems 3.1-3.2 with Ih = IP(λh) for h ∈ {1, 2}. The rate
function I1∗2 in (10) coincides with IP(λ1+λ2). Moreover, for x ≥ 0, the infimum in (10) is attained
at (x1, x2) = ( λ1x

λ1+λ2
, λ2x

λ1+λ2
). We have the same result by applying the Gärtner Ellis Theorem: the

rate function Λ∗ in (4) coincides with IP(λ1+λ2) because the function Λ in (3) is

Λ(θ) =
{

λ1θ
1−θ + λ2θ

1−θ if θ < 1
∞ if θ ≥ 1.

Both the sequences as in Theorem 3.3 with Ih = IN(0,σ2
h) for h ∈ {1, 2}. The rate function

I1∗2 in (10) coincides with IN(0,σ2
1+σ2

2). Moreover, for x ∈ R, the infimum in (10) is attained at

(x1, x2) = ( σ2
1x

σ2
1+σ2

2
,

σ2
2x

σ2
1+σ2

2
). We have the same result by applying the Gärtner Ellis Theorem: the rate

function Λ∗ in (4) coincides with IN(0,σ2
1+σ2

2) because the function Λ in (3) is Λ(θ) = 2σ2
1θ

2 +2σ2
2θ

2.

A sequence as in Theorems 3.1-3.2 and the other one as in Theorem 3.3. We consider
I1 = IP(λ) and I2 = IN(0,σ2). We do not have an explicit formula for the rate function I1∗2 in
(10); more precisely, for x ∈ R, the infimum is attained at (x1, x2) = (x1(x), x − x1(x)) where
x1(x) ∈ (0,∞) is the unique solution of the equation (in x1) x−x1

4σ2 +
√

λ√
x1
−1 = 0. The Gärtner Ellis

Theorem allows to prove the LDP with a different expression of the rate function: the function Λ
in (3) is

Λ(θ) =
{

λθ
1−θ + 2σ2θ2 if θ < 1
∞ if θ ≥ 1,

and Λ∗ in (4) becomes Λ∗(x) = θ(x)x − Λ(θ(x)), where θ(x) ∈ (−∞, 1) is the unique solution of
the equation (in θ) x = Λ′(θ), i.e. x = λ

(1−θ)2
+ 4σ2θ. Here it seems that we cannot express the

rate function in terms of the Hellinger distance with respect to the convolution between P(λ) and
N(0, σ2), which is the weak limit of X

(1)
n + X

(2)
n as n →∞ (indeed X

(1)
n and X

(2)
n converge weakly

to P(λ) and N(0, σ2), respectively).

4.3 On the LDPs in [15] and in Theorems 3.1-3.2-3.3

In this subsection we discuss the differences between the LDPs in this paper (except the one in
Theorem 3.4) and the LDP in [15]. Firstly we note that, in the framework of Theorems 3.1-3.2,
we cannot have a weighted sum of i.i.d. random variables; indeed we have 1

log n

∑n
k=1

1
kXk =∑n

i=1
1

log n

∑n
k=i

1
k1{Ui≤pk} in Theorem 3.1 and 1

log n

∑n
k=1

1
kXk =

∑n
i=1

1
log n

∑n
k=i

1
kUi(tk) in Theo-

rem 3.2. On the contrary, in Theorem 3.3, we have

1
log n

n∑

k=1

1
k
Xk =

n∑

i=1

ai(n)Ui, with ai(n) :=
1

log n

n∑

k=i

1
k
√

k
,

for a sequence {Un : n ≥ 1} of i.i.d. random variables.
In what follows we show that the LDP in [15] does not allow to recover the LDP in Theorem

3.3 with σ2 = 1 (this restriction meets (2.1) in [15]). Firstly we note that we should have Λ(θ) =∑∞
h=2

ahch
h! θh by (2.4) in [15]; thus we have

ahch

h!
=

{
2 if h = 2
0 if h ≥ 3.
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We also have c2 = 1 by the definition of the function C in [15]; then, if we do not have any restriction
on the (common) distribution of the random variables {Un : n ≥ 1}, we should have a2 = 4 and
ah = 0 for all h ≥ 3. Moreover, if we look at (2.2)-(2.3) in [15], we should have

1
(log n)h

n∑

i=1

(
n∑

k=i

1
k
√

k

)h

=
ah

(log n)h−1
R(h, n) for all h, n ≥ 1,

where the error term R(h, n) is close to 1 in a suitable sense. This condition cannot hold because
the left hand side and the right hand side have a different behavior as n →∞.

4.4 Some examples for which condition (C2) holds

In this subsection we show that condition (C2) holds if the (centered) random variables {Un : n ≥
1} are bounded or normal distributed. A natural question is whether it is possible to characterize
condition (C2) in terms of some features of the (common) law of the random variables of {Un :
n ≥ 1}.

Bounded random variables {Un : n ≥ 1}. If P (|Un| ≤ B) = 1 for some B ∈ (0,∞), we have

|αj | =
∣∣∣∣∣
j−3∑

h=3

mh

h!
mj−h

(j − h)!

∣∣∣∣∣ ≤
j∑

h=0

Bh

h!
Bj−h

(j − h)!
=

1
j!

j∑

h=0

(j
h)Bj =

(2B)j

j!
≤ (2B)j .

Then (C2) holds by taking M ≥ 2B.

Normal distributed random variables {Un : n ≥ 1}. If {Un : n ≥ 1} are N(0, σ2) distributed,
it is known that m2k = σ2k (2k)!

2kk!
and m2k−1 = 0 for all k ≥ 1. Then for all p ≥ 3 we have

α2p+1 =
∑2p+1−3

h=3
mh
h!

m2p+1−h

(2p+1−h)! = 0 and

0 ≤ α2p =
2p−3∑

h=3

mh

h!
m2p−h

(2p− h)!
=

p−2∑

k=2

σ2k

2kk!
σ2(p−k)

2p−k(p− k)!
≤ σ2p

2pp!

p∑

k=0

(p
k) =

σ2p

p!
≤ σ2p.

Then (C2) holds by taking M ≥ σ.

4.5 On the LDPs in [13]-[19] and in Theorem 3.3 (with σ2 = 1)

Let M(R) be the space of all nonnegative Borel measures on R and let M1(R) be the space of
all probability measures on R. Both M(R) and M1(R) are equipped with the topology of weak
convergence. Then, in the framework of Theorem 3.3 with σ2 = 1, it is known that the sequences
of logarithmically weighted empirical measures in (1) and (2) satisfy the LDP (see the references
cited in the Introduction); in both cases we have the same good rate function J defined by

J(ν) :=

{
1
2

∫
R

(
d
dy

√
dν

N(0,1)(y)
)2

N(0, 1)(dy) if ν ∈ M1(R) and ν ¿ N(0, 1)

∞ otherwise,

where ν ¿ N(0, 1) means that ν is absolutely continuous with respect to N(0, 1) and dν
N(0,1) is the

density.
If the map ν 7→ ∫

R yν(dy) were continuous on M1(R), we could prove Theorem 3.3 by an
application of the contraction principle and the good rate function IN(0,1) would be

IN(0,1)(x) = inf
{

J(ν) :
∫

R
yν(dy) = x

}
for all x ∈ R. (11)
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Unfortunately ν 7→ ∫
R yν(dy) is not continuous; nevertheless (11) holds. In fact, for any fixed

x ∈ R, let ν ∈ M1(R) be such that ν ¿ N(0, 1) (otherwise we have J(ν) = ∞) and
∫
R yν(dy) = x.

Then we have

(
d

dy

√
dν

N(0, 1)
(y)

)2

=




d
dy

dν
N(0,1)(y)

2
√

dν
N(0,1)(y)




2

=
1
4

(
d
dy

dν
N(0,1)(y)
dν

N(0,1)(y)

)2
dν

N(0, 1)
(y)

=
1
4

(
d

dy
log

dν

N(0, 1)
(y)

)2 dν

N(0, 1)
(y),

whence we obtain

J(ν) =
1
2

∫

R

(
d

dy

√
dν

N(0, 1)
(y)

)2

N(0, 1)(dy) =
1
8

∫

R

(
d

dy
log

dν

N(0, 1)
(y)

)2

ν(dy).

Thus, by the Jensen inequality, we have

J(ν) ≥ 1
8

(∫

R

d

dy
log

dν

N(0, 1)
(y)ν(dy)

)2

,

and the lower bound is attained if and only if d
dy log dν

N(0,1)(y) is a constant function, i.e. log dν
N(0,1)(y)

is a linear function. Thus we have dν
N(0,1)(y) = eθy− θ2

2 for some θ ∈ R and, by taking into account
the constraint

∫
R yν(dy) = x, we have to choose θ = x. In conclusion this choice of ν gives

1
8

(∫
R

d
dy log dν

N(0,1)(y)ν(dy)
)2

= x2

8 = IN(0,1)(x) and this proves (11).

5 The proof of (3) for Theorems 3.1-3.2

In this section we give the details of the proofs of Theorem 3.1 and 3.2 which lead to the application
of the Gärtner Ellis Theorem. In the framework of the two theorems we have to check that

lim
n→∞

logE[eθ
∑n

k=1
1
k
Xk ]

log n
=

{
λθ

1−θ if θ < 1
∞ if θ ≥ 1

(for all θ ∈ R). (12)

Note that, in both the situations, the function θ 7→ logE[eθ
∑n

k=1
1
k

Xk ]
log n is non-decreasing because

{∑n
k=1

1
kXk : n ≥ 1} are non-negative random variables. Thus, assuming that (12) holds for θ < 1,

we can easily obtain (12) for θ ≥ 1 as follows: for each η < 1 (and for θ ≥ 1) we have

logE[eη
∑n

k=1
1
k
Xk ]

log n
≤ logE[eθ

∑n
k=1

1
k
Xk ]

log n
(for all n ≥ 1),

whence
λη

1− η
= lim inf

n→∞
logE[eη

∑n
k=1

1
k
Xk ]

log n
≤ lim inf

n→∞
logE[eθ

∑n
k=1

1
k
Xk ]

log n

and we conclude letting η ↑ 1.
Thus we only have to prove (12) for θ < 1. The two theorems deserve different proofs.
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5.1 The proof of (12) (with θ < 1) for Theorem 3.1

We start with a useful expression for logE[eθ
∑n

k=1
1
k
Xk ] provided by the next Lemma 5.1. This

expression is given in terms of the following quantities:
{

b
(i)
j := eθ

∑j
k=i

1
k (i, j ∈ {1, . . . , n}, i ≤ j);

αi := pi(b
(i)
i − 1) and β

(n)
i :=

∑n−1
j=i pj+1(b

(i)
j+1 − b

(i)
j ) (i ∈ {1, . . . , n− 1})

Lemma 5.1 We have logE[eθ
∑n

k=1
1
k
Xk ] =

∑n−1
i=1 log(1 + αi + β

(n)
i ) + log(1 + αn) for all n ≥ 1.

Proof of Lemma 5.1. Firstly, since the random variables {Un : n ≥ 1} are i.i.d. and
∑n

k=1
1
kXk =∑n

k=1
1
k

∑k
i=1 1{Ui≤pk} =

∑n
i=1

∑n
k=i

1
k1{Ui≤pk}, we have

logE[eθ
∑n

k=1
1
k
Xk ] =

n∑

i=1

logE[eθ
∑n

k=i
1
k
1{Ui≤pk} ].

By the monotonicity of the sequence {pn : n ≥ 1}, the expected values in each summand at the
right hand side can be written as follows:

E[eθ
∑n

k=i
1
k
1{Ui≤pk} ] =

∫ 1

0
eθ

∑n
k=i

1
k
1[0,pk](x)dx

=
∫ pn

0
eθ

∑n
k=i

1
k
1[0,pk](x)dx +

n−1∑

j=i

∫ pj

pj+1

eθ
∑n

k=i
1
k
1[0,pk](x)dx +

∫ 1

pi

eθ
∑n

k=i
1
k
1[0,pk](x)dx

=pneθ
∑n

k=i
1
k +

n−1∑

j=i

(pj − pj+1)eθ
∑j

k=i
1
k + (1− pi).

Then we have to prove that

pneθ
∑n

k=i
1
k +

n−1∑

j=i

(pj − pj+1)eθ
∑j

k=i
1
k + (1− pi) =

{
1 + αi + β

(n)
i if i ∈ {1, . . . , n− 1}

1 + αn if i = n.
(13)

We start with the left hand side in (13). For i = n it is equal to

pne
θ
n + (1− pn) = 1 + pn(e

θ
n − 1) = 1 + αn.

For i ∈ {1, . . . , n− 1} it is equal to

1− pi +
n−1∑

j=i

pje
θ

∑j
k=i

1
k −

n−1∑

j=i

pj+1e
θ

∑j
k=i

1
k + pneθ

∑n
k=i

1
k =

1− pi + pie
θ
i +

n∑

j=i+1

pje
θ

∑j
k=i

1
k −

n−1∑

j=i

pj+1e
θ

∑j
k=i

1
k =

1 + pi(e
θ
i − 1) +

n−1∑

j=i

pj+1(eθ
∑j+1

k=i
1
k − eθ

∑j
k=i

1
k ) = 1 + αi + β

(n)
i . ¤

Note that, since limn→∞ npn = λ,

αn = pn(b(n)
n − 1) = pn(e

θ
n − 1) ∼ λθ

n2
→ 0 as n →∞; (14)
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thus limn→∞
log(1+αn)

log n = 0 and, by Lemma 5.1, (12) will be proved for θ < 1 if we show that

lim
n→∞

∑n−1
i=1 log(1 + αi + β

(n)
i )

log n
=

λθ

1− θ
. (15)

Moreover, since β
(n)
i =

∑n−1
j=i pj+1e

θ
∑j

k=i
1
k (e

θ
j+1 − 1),

|β(n)
i | ≤

n−1∑

j=i

pj+1e
θ

∑j
k=i

1
k |e θ

j+1 − 1| ≤ C
n−1∑

j=i

eθ
∑j

k=i
1
k

(j + 1)2
,

where C := supn≥1 npn supx∈(0,1] | e
θx−1
x | ∈ (0,∞). Thus, in order to check that

lim
n≥i→∞

β
(n)
i = 0, (16)

we can use (6) with i ≥ 2 and the second inequality in (8) with α = 2− θ as follows: for 0 ≤ θ < 1

n−1∑

j=i

eθ
∑j

k=i
1
k

(j + 1)2
≤ 1

(i− 1)θ

n−1∑

j=i

1
(j + 1)2−θ

≤
(

i

i− 1

)θ 1
i

1
1− θ

→ 0;

for θ < 0
n−1∑

j=i

eθ
∑j

k=i
1
k

(j + 1)2
≤ 1

iθ

n−1∑

j=i

1
(j + 1)2−θ

≤ 1
i(1− θ)

→ 0.

By (14) and (16), for every integer i0 ≥ 1,

lim
n→∞

∑i0
i=1 αi

log n
= 0; lim

n→∞

∑i0
i=1 β

(n)
i

log n
= 0; lim

n→∞

∑i0
i=1 α2

i

log n
= 0; lim

n→∞

∑i0
i=1{β(n)

i }2

log n
= 0.

Note that there exists m > 0 such that | log(1 + x) − x| ≤ mx2 for |x| < 1
2 . Then, by (14) and

(16) there exists an integer i0 such that, for any integer n and i such that n ≥ i ≥ i0, we have
|αi + β

(n)
i | < 1

2 and therefore
∣∣∣∣∣

n∑

i=i0

{log(1 + αi + β
(n)
i )− (αi + β

(n)
i )}

∣∣∣∣∣ ≤
n∑

i=i0

| log(1 + αi + β
(n)
i )− (αi + β

(n)
i )|

≤m
n∑

i=i0

(αi + β
(n)
i )2 ≤ 2m

n∑

i=i0

(α2
i + {β(n)

i }2).

In conclusion, for θ < 1, the proof of (15) (and therefore of (12)) will be a consequence of the
following relations:

(i) : limn→∞
∑n

i=i0
αi

log n = 0; (ii) : limn→∞
∑n

i=i0
α2

i

log n = 0;

(iii) : limn→∞
∑n

i=i0
β

(n)
i

log n = λθ
1−θ ; (iv) : limn→∞

∑n
i=i0

{β(n)
i }2

log n = 0.

Proofs of (i)-(ii). By (14) and the Cesaro theorem we have limn→∞
∑n

i=i0
αi

log n = limn→∞ nαn = 0

and limn→∞
∑n

i=i0
α2

i

log n = limn→∞ nα2
n = 0.

Proof of (iii). Consider the quantity γj :=
∑j

i=1 pj+1(b
(i)
j+1− b

(i)
j ), and the following equalities hold:

n−1∑

i=1

β
(n)
i =

n−1∑

i=1

n−1∑

j=i

pj+1(b
(i)
j+1 − b

(i)
j ) =

n−1∑

j=1

γj .
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Thus we have to prove that limn→∞
∑n−1

j=1 γj

log n = λθ
1−θ , which is equivalent to limn→∞ nγn = λθ

1−θ by
the Cesaro theorem. Since

nγn = npn+1

n∑

i=1

(b(i)
n+1 − b(i)

n ) = npn+1(e
θ

n+1 − 1)
n∑

i=1

b(i)
n ∼ λθ

n

n∑

i=1

b(i)
n as n →∞,

we only have to prove that

lim
n→∞

∑n
i=1 b

(i)
n

n
=

1
1− θ

. (17)

We prove (17) for 0 ≤ θ < 1; the proof (17) for θ < 0 is similar (the inequalities must be reversed
but lead to the same conclusion) and therefore omitted. By (6)

(n + 1)θ ≤ b(1)
n ≤ eθnθ and

(
n + 1

i

)θ

≤ b(i)
n ≤

(
n

i− 1

)θ

(for i ∈ {2, . . . , n});

hence, summing over i ∈ {1, . . . , n}, by (7) with α = θ we obtain




∑n
i=1 b

(i)
n

n ≤ nθ

n

(
eθ +

∑n
i=2

1
(i−1)θ

)
∼ nθ−1

(
eθ + n1−θ

1−θ

)
→ 1

1−θ∑n
i=1 b

(i)
n

n ≥ (n+1)θ

n

∑n
i=1

1
iθ
∼ (n+1)θ

n
(n+1)1−θ

1−θ → 1
1−θ

as n →∞.

Proof of (iv). Firstly let us consider the following quantities:
{

Ai,n :=
∑n−1

j=i p2
j+1(b

(i)
j+1 − b

(i)
j )2

Bi,n :=
∑n−1

j>k=i pj+1pk+1(b
(i)
j+1 − b

(i)
j )(b(i)

k+1 − b
(i)
k ) =

∑n−1
j=i+1

∑j−1
k=i pj+1pk+1(b

(i)
j+1 − b

(i)
j )(b(i)

k+1 − b
(i)
k );

then we can write

{β(i)
n }2 =





n−1∑

j=i

pj+1(b
(i)
j+1 − b

(i)
j )





2

= Ai,n + 2Bi,n,

and we prove (iv) showing that

lim
n→∞

∑n−1
i=1 Ai,n

log n
= 0 (18)

and

lim
n→∞

∑n−1
i=1 Bi,n

log n
= 0. (19)

Proof of (18). Consider

ρj :=
j∑

i=1

p2
j+1(b

(i)
j+1 − b

(i)
j )2.

Hence
∑n−1

i=1 Ai,n =
∑n−1

i=1

∑n−1
j=i p2

j+1(b
(i)
j+1−b

(i)
j )2 =

∑n−1
j=1 ρj ; then (18) is equivalent to limn→∞

∑n−1
j=1 ρj

log n =
0 and, by the Cesaro theorem, it is also equivalent to limn→∞ nρn = 0. We note that

nρn = np2
n+1

n∑

i=1

(b(i)
n+1 − b(i)

n )2 = np2
n+1(e

θ
n+1 − 1)2

n∑

i=1

{b(i)
n }2 ∼ λ2θ2

(n + 1)3

n∑

i=1

{b(i)
n }2 as n →∞.

We start with the case 0 ≤ θ < 1. From (6) we get

(n + 1)2θ ≤ {b(1)
n }2 ≤ e2θn2θ and

(
n + 1

i

)2θ

≤ {b(i)
n }2 ≤

(
n

i− 1

)2θ

(for i ∈ {2, . . . , n});
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hence




λ2θ2

(n+1)3
∑n

i=1{b(i)
n }2 ≤ λ2θ2n2θ

(n+1)3

(
e2θ +

∑n
i=2

1
(i−1)2θ

)
∼ λ2θ2n2θ−3

∑n
i=1

1
i2θ

λ2θ2

(n+1)3
∑n

i=1{b(i)
n }2 ≥ λ2θ2(n+1)2θ

(n+1)3
∑n

i=1
1

i2θ ∼ λ2θ2n2θ−3
∑n

i=1
1

i2θ

as n →∞.

As for the proof of (iii) we have reverse inequalities for the case θ < 0 and we obtain similar
estimates. In conclusion we prove (18) distinguishing the following three cases:

• for θ < 1
2 we have n2θ−3

∑n
i=1

1
i2θ ∼ n2θ−3 n1−2θ

1−2θ = 1
n2(1−2θ)

→ 0 as n →∞ by (7) with α = 2θ;

• for θ = 1
2 we have n2θ−3

∑n
i=1

1
i2θ = n−2

∑n
i=1

1
i ∼ log n

n2 → 0 as n →∞ by (6);

• for 1
2 < θ < 1 we have 0 ≤ n2θ−3

∑n
i=1

1
i2θ ≤ Cn2θ−3 → 0 as n →∞ for C =

∑∞
i=1

1
i2θ ∈ (0,∞)

since 2θ − 3 < 0 if 1
2 < θ < 1.

Proof of (19). Consider

ξj :=
j−1∑

i=1

j−1∑

k=i

pj+1pk+1(b
(i)
j+1 − b

(i)
j )(b(i)

k+1 − b
(i)
k ).

Hence we have
∑n−1

i=1 Bi,n =
∑n−1

i=1

∑n−1
j=i+1

∑j−1
k=i pj+1pk+1(b

(i)
j+1− b

(i)
j )(b(i)

k+1− b
(i)
k ) =

∑n−1
j=2 ξj ; then

(19) is equivalent to limn→∞
∑n−1

j=2 ξj

log n = 0 and, by the Cesaro theorem, it is also equivalent to
limn→∞ nξn = 0. We note that

nξn =n

n−1∑

i=1

n−1∑

k=i

pn+1pk+1(b
(i)
n+1 − b(i)

n )(b(i)
k+1 − b

(i)
k ) = npn+1(e

θ
n+1 − 1)

n−1∑

k=1

k∑

i=1

pk+1(e
θ

k+1 − 1)b(i)
n b

(i)
k

∼λθ

n

n−1∑

k=1

k∑

i=1

pk+1(e
θ

k+1 − 1)b(i)
n b

(i)
k as n →∞;

thus, if Φ(n) :=
∑n−1

k=1

∑k
i=1 pk+1(e

θ
k+1 − 1)b(i)

n b
(i)
k , (19) will be proved if we show that

lim
n→∞

Φ(n)
n

= 0. (20)

We start with the case 0 ≤ θ < 1. From (6) we get

0 ≤ Φ(n) ∼λθ

n−1∑

k=1

1
(k + 1)2

(
eθnθeθkθ +

k∑

i=2

(
n

i− 1

)θ (
k

i− 1

)θ
)

as n →∞

≤λθnθ
n−1∑

k=1

1
k2−θ

(
e2θ +

k∑

i=2

1
(i− 1)2θ

)
.

Then we prove (20) (and therefore (19)) for 0 ≤ θ < 1 distinguishing the following three cases:

• for 0 ≤ θ < 1
2 we have λθnθ

∑n−1
k=1

1
k2−θ

(
e2θ +

∑k
i=2

1
(i−1)2θ

)
≤ λθnθ

∑n−1
k=1

1
k2−θ

(
e2θ + k1−2θ

1−2θ

)
=

λθnθe2θ
∑n−1

k=1
1

k2−θ + λθnθ

1−2θ

∑n−1
k=1

1
kθ+1 ≤ Cθn

θ for a suitable constant Cθ ∈ (0,∞) by (7) with
α = 2θ and noting that

∑∞
k=1

1
k2−θ ,

∑∞
k=1

1
kθ+1 ∈ (0,∞);

• for θ = 1
2 we have λ

2n
1
2
∑n−1

k=1
1

k
3
2

(
e +

∑k
i=2

1
i−1

)
≤ λ

2n
1
2
∑n−1

k=1
1

k
3
2

(e + 1 + log(k − 1)) ≤ C
√

n

(for a suitable constant C ∈ (0,∞)) by (6);
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• for 1
2 < θ < 1 we have λθnθ

∑n−1
k=1

1
k2−θ

(
e2θ +

∑k
i=2

1
(i−1)2θ

)
≤ Cθn

θ where

Cθ =
(
e2θ +

∑∞
i=2

1
(i−1)2θ

) ∑∞
k=1

1
k2−θ ∈ (0,∞).

We conclude with the case θ < 0. Firstly note that Cθ :=
∑∞

k=1
1

k2−θ ∈ (0,∞) and C :=
supn≥1 npn infx∈(0,1]

eθx−1
x ∈ (−∞, 0). Then, in order to prove (20) (and therefore (19)), we use (6),

(7) with α = 2θ and (7) with α = 1 + θ as follows:

0 ≥ Φ(n)
n

≥C

n

n−1∑

k=1

1
(k + 1)2

k∑

i=1

b(i)
n b

(i)
k

≥C

n

n−1∑

k=1

1
(k + 1)2

(
eθnθeθkθ +

k∑

i=2

(
n

i− 1

)θ (
k

i− 1

)θ
)

≥C

n
nθ

n−1∑

k=1

1
k2−θ

(
e2θ +

k∑

i=2

1
(i− 1)2θ

)
≥ C

n
e2θCθn

θ +
Cnθ

n(1− 2θ)

n−1∑

k=1

1
k1+θ

∼C

n
e2θCθn

θ +
Cnθ

n(1− 2θ)
n1−(1+θ)

1− (1 + θ)
=

C

n
e2θCθn

θ +
C

n(1− 2θ)|θ| → 0 as n →∞.

5.2 The proof of (12) (with θ < 1) for Theorem 3.2

Firstly we have

logE[eθ
∑n

k=1
1
k
Xk ] = logE[eθ

∑n
k=1

1
k

∑k
i=1 Ui(tk)]

= logE[eθ
∑n

i=1

∑n
k=i

1
k
Ui(tk)] =

n∑

i=1

logE[eθ
∑n

k=i
1
k
U1(tk)],

since U1 . . . , Un are i.i.d. processes. By the monotonicity of the sequence {tn : n ≥ 1}, for any
k ∈ {i, . . . , n} we have U1(tk) = U1(tn) +

∑n−1
h=k{U1(th) − U1(th+1)}; hence U1(tk) is the sum of

independent Poisson distributed random variables U1(tn), U1(tn−1)−U1(tn), . . . , U1(tk)−U1(tk+1)
with means tn, tn−1 − tn, . . . , tk − tk+1, respectively, and we have

logE[eθ
∑n

k=1
1
k
Xk ] =

n∑

i=1

logE[eθ
∑n

k=i
1
k
U1(tn)+θ

∑n
k=i

1
k

∑n−1
h=k{U1(th)−U1(th+1)}]

=
n∑

i=1

logE[eθ
∑n

k=i
1
k
U1(tn)+θ

∑n−1
h=i {U1(th)−U1(th+1)}

∑h
k=i

1
k ]

=
n∑

i=1

{
tn(eθ

∑n
k=i

1
k − 1) +

n−1∑

h=i

(th − th+1)(eθ
∑h

k=i
1
k − 1)

}
.

14



We obtain the following expression handling the latter sum as follows:

logE[eθ
∑n

k=1
1
k
Xk ] =

n∑

i=1

{
tneθ

∑n
k=i

1
k +

n−1∑

h=i

(th − th+1)eθ
∑h

k=i
1
k −

(
tn +

n−1∑

h=i

(th − th+1)

)}

=
n∑

i=1

{
tneθ

∑n
k=i

1
k +

n−1∑

h=i

(th − th+1)eθ
∑h

k=i
1
k − ti

}

=
n∑

i=1

{
n∑

h=i

theθ
∑h

k=i
1
k −

(
ti +

n−1∑

h=i

th+1e
θ

∑h
k=i

1
k

)}

=
n∑

i=1

{
n∑

h=i

theθ
∑h

k=i
1
k −

n∑

h=i

theθ
∑h−1

k=i
1
k

}
=

n∑

i=1

n∑

h=i

theθ
∑h−1

k=i
1
k (e

θ
h − 1)

=
n∑

h=1

th(e
θ
h − 1)

h∑

i=1

eθ
∑h−1

k=i
1
k .

In conclusion we have

logE[eθ
∑n

k=1
1
k
Xk ]

log n
=

∑n
h=1 th(e

θ
h − 1)

∑h
i=1 eθ

∑h−1
k=i

1
k

log n

∼ntn(e
θ
n − 1)

n∑

i=1

eθ
∑n−1

k=i
1
k ∼ λθ

n

n∑

i=1

eθ
∑n−1

k=i
1
k as n →∞

by the Cesaro Theorem and limn→∞ ntn = λ, and we complete the proof (12) for θ < 1 noting that

logE[eθ
∑n

k=1
1
k
Xk ]

log n
∼λθeθ

n1−θ
+

λθ

n1−θ

n1−θ

1− θ
as n →∞

by (6) and (7) (for the cases i = 1 and i ∈ {2, . . . , n}, respectively).

6 The proof of (3) for Theorem 3.3

In this section we give the details of the proof of Theorem 3.3 which lead to the application of the
Gärtner Ellis Theorem. In the framework of that theorem we have to check that

lim
n→∞

logE[eθ
∑n

k=1
1
k
Xk ]

log n
= 2σ2θ2 (for all θ ∈ R). (21)

In what follows we set

si,n :=
n∑

k=i

1
k
√

k
(for n ≥ i ≥ 1). (22)

Then, since the random variables {Un : n ≥ 1} are i.i.d. and
∑n

k=1
1
kXk =

∑n
k=1

1
k

∑k
i=1 Ui√

k
=∑n

i=1 si,nUi, (21) becomes

lim
n→∞

∑n
i=1 logE[eθsi,nU1 ]

log n
= 2σ2θ2 (for all θ ∈ R).

Let i0 be a fixed integer and let n and i be such that i < i0 and n ≥ i. Note that P (θU1 ≥
0) > 0 since the random variables {Un : n ≥ 1} are centered and 0 ≤ si,n ≤ s1,∞ < ∞ where
s1,∞ :=

∑∞
k=1

1
k
√

k
. Then we have

E[eθsi,nU1 ] = E[eθsi,nU11{θU1≥0}] + E[eθsi,nU11{θU1<0}] ≤ E[eθs1,∞U1 ] + 1 < ∞
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and

E[eθsi,nU1 ] = E[eθsi,nU11{θU1≥0}] + E[eθsi,nU11{θU1<0}] ≥ E[eθs1,∞U11{θU1≥0}] ≥ P (θU1 ≥ 0) > 0,

whence we easily obtain

lim
n→∞

∑i0
i=1 logE[eθsi,nU1 ]

log n
= 0 (for all θ ∈ R).

Thus (21) is equivalent to

lim
n→∞

∑n
i=i0

logE[eθsi,nU1 ]
log n

= 2σ2θ2 (for all θ ∈ R and i0 ≥ 1). (23)

In what follows we shall choose i0 in a suitable way.
For the function φ defined by φ(y) :=

∑∞
j=1

mj

j! yj , we have

φ(y) =
σ2

2
y2 +

∞∑

j=3

mj

j!
yj and E[eyU1 ] = 1 + φ(y).

The function φ is continuous on R and, since φ(0) = 0, there exists δ > 0 such that |φ(y)| < 1
2 .

Hence, for all θ ∈ R, there exists an integer i0 such that, for any integer n and i such that n ≥ i ≥ i0,
we have |θsi,n| < δ and therefore |φ(θsi,n)| < 1

2 . Introduce Ai,n and Bi,n defined by

Ai,n :=
σ2

2
θ2s2

i,n and Bi,n :=
∞∑

j=3

mj

j!
θjsj

i,n;

moreover note that there exists m > 0 such that | log(1 + x) − x| ≤ mx2 for |x| < 1
2 . Then, since

φ(θsi,n) = Ai,n + Bi,n = E[eθsi,nU1 ]− 1, for n ≥ i ≥ i0 we have |Ai,n + Bi,n| < 1
2 , whence we obtain

| logE[eθsi,nU1 ]− (Ai,n + Bi,n)| ≤ m(Ai,n + Bi,n)2, and the following inequalities:
∣∣∣∣∣

n∑

i=i0

{logE[eθsi,nU1 ]− (Ai,n + Bi,n)}
∣∣∣∣∣ ≤

n∑

i=i0

| logE[eθsi,nU1 ]− (Ai,n + Bi,n)|

≤m
n∑

i=i0

(Ai,n + Bi,n)2 ≤ 2m
n∑

i=i0

(A2
i,n + B2

i,n).

In conclusion the proof of (23) (and therefore of (21)) will be a consequence of the following
relations:

(i) : limn→∞
∑n

i=i0
Ai,n

log n = 2σ2θ2; (ii) : limn→∞
∑n

i=i0
Bi,n

log n = 0;

(iii) : limn→∞
∑n

i=i0
A2

i,n

log n = 0; (iv) : limn→∞
∑n

i=i0
B2

i,n

log n = 0.

Proof of (i). By the definition of Ai,n, (i) is equivalent to

lim
n→∞

∑n
i=i0

s2
i,n

4 log n
= 1. (24)

By (8) with α = 3
2 we have 2

(
1√
i
− 1√

n+1

)
≤ si,n ≤ 2

(
1√
i−1

− 1√
n

)
, whence

1
i

+
1

n + 1
− 2√

n + 1
√

i
≤ s2

i,n

4
≤ 1

i− 1
+

1
n
− 2√

n
√

i− 1
.
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Thus we have the bounds




∑n
i=i0

s2
i,n

4 log n ≥ 1
log n

(∑n
i=i0

1
i + n−i0+1

n+1 − 2√
n+1

∑n
i=i0

1√
i

)
∑n

i=i0
s2
i,n

4 log n ≤ 1
log n

(∑n
i=i0

1
i−1 + n−i0+1

n − 2√
n

∑n
i=i0

1√
i−1

)
,

whence we obtain (24), noting that
∑n

i=i0
1
i ∼

∑n
i=i0

1
i−1 ∼ log n as n →∞ by (6), and

∑n
i=i0

1√
i
∼∑n

i=i0
1√
i−1

∼ 2
√

n as n →∞ by (7) with α = 1
2 .

Proof of (ii). Firstly, by (8) with α = j
2 and j ≥ 3 (and also i0 ≥ 2), we have

n∑

i=i0

1

(i− 1)
j
2

≤ 2
j − 2

1

(i0 − 1)
j
2
−1

≤ 2.

Then, by the second inequality in (8) with α = 3
2 and the latter equality, we obtain

∣∣∣∣
∑n

i=i0
Bi,n

log n

∣∣∣∣ ≤
∑n

i=i0

∑∞
j=3

|mj |
j! (2|θ|)j( 1√

i−1
)j

log n
=

∑∞
j=3

|mj |
j! (2|θ|)j

∑n
i=i0

1

(i−1)
j
2

log n

≤2

∑∞
j=3

|mj |
j! (2|θ|)j

log n
→ 0 (as n →∞),

noting that
∑∞

j=3
|mj |
j! (2|θ|)j < ∞ because a convergent power series is also absolutely convergent.

Proof of (iii). By the definition of Ai,n, (iii) is equivalent to

lim
n→∞

∑n
i=i0

s4
i,n

log n
= 0. (25)

Moreover we already remarked that si,n ≤ 2
(

1√
i−1

− 1√
n

)
, whence we obtain the inequality s4

i,n ≤
16

(i−1)2
. Thus (25) holds noting that 0 ≤

∑n
i=i0

s4
i,n

log n ≤ 16
∑n

i=i0

1
(i−1)2

log n → 0 as n →∞.
Proof of (iv). By the Cauchy formula for the product of two convergent series we have B2

i,n =∑∞
j=6 αjθ

jsj
i,n (where αj is as in the statement of Theorem 3.3); moreover (C2) and the second

inequality in (8) with α = 3
2 yield

B2
i,n ≤

∞∑

j=6

|αj ||θ|j
(

2√
i− 1

)j

≤ C0

∞∑

j=6

(
2|θ|M√

i− 1

)j

.

Now define i1 := [(2|θ|M)2] + 2. Then, for i ≥ i1, we have 2|θ|M√
i−1

≤ 2|θ|M√
i1−1

< 1, whence

∞∑

j=6

(
2|θ|M√

i− 1

)j

=
1

1− 2|θ|M√
i−1

(
2|θ|M√

i− 1

)6

≤ 1

1− 2|θ|M√
i1−1

(
2|θ|M√

i− 1

)6

=
C

(i− 1)3
.

for a suitable constant C > 0. Thus, for n > i0 ∨ i1, we have
∑n

i=i0
B2

i,n

log n
=

∑i0∨i1
i=i0

B2
i,n +

∑n
i=(i0∨i1)+1 B2

i,n

log n
≤

∑i0∨i1
i=i0

B2
i,n

log n
+

CC0
∑n

i=(i0∨i1)+1
1

(i−1)3

log n

and we trivially have limn→∞
∑n

i=(i0∨i1)+1
1

(i−1)3

log n = 0. We also get that limn→∞
∑i0∨i1

i=i0
B2

i,n

log n = 0 noting
that, by the second inequality in (8) with α = 3

2 as before, |Bi,n| is bounded by a positive constant:

|Bi,n| ≤
∑∞

j=3
|mj |
j! |θ|j

(
2√
i−1

)j
≤ ∑∞

j=3
|mj |
j! (2|θ|)j < ∞.
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7 Some details on the proof of Theorem 3.4

We start by checking the existence of the function Λ : X∗ → [0,∞] defined by (9), where X∗ is the
dual space of X = C[0, T ]. Later we shall prove the exponential tightness for

{
1

log n

∑n
k=1

1
kXk : n ≥ 1

}
.

In the final subsection we shall study the exposed points. In view of what follows it is useful to
remark that, by (22), we have

n∑

k=1

1
k
Xk =

n∑

k=1

1
k

∑k
i=1 Ui(σ2·)√

k
=

n∑

i=1

si,nUi(σ2·). (26)

7.1 The proof of (9)

We have to check that

lim
n→∞

logE[e
∫ T
0

∑n
k=1

1
k
Xk(t)dθ(t)]

log n
= 2σ2

∫ T

0
θ2((r, T ])dr (for all θ ∈ X∗). (27)

Then, by (26), remembering that {Un : n ≥ 1} are i.i.d. processes and U1(σ2·) and σU1(·) are
equally distributed, (27) becomes

lim
n→∞

∑n
i=1 logE[eσsi,n

∫ T
0 U1(t)dθ(t)]

log n
= 2σ2

∫ T

0
θ2((r, T ])dr (for all θ ∈ X∗).

Now note that
∫ T

0
U1(t)dθ(t) =

∫ T

0

∫ t

0
dU1(r)dθ(t) =

∫ T

0

∫ T

r
dθ(t)dU1(r) =

∫ T

0
θ((r, T ])dU1(r),

whence we obtain

logE[eσsi,n

∫ T
0 U1(t)dθ(t)] = logE[eσsi,n

∫ T
0 θ((r,T ])dU1(r)] =

σ2

2
s2
i,n

∫ T

0
θ2((r, T ])dr,

and in turn (27) by (24).

7.2 The exponential tightness for
{

1
log n

∑n
k=1

1
k
Xk : n ≥ 1

}

By (26) the exponential tightness condition for
{

1
log n

∑n
k=1

1
kXk : n ≥ 1

}
can be written as follows:

(ET): For all R ∈ (0,∞) there exists a compact set KR ⊂ C[0, T ] (with respect to the uniform
topology) such that

lim sup
n→∞

1
log n

log P

({
1

log n

n∑

i=1

si,nUi(σ2·) /∈ KR

})
≤ −R.

Our aim is to find the compact set KR in (ET) following the procedure in [1]. In view of this
let us consider the modulus of continuity of f ∈ C[0, T ], i.e.

wf (η) := sup{|f(t2)− f(t1)| : 0 ≤ t1 ≤ t2 ≤ 1, t2 − t1 < η} for η > 0.

Then, given a sequence δ := {δn : n ≥ 1} such that δn ↓ 0 as n ↑ ∞, consider the sets {Aδ,k : k ≥ 1}
defined by Aδ,k :=

{
f ∈ C[0, T ] : wf (δk) ≤ 1

k

}
, and the set Aδ := ∩k≥1Aδ,k is compact by the

Ascoli-Arzelà Theorem. Our aim is to check (ET) choosing KR = Aδ(R), i.e. choosing for any
R ∈ (0,∞) the sequence δ = δ(R) in a suitable way.
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We trivially have P
({

1
log n

∑n
i=1 si,nUi(σ2·) ∈ Ac

δ

})
≤ ∑∞

k=1 P
({

1
log n

∑n
i=1 si,nUi(σ2·) ∈ Ac

δ,k

})

since Ac
δ = ∪k≥1A

c
δ,k. Then it suffices to show that, for a suitable choice of δ = δ(R), there exists

a sequence of positive numbers {βn : n ≥ 1} such that
∑

n≥1 βn < ∞ and

P

({
1

log n

n∑

i=1

si,nUi(σ2·) ∈ Ac
δ,k

})
≤ βke

−R log n.

Now let Bk
t (k ≥ 1 and t ∈ [0, T ]) be the set defined by

Bk
t :=

{
f ∈ C[0, T ] : sup

r∈[t,t+δk]
|f(r)− f(t)| > 1

3k

}
.

Then, by the triangle inequality, we have Ac
δ,k = ∪Tδ−1

k
j=0 Bk

jδk
. Thus

P

({
1

log n

n∑

i=1

si,nUi(σ2·) ∈ Ac
δ,k

})

≤
Tδ−1

k∑

j=0

P

({
sup

r∈[jδk,(j+1)δk]

∣∣∣∣∣
1

log n

n∑

i=1

si,nUi(σ2r)− 1
log n

n∑

i=1

si,nUi(σ2jδk)

∣∣∣∣∣ >
1
3k

})

=
Tδ−1

k∑

j=0

P

({
sup

r∈[jδk,(j+1)δk]

∣∣∣∣∣
n∑

i=1

si,n{Ui(σ2r)− Ui(σ2jδk)}
∣∣∣∣∣ >

log n

3k

})

=(1 + Tδ−1
k )P

({
sup

r∈[0,δk]

∣∣∣∣∣
n∑

i=1

si,nUi(σ2r)

∣∣∣∣∣ >
log n

3k

})

=(1 + Tδ−1
k )P

({
sup

r∈[0,δk]

∣∣∣∣∣U1

(
n∑

i=1

s2
i,nσ2r

)∣∣∣∣∣ >
log n

3k

})
.

Then, by the Désiré André reflection principle (and noting that U1 and −U1 are equally distributed)
and by a well known estimate for the tail of Gaussian random variables, we have

P

({
1

log n

n∑

i=1

si,nUi(σ2·) ∈ Ac
δ,k

})
≤4(1 + Tδ−1

k )P

({
U1

(
σ2δk

n∑

i=1

s2
i,n

)
>

log n

3k

})

=4(1 + Tδ−1
k )

1√
2π

∫ ∞

log n

3kσ
√

δk
∑n

i=1
s2
i,n

e−
x2

2 dx

≤4(1 + Tδ−1
k )

1√
2π

e
− log2 n

18k2σ2δk
∑n

i=1
s2
i,n

log n

3kσ
√

δk
∑n

i=1 s2
i,n

.

Thus, setting an :=
∑n

i=1 s2
i,n

log n , we get

P

({
1

log n

n∑

i=1

si,nUi(σ2·) ∈ Ac
δ,k

})
≤ 4√

2π
(1 + Tδ−1

k )3kσ
√

δk
e
− log n

18k2σ2δkan

√
log n√
an

;

moreover, since an → 4 as n →∞ by (24), there exist two positive constants C1 and C2 such that

P

({
1

log n

n∑

i=1

si,nUi(σ2·) ∈ Ac
δ,k

})
≤ C1k

√
δke

− log n

C2k2δk
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for n and k large enough.
Then a suitable choice for the sequence δ = {δn : n ≥ 1} is δn = 1

n6 . Indeed
∑

k≥1 k
√

δk =∑
k≥1

1
k2 < ∞ and 1

C2k2δk
= k4

C2
≥ R for k large enough.

7.3 The exposed points

We recall that x is an exposed point of Λ∗ if there exists an exposing hyperplane θx such that

Λ∗(x) +
∫ T

0
(z(t)− x(t))dθx(t) < Λ∗(z), for all z 6= x.

Note that, obviously, x is not an exposed point of Λ∗. Then we have to show that this condition
holds for any x ∈ X such that Λ∗(x) < ∞. If Λ∗(z) = ∞ there is nothing to prove. Moreover
we can say that, if Λ∗(x) < ∞, there exists a unique θx ∈ X∗ such that θx((r, T ]) = ẋ(r)

4σ2 for all
r ∈ [0, T ]; thus if Λ∗(z) < ∞ we have

Λ∗(x) +
∫ T

0
(z(t)− x(t))dθx(t) =

∫ T

0
z(t)dθx(t)− Λ(θx) <

∫ T

0
z(t)dθz(t)− Λ(θz) = Λ∗(z).
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