
1 Preliminaries

Let (Nt)t≥0 be a collection of random variables. The parameter t is often interpreted as time.

Definition 1.1. (Nt)t≥0 is a stochastic process.

Definition 1.2. The stochastic process (Nt)t≥0 is said to be a counting process if Nt represents
the total numbers of “events”that have occurred up to time t.

From this definition we see that the following properties must be verified

(i) Nt ≥ 0 , ∀ t ≥ 0;

(ii) Nt is integer-valued, ∀ t ≥ 0;

(iii) If s < t, then Ns ≤ Nt.

The variable Nt − Ns equals the number of events that have occurred in the time interval (s, t];
the family of random variables (Nt − Ns)0≤s<t are called the increments of the counting process
(Nt)t≥0.

Definition 1.3. A counting process is said to possess independent increments if the number of
events occurred in disjoint times interval are independent.

Definition 1.4. A counting process is said to possess stationary increments if the distribution of
the number of events occurred in any time interval depends only on the length of the time interval.
This means that, for all t1 < t2 and for all s > 0 the increment Nt2+s − Nt1+s (i.e. the number
of events occurred in the time interval (t1 + s, t2 + s]) has the same distribution as the increment
Nt2 −Nt1 (i.e. the number of events occurred in the time interval (t1, t2]).

2 Poisson process: first definition

Let W1,W2,W3 . . . be independent random variables with law E(λ), where λ > 0 is a given number.
For every t ≥ 0 define

Nt =


0 if 0 ≤ t < W1

1 if W1 ≤ t < W1 +W2

2 if W1 +W2 ≤ t < W1 +W2 +W3

...
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Definition 2.1. The family of random variables (Nt)t≥0 is called a Poisson process having rate λ.

Theorem 2.2. Let 0 = t0 < t1 < t2 < t3 < · · · < tn−1 < tn = t be a partition of [0, t]. Then the
increments

Z1 = Nt1 −Nt0 = Nt1

Z2 = Nt2 −Nt1

Z3 = Nt3 −Nt2

...

Zn = Ntn −Ntn−1

are independent and Poisson distributed with parameters λt1, λ(t2 − t1), . . . , λ(tn − tn−1).
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3 Poisson process: second definition

Definition 3.1. The counting process (Nt)t≥0 is said to be a Poisson process having rate λ if

(i) N0 = 0;

(ii) The process has independent increments;

(iii) The number of events in any interval of length t is Poisson distributed with mean (parameter)
λt. This means that, for all h, t ≥ 0

P
(
Nt+h −Nh = n

)
=

(λt)n

n!
e−λt, n = 0, 1, 2, . . .

It follows from condition (iii) that a Poisson process has stationary increments and also

E[Nt] = λt

which explains why λ is called the rate of the process.

4 Poisson process: third definition

To determine if a given counting process is actually a Poisson process, we must show that conditions
(i), (ii) and (iii) of Section 3 are satisfied. Conditions (i) and (ii) are usually easily verified from our
knowledge of the process. Condition (iii) is more difficult. For this reason an equivalent definition
of a Poisson process is useful.

Definition 4.1. The counting process (Nt)t≥0 is said to be a Poisson process having rate λ if

(i) N0 = 0;

(ii) The process has stationary and independent increments;

(iii) P
(
Nδ = 1

)
= λδ + o(δ);
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(iv) P
(
Nδ ≥ 2

)
= o(δ).

Theorem 4.2. Definitions 2.1, 3.1 and 4.1 are equivalent.

Proof. We show that definition 4.1 implies definition 3.1. Put

Pn(t) = P
(
Nt = n

)
.

We may have n events at time t+ δ if

(a) we have n events at time t and no event beteween t and t+ δ;

(b) we have n− 1 events at time t and 1 event beteween t and t+ δ;

(c) we have less than n− 1 events at time t and more than 1 event beteween t and t+ δ.

So, for n = 0, by independence (assumption (ii)) we have

P0

(
t+ δ

)
= P

(
Nt+δ = 0

)
= P

(
Nt = 0, Nt+δ −Nt = 0

)
= P0(t)P

(
Nt+δ −Nt = 0

)
By stationarity (assumption (ii)) we have

P
(
Nt+δ −Nt = 0

)
= P (Nδ = 0) = 1− P

(
Nδ > 0

)
= 1− P

(
Nδ = 1

)
− P

(
Nδ ≥ 2

)
= 1− λδ + o(δ).

where the last equality follows from assumptions (iii) and (iv). Hence we have obtained

P0

(
t+ δ

)
= P0(t)

(
1− λδ + o(δ)

)
.

Rearranging and dividing by δ we get

P0

(
t+ δ

)
− P0(t)

δ
= −λP0(t) +

o(δ)

δ

and letting δ → 0
P ′0(t) = −λP0(t).

By integrating this simple differential equation we obtain

P0(t) = ce−λt, c ∈ R.

We have the initial condition P=(0) = P
(
N0 = 0

)
= 1 by assumption (i), which yields

P0(t) = e−λt.

For n > 0, we obtain

Pn
(
t+ δ

)
= P

(
Nt+δ = n

)
= P

(
Nt = n,Nt+δ −Nt = 0

)
+ P

(
Nt = n− 1, Nt+δ −Nt = 1

)
+

n∑
k=2

P
(
Nt = n− k,Nt+δ −Nt = k

)
= P

(
Nt = n)P

(
Nt+δ −Nt = 0

)
+ P

(
Nt = n− 1

)
P
(
Nt+δ −Nt = 1

)
+

n∑
k=2

P
(
Nt = n− k

)
P
(
Nt+δ −Nt = k

)
by the independence of the increments (assumptions (ii)). Continuing, we notice that, by assump-
tion (iv)

0 ≤
n∑
k=2

P
(
Nt = n− k

)
P
(
Nt+δ −Nt = k

)
=

n∑
k=2

o(δ)P
(
Nt = n− k

)
≤ o(δ)

n∑
k=0

P
(
Nt = n− k

)
= o(δ)P

(
Nt ≤ n

)
≤ o(δ).

4



which means that
n∑
k=2

P
(
Nt = n− k

)
P
(
Nt+δ −Nt = k

)
= o(δ).

Hence, by assumptions (i) and (ii)

Pn
(
t+ δ

)
= Pn(t)

(
1− λδ + o(δ)

)
+ Pn−1(t)

(
λδ + o(δ)

)
+ o(δ)

= (1− λh)Pn(t) + λδPn−1(t) + o(δ).

Thus, rearranging and dividing by δ, we obtain

Pn(t+ δ)− Pn(t)

δ
= −λPn(t) + λPn−1(t) +

o(δ)

δ
;

letting δ → 0 yields
P ′n(t) = −λPn(t) + λPn−1(t)

and multiplying both members by eλt,

eλt{P ′n(t) + λPn(t)} = λeλtPn−1(t).

or
d

dt

(
eλtPn(t)

)
= λeλtPn−1(t).

We already know that P0(t) = e−λt; from this and the preceding formula we deduce

d

dt

(
eλtP1(t)

)
= λ;

integrating
eλtP1(t) = λt+ c,=⇒ P1(t) = (λt+ c)e−λt

and, since P1(0) = P (N0 = 1) = 0, we conclude with

P1(t) = λte−λt.

We proceed by induction: assume that

Pn−1(t) =
(λt)n−1

(n− 1)!
e−λt.

Then (see above)
d

dt

(
eλtPn(t)

)
= λeλtPn−1(t) =

λntn−1

(n− 1)!
;

integrating

eλtPn(t) =
λntn−1

(n− 1)!
+ c,=⇒ Pn(t) =

(λntn
n!

+ c
)
eλt;

since Pn(0) = P (N0 = n) = 0, we conclude with

Pn(t) =
λntn

n!
eλt,

as claimed. 2
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5 Examples

Typical examples of Poisson processes are

(a) customers that arrive to the checkout counter of a convenience store;

(b) atoms emitted by a radioactive substance (eg. uranium);

(c) spikes fired by a neuron;

(d) cars that arrive to the toll barrier of a highway...
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