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Matrix Functions and Matrix Equations
Chun Hua Guo, University of Regina, Canada

Valeria Simoncini, University of Bologna, Italy

A Newton-Galerkin-ADI Method for Large-Scale Al-
gebraic Riccati Equations
Peter Benner, TU Chemnitz, Germany
benner@mathematik.tu-chemnitz.de
Thu 16:45, Room Pacinotti

Solving large-scale algebraic Riccati equations (AREs) is one
of the central tasks in solving optimal control problems for
linear and, using receding-horizon techniques, also nonlinear
instationary partial differential equations. Large-scale AREs
also occur in several model reduction methods for dynamical
systems. Due to sparsity and large dimensions of the resulting
coefficient matrices, standard eigensolver-based methods for
AREs are not applicable in this context. In the recent two
decades, several approaches for such large-scale AREs have
been suggested. They mainly fall into two categories:

1. Galerkin-projection: the ARE is projected onto a low-
dimensional subspace, e.g., a suitable Krylov subspace,
then the small scale ARE is solved using a standard
solver and the solution is prolongated to full-scale;

2. Newton’s method: exploit sparsity in the resulting lin-
ear system of equations (= a Lyapunov equation) to be
solved in each step.

Here, we will present the hybrid method suggested in [1]. It is
based on exploiting the advantages of both ideas. Numerical
experiments confirm the high efficiency of this new method
and demonstrate its applicability to the aforementioned ap-
plication areas.

[1] P. Benner and J. Saak, A Galerkin-Newton-ADI Method
for Solving Large-Scale Algebraic Riccati Equations. Preprint
SPP1253-090, DFG Priority Programme 1253 “Optimization
with Partial Differential Equations”, January 2010.

Joint work with Jens Saak (TU Chemnitz)

Computation of matrix functions arising in the anal-
ysis of complex networks
Michele Benzi, Emory University, Atlanta, GA, USA
benzi@mathcs.emory.edu
Thu 15:00, Room Pacinotti

Quantitative methods of network analysis naturally lead to
large-scale computations for functions of matrices associated
with sparse graphs. This talk will describe some of the main
quantities of interest in network analysis as introduced by
Estrada, Hatano, D. Higham and others. We combine de-
cay bounds [2,3] and Gaussian quadrature rules [4] to derive
a priori bounds and efficient numerical methods for estimat-
ing the quantities of interest. Numerical experiments using
small-world, range-free, and Erdös-Renyi graphs will be used
to illustrate the algorithms. This talk is based in part on the
report [1].

[1] M. Benzi and P. Boito, Quadrature Rule-Based Bounds
for Functions of Adjacency Matrices, Technical Report
TR-2009-031, Department of Mathematics and Computer
Science, Emory University, January 2010.
[2] M. Benzi and G. H. Golub, Bounds for the entries of
matrix functions with applications to preconditioning, BIT,

29 (1999), pp. 417–438.
[3] M. Benzi and N. Razouk, Decay bounds and O(n)
algorithms for approximating functions of sparse matrices,
ETNA, 28 (2007), pp. 16–39.
[4] G. Meurant and G. H. Golub, Matrices, Moments and
Quadrature with Applications. Princeton University Press,
Princeton, NJ, 2010.

Joint work with Paola Boito (Emory University and CER-
FACS)

On the numerical solution of the matrix equationPk
i=1 log(XA−1

i ) = 0
D.A. Bini, University of Pisa, Italy
bini@dm.unipi.it
Mon 15:00, Room Pacinotti

Let Ai, i = 1, . . . , k be real symmetric positive definite n ×
n matrices. It is known that the minimum of the functionPk
i=1 d(X,Ai)

2 for d(X,Y ) = ||X−1/2Y X−1/2||F is attained

at a matrixX which solves the equation
Pk
i=1 log(XA−1

i ) = 0.
This solution X is called the Karcher mean of the matrices
A1, . . . , Ak.

We introduce the iteration

Xν+1 = Xν exp(θ

kX
i=1

log(XAi))

and its first order approximation

Xν+1 = Xν + θXν

kX
i=1

log(XAi)

for approximating the Karcher mean.
We provide a convergence analysis with a dynamical de-

termination of the optimal parameter θ and show that un-
der certain conditions, convergence is locally quadratic with
the optimal choice of θ. We provide a way for the choice of
an initial approximation which greatly speeds up the conver-
gence. Numerical experiments which validate our analysis are
reported.

Joint work with B. Iannazzo (University of Perugia)

On different classes of Lyapunov equations
Tobias Damm, University of Kaiserslautern, Germany
damm@mathematik.uni-kl.de
Mon 15:25, Room Pacinotti

Lyapunov equations are fundamental e.g. in stability analysis
or model order reduction reduction. As is well-known, differ-
ent forms of Lyapunov operators occur for different classes of
systems such as linear stochastic systems, linear delay equa-
tions or bilinear systems. We give a short review of these
matrix equations and report on some new results and numer-
ical methods.

Inertia and Rank Characterizations of the Expres-
sions A−BXB∗ − CY C∗ and A−BXC∗ ± CX∗B∗
Delin Chu, National University of Singapore, Singapore
matchudl@nus.edu.sg
Mon 15:50, Room Pacinotti

In this paper we consider the admissible inertias and ranks of
the expressions A−BXB∗−CY C∗ and A−BXC∗±CX∗B∗
with unknowns X and Y in the four cases when these expres-
sions are : (i) complex self-adjoint,(ii) complex skew-adjoint,
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(iii) real symmetric, (iv) real skew symmetric. We also pro-
vide a construction for X and Y to achieve the desired in-
ertia/rank, that uses only unitary/orthogonal transformation
thus leading to a numerically reliable construction. Conse-
quently, necessary and sufficient solvability conditions for the
matrix equations

A−BXB∗ − CY C∗ = 0,

and
A−BXC∗ ± CX∗B∗ = 0

are provided.
Joint work with (Y.S.Hung (Department of Electrical and

Electronic Engineering. The University of Hong Kong, Hong
Kong) and Hugo J. Woerdeman (Department of Mathematics,
Drexel University, Philadelphia, USA.))

Hierarchical and Multigrid Methods for Matrix and
Tensor Equations
L. Grasedyck, RWTH Aachen, Germany
lgr@mis.mpg.de
Mon 11:00, Room Pacinotti

Hierarchical and Multigrid methods are among the most ef-
ficient methods for the solution of large-scale systems that
stem, e.g. from the discretization of partial differential equa-
tions (PDE). In this talk we will review the generalization of
these methods to the solution of matrix equations [1], [2], and
equations that possess a tensor structure [3]. The standard
hierarchical and multigrid methods can perfectly be combined
with low rank (matrix) and low tensor rank representations.
The benefit is that the solution is computable in almost op-
timal complexity with respect to the amount of data needed
for the representation of the solution. As an example we con-
sider a PDE posed in a product domain Ω × Ω,Ω ⊂ Rd and
discretized with Nd basis functions for the domain Ω. Under
separability assumptions on the right-hand side the system
is solved in low rank form in O(Nd) complexity (instead of
O(N2d) required for the full solution). For a PDE on the prod-
uct domain Ω× · · · × Ω| {z }

D times

one can even solve the system in low

tensor rank form in O(Nd) complexity (instead of O(NDd)
required for the full solution). The state of the art will be
shortly summarized.

[1] L. Grasedyck, W. Hackbusch, A Multigrid Method to Solve
Large Scale Sylvester Equations, SIMAX 29, pp. 870-894,
2007.
[2] L. Grasedyck, Nonlinear multigrid for the solution of large
scale Riccati equations in low-rank and H-matrix format,
Num.lin.alg.appl. 15, pp. 779-807, 2008.
[3] L. Grasedyck, Hierarchical Singular Value Decomposition
of Tensors, Technical Report 27/2009, Max Planck Institute
for Mathematics in the Sciences, Leipzig, www.mis.mpg.de.

Krylov-enhanced parallel integrators for linear prob-
lems
S. Güttel, University of Geneva, Switzerland
Stefan.Guettel@unige.ch
Thu 15:50, Room Pacinotti

The parareal algorithm is a numerical method to integrate
evolution problems on parallel computers. The main compo-
nents of this algorithm are a coarse integrator, which quickly
propagates information on a coarse partition of the time in-
terval, and a fine integrator, which solves the evolution prob-
lems more accurately on each subinterval. The performance

of this algorithm is well understood for diffusive problems,
but it can also have spectacular performance when applied
to certain non-linear problems. In [2] the authors proposed a
Krylov-enhanced version of the parareal algorithm, which for
linear problems is equivalent to the modified PITA algorithm
described in [1]. Both of these algorithms can be successful
for 2nd order ODE’s. Refining the analysis in [2], we study
the convergence of the Krylov-enhanced parareal algorithm
and consider the particularly interesting special case when
the coarse integrator is a polynomial or rational Krylov-based
exponential or trigonometric integrator.

[1] C. Farhat, J. Cortial, C. Dastillung & H. Bavestrello, Time-
parallel implicit integrators for the near-real-time prediction
of linear structural dynamic responses. Internat. J. Numer.
Methods Engrg. 67 (2006), pp. 697–724.
[2] M. Gander & M. Petcu, Analysis of a Krylov subspace
enhanced parareal algorithm for linear problems. ESAIM:
Proc. 25 (2008), pp. 114–129.

Rational Approximation to Trigonometric Operators
M. Hochbruck, Karlsruhe Institute of Technology, Germany
marlis.hochbruck@kit.edu
Thu 15:25, Room Pacinotti

We will discuss the approximation of trigonometric operator
functions that arise in the numerical solution of wave equa-
tions by trigonometric integrators. It is well known that
Krylov subspace methods for matrix functions without ex-
ponential decay show superlinear convergence behavior if the
number of steps is larger than the norm of the operator. Thus,
Krylov approximations may fail to converge for unbounded
operators. In this talk, a rational Krylov subspace method is
proposed which converges not only for finite element or finite
difference approximations to differential operators but even
for abstract, unbounded operators. In contrast to standard
Krylov methods, the convergence will be independent of the
norm of the operator and thus of its spatial discretization.
We will discuss efficient implementations for finite element
discretizations and illustrate our analysis with numerical ex-
periments.

[1] V. Grimm und M. Hochbruck Rational approximation
to trigonometric operators BIT, vol. 48, no. 2, pp. 215229
(2008)

Joint work with V. Grimm (Karlsruhe Institute of Technol-
ogy)

A binary powering Schur algorithm for computing
primary matrix roots
B. Iannazzo , Università di Perugia, Italy
bruno.iannazzo@dmi.unipg.it
Thu 17:35, Room Pacinotti

Let p be a positive integer. A primary pth root of a square
matrix A is a solution of the matrix equation Xp − A = 0
which can be written as a polynomial of A.

If A has no nonpositive real eigenvalues then there exists
only one primary pth root whose eigenvalues lie in the sector
Sp = {z ∈ C \ {0} : |arg(z)| < π/p}, which is called principal
pth root and denoted by A1/p.

The main numerical problem is to compute (A1/p)r, for
0 < r < p integer. This problem is encountered in certain
applications, among which financial models, and in the nu-
merical computation of other matrix functions [2].

We present an algorithm for computing primary roots of a
nonsingular matrix A. The algorithm is based on the Schur
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decomposition of A. In particular, if A has no nonpositive real
eigenvalues, it computes A1/p using only real arithmetics.

The algorithm has an order of complexity lower than the
customary Schur based algorithm, namely the Smith algo-
rithm [3], and it is a valid alternative to the algorithms based
on rational matrix iterations.

[1] F. Greco and B. Iannazzo, A binary powering Schur
algorithm for computing primary matrix roots, Numer.
Algorithms, 2010.
[2] N. J. Higham, Functions of Matrices: Theory and Com-
putation, SIAM, Philadelphia, USA, 2008.
[3] M. I. Smith, A Schur algorithm for computing matrix pth
roots, SIAM J. Matrix Anal. Appl., 2003.

Joint work with F. Greco (Università di Perugia)

Error estimates for two rational Krylov subspace
methods to solve the Lyapunov equation with a rank
one right-hand side
L. Knizhnerman, Mathematical Modelling Department of
Central Geophysical Expedition, Moscow, Russia
mmd@cge.ru
Mon 12:15, Room Pacinotti

The Extended Krylov Subspace Method has recently arisen
as a competitive method for solving large-scale Lyapunov
equations. Using the theoretical framework of orthogonal ra-
tional functions (Faber–Dzhrbashyan series, Blaschke prod-
ucts), in this talk we report on a general a priori error esti-
mate when the known term has rank one, i.e., the equation
has the form

AX +XA∗ + bb∗ = 0, A,X ∈ RN×N , b ∈ RN ,

with a positively definite known matrix A.
We also apply the same technique to analyze the behavior of

the Rational Krylov Subspace Method, applied to the same
problem, with a priori chosen shifts (EKSM corresponds to
cyclically repeated shifts 0 and ∞).

Special cases, such as symmetric coefficient matrix, are also
treated.

Numerical experiments confirm the proved theoretical as-
sertions.

Joint work with V. Druskin (Schlumberger–Doll Research,
Cambridge, USA), V. Simoncini (University of Bologna,
Italy), M. Zaslavsky (Schlumberger–Doll Research, Cam-
bridge, USA)

Filters connecting quadratic systems
Peter Lancaster, University of Calgary, Canada.
lancaste@ucalgary.ca
Mon 16:45, Room Pacinotti

The diagonalization of quadratic systems L(λ) = Mλ2+Dλ+
K is a fundamental problem in many applications. These sys-
tems may have real or complex matrix coefficients, with or
without symmetries. Diagonalization by the application of
strict equivalence or congruence transformations directly to
L(λ) is well-understood but is possible for only a very restric-
tive class of systems. Diagonalization by applying structure
preserving transformations to a linearization of L(λ) has also
been developed recently, and is possible for a wider class of
systems.

Here, we describe the possibility of finding linear systems
of the form F (λ) := F1λ+ F0 for which

F̃ (λ)L(λ) = L̃(λ)F (λ)

and L̃(λ) is diagonal. We call thesefunctions linear filters.
We show how filters can be constructed using familiar struc-

tures of “standard pairs” and “structure preserving transfor-
mations”.

Joint work with S.D.Garvey, (University of Nottingham, UK),
A.Popov, (University of Nottingham, UK), U.Prells, (Univer-
sity of Nottingham, UK), I.Zaballa, (Euskal Herriko Uniber-
sitatea, Spain).

Stabilizing complex symmetric solution of the equa-
tion X +A>X−1A = Q arising in nano research
Wen-Wei Lin, National Chiao Tung University, Taiwan
wwlin@math.nctu.edu.tw
Mon 17:10, Room Pacinotti

We study the existence and characteristic of the stabiliz-
ing complex symmetric solution Xs for the matrix equation
X + A>X−1A = Q arising in nano research. In stead of us-
ing the deep theory of linear operators we give a new proof
on the existence of Xs by using only basic knowledge of lin-
ear algebra. Furthermore, we show that the imaginary part
of Xs is positive semi-definite with rank=m/2, where m is
the number of simple unimodular eigenvalues of the rational
matrix-valued function ψ(λ) ≡ Q + λA + λ−1A>. We also
present a doubling algorithm for computing the desired solu-
tion Xs efficiently and reliably.

Joint work with Chun-Hua Guo (University of Regina,
Canada) and Yueh-Cheng Kuo (National University of Kaoh-
siung, Taiwan).

Algorithms for nonnegative quadratic vector equa-
tions
F. Poloni, Scuola Normale Superiore, Pisa, Italy
f.poloni@sns.it
Mon 17:35, Room Pacinotti

We investigate a vector equation having the form

Mx = a+ b(x, x), (1)

where a, x ∈ Rn≥0, M is an n×nM-matrix and b : Rn≥0×Rn≥0 →
Rn≥0 is a bilinear map. The equation (1) appears in the study
of Markovian binary trees [Bean, Kontoleon Taylor, Ann.
Oper. Res. ’08; Hautphenne, Latouche, Remiche, LAA ’08].

We propose a new functional iteration (and a corresponding
Newton method) for its solution, based on the computation
of the Perron vector of a special matrix. The most interesting
property of these methods is that their convergence behaviour
does not degrade when the equation is close to null recurrent,
in contrast to the traditional algorithms. This means that
they are particularly effective on the most “difficult” prob-
lems.

Moreover, we may weaken the hypotheses of the original
probabilistic equation in order to obtain a general framework
for systems of quadratic equations with nonnegativity con-
straints, encompassing nonsymmetric algebraic Riccati equa-
tions [Guo, Laub, SIMAX ’00], Lu’s simple equation [Lu L.-
Z., SIMAX ’05], and several quadratic equations in queuing
theory and probability [Bini, Latouche, Meini, LAA ’02 and
’03]. This allows us to give a unified treatment of the numeri-
cal methods for their solution. In some cases, this unification
leads to new algorithms or more general proofs.

It is still an open problem whether it is possible to extend
the new Perron vector-based iterations to this larger family of
quadratic equations.



4

Joint work with D. A. Bini (University of Pisa), B. Meini
(University of Pisa)

Lur’e Equations and Even Matrix Pencils
T. Reis, TU Berlin / TU Hamburg-Harburg (Germany)
reis@math.tu-berlin.de
Mon 11:25, Room Pacinotti

Lur’e equations are a generalization of algebraic Riccati equa-
tions and they arise in linear-quadratic optimal control prob-
lem which are singular in the input. It is well-known that
there is a one-to-one correspondence between the solutions
of Riccati equations and Lagrangian eigenspaces of a certain
Hamiltonian matrix. The aim of this talk is to generalize this
concept to Lur’e equations. We are led to the consideration
of deflating subspaces of even matrix pencils.

Dimension reduction for damping optimization of lin-
ear vibrating systems
Ninoslav Truhar, University of Osijek, Croatia
ntruhar@mathos.hr
Mon 11:50, Room Pacinotti

Consider a damped linear vibrational system described by the
differential equation

Mẍ+Dẋ+Kx = 0 , x(0) = x0, ẋ(0) = ẋ0 ,

where M,D,K are mass, damping and stiffness matrix, re-
spectively.

A very important question arises in considerations of such
systems: for given mass and stiffness determine the damping
matrix so as to insure an optimal evanescence.

It can be shown that this optimization problem is equivalent
to the following minimization problem:

trace(X) = min ,

where X is solution of the following Lyapunov equation:

AX +XAT = −GGT ,

here A is 2n× 2n matrix obtained from M,D and K, and G
is matrix with full column rank, and rank(G)� n.

Finding the optimal D such that the trace of X is minimal
is a very demanding problem, caused by the large number of
trace calculations, which are required for bigger matrix dimen-
sions. We propose a dimension reduction to accelerate the op-
timization process and we present corresponding error bound
for the approximation of the solution of Lyapunov equation
obtained by this reduction. We will show a new estimates for
the eigenvalue decay of the solution X which include the in-
fluence of the right-hand side G on the eigenvalue decay rate
of the solution. Also, we will present an efficient algorithm
for the minimization of trace(X) using a low rank Cholesky
ADI method based on a new set of ADI parameters.

Joint work with Peter Benner, Chemnitz University of Tech-
nology, Germany and Zoran Tomljanović, University of Osi-
jek, Croatia

Algorithms for matrix functions
K. Ziȩtak, Wroc law University of Technology, Poland
krystyna.zietak@pwr.wroc.pl
Thu 17:10, Room Pacinotti

The matrix sector function, introduced by Shieh, Tsay and
Wang, is a generalization of the matrix sign function. For a

positive integer p and a matrix A ∈ Cn×n, having no eigen-
values with argument (2k + 1)π/p for k = 0, 1, . . . , p− 1, the
matrix sector function is defined by sectp (A) = A( p

√
Ap)−1,

where p
√
X denotes the principal pth root of X. For p = 2 the

matrix sector function is the matrix sign function.
We derive and investigate a family of iterations for the sec-

tor function, based on the Padé approximants of a certain
hypergeometric function. This generalizes a result of Kenney
and Laub [3] for the sign function and yields a whole family
of iterative methods for computing the matrix pth root.

We prove that the principal Padé iterations for the matrix
sector function are structure preserving. It generalizes the
result of Higham, Mackey, Mackey, Tisseur [1] for the principal
Padé iterations for the matrix sign function (see also Iannazzo
[2]).

We also focus on the coupled Padé iterations for computing
the matrix pth root. The talk is based on [4] and some current
investigations.

[1] N.J. Higham, D.S. Mackey, N. Mackey, F. Tisseur, Com-
puting the polar decomposition and the matrix sign decom-
position in matrix groups, SIAM J. Matrix Anal. Appl. 25
(2004), 1178–1192.
[2] B. Iannazzo, A family of rational iterations and its appli-
cation to the computation of the matrix pth root, SIAM J.
Matrix Anal. Appl., 30 (2008), 1445–1462.
[3] Ch.S. Kenney, A.J. Laub, Rational iterative methods for
the matrix sign function, SIAM J. Matrix Anal. Appl. 12
(1991), 273–291.
[4] B. Laszkiewicz, K. Ziȩtak, A Padé family of iterations for
the matrix sector function and the matrix pth root, Numer.
Lin. Alg. Appl. 16 (2009), 951–970.


